Conférences

Enregistrements trouvés: 1 (Afficher toutes les activités)
Soutenance de thèse
Solveur GCR pour les méthodes de type mortier
B. Pouliot
Département de mathématiques et de statistique, Université Laval

Les méthodes de type mortier, introduites en 1987 par Bernardi, Maday et Patera,font partie de la grande famille des méthodes par décomposition de domaine. Combinées à la méthode des éléments finis, elles consistent à construire une discrétisation non conforme des espaces fonctionnels du ou des problèmes étudiés. Les trente dernières années de recherche portant sur ces méthodes ont permis d’acquérir des connaissances solides tant au point de vue théorique que pratique. Aujourd'hui, elles sont naturellement utilisées pour résoudre des problèmes d'une grande complexité. Comme applications, nous pouvons simplement penser à des problèmes de contact entre divers solides, à des problèmes d'interaction fluide-structure ou à des problèmes impliquant des mécanismes en mouvement tels des engrenages ou des alternateurs.

Cette thèse de doctorat a pour objectif d'expliquer en détail la construction des méthodes de type mortier et de développer des algorithmes adaptés à la résolution des systèmes ainsi créés. Nous avons décidé d'employer l'algorithme du GCR (Generalized Conjugate Residual method) comme solveur de base pour nos calculs. Nous appliquons d'abord une factorisation du système linéaire global grâce à son écriture naturelle en sous-blocs. Cette factorisation génère un système utilisant un complément de Schur qu'il faut résoudre. C'est sur ce sous-système que nous employons l'algorithme du GCR. Le complément de Schur est préconditionné par une matrice masse redimensionnée, mais il est nécessaire de modifier l'algorithme du GCR pour obtenir des résultats théoriques intéressants.

Nous montrons que la convergence de ce solveur modifié est indépendante du nombre de sous-domaines impliqués ainsi que de ses diverses composantes physiques. Nous montrons de plus que le solveur ne dépend que légèrement de la taille des éléments d'interface. Nous proposons une solution élégante dans le cas de sous-domaines dits flottants. Cette solution ne requiert pas la modification du solveur décrit plus haut. Des tests numériques ont été effectués pour montrer l'efficacité de la méthode du GCR modifiée dans divers cas. Par exemple, nous étudions des problèmes possédant plusieurs échelles au niveau de la discrétisation et des paramètres physiques. Nous montrons aussi que ce solveur a une accélération importante lorsqu'il est employé en parallèle.

Date: 2017-10-05 à 09:30
Endroit: Salle 2415 du pavillon La Laurentienne (visioconférence)