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A b s t r a c t  A highly efficient new method for the sizing opti- 
mization of large structural systems is introduced in this paper. 
The proposed technique uses new rigorous optimality criteria de- 
rived on the basis of the general methodology of the analytical 
school of structural optimization. The results represent a break- 
through in structural optimization in so far as the capability of 
OC and dual methods is increased by several orders of magni- 
tude. This is because the Lagrange multipliers associated with 
the stress constraints are evaluated explicitly at the element level, 
and therefore, the size of the dual-type problem is determined only 
by the number of active displacement constraints which is usually 
small. The new optimally criteria method, termed DCOC, will be 
discussed in two parts. Part I gives the derivation of the relevant 
optimality criteria, the validity and_ efficiency of which are verified 
by simple test examples. A detailed description of the computa- 
tional algorithm for structures subject to multiple displacement 
and stress constraints as well as several loading conditions is pre- 
sented in Part II. 

1 I n t r o d u c t i o n  

Before explaining the authors'  motivation for this new de- 
velopment, the historical background of optimality criteria 
methods is outlined briefly. The modern history of struc- 
tural optimization has been marked by the development of 
two rather independent mainstreams of research, promoted 
by the so-called analytical and numerical schools. The numer- 
ical school of structural optimization, dealing with computer- 
based structural synthesis, was founded over three decades 
ago by Schmit (1960), who was the first to show the feasibil- 
ity of coupling finite element analysis and non-linear math- 
ematical programming to create automated optimal design 
capabilities for a rather broad class of structural systems. 
During the past three decades, the central task of research 
activities in this field has been aimed at improving the ef- 
ficiency of the general strategy used. The necessity for this 
improvement is due to the facts that  

(A) mathematical programming algorithms need frequent cal- 
culations of the objective and constraint functions and 
their gradients for which very expensive structural and 
sensitivity analyses are required, and 

(B) the computer time requirement of mathematical  program- 
ming methods depends largely on the number of design 
variables which is usually very high for complex engineer- 
ing structures. 
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In view of the above, two aspects should be considered 
for enhancing the efficiency of a specific algorithm: 

1. the number of complete structural  reanalyses needed for 
reaching the optimum, and 

2. the computer time requirement for the redesign proce- 
dure. 

Because of the first aspect, the approximation technique 
introduced by Schmit and his associates (Schmit and Farshi 
1974; Schmit and Miura 1976) has become the dominant 
methodology of structural optimization. In this general ap- 
proach, the very costly information obtained by structural 
and sensitivity analyses is used to construct an explicit ap- 
proximate problem in which the behavioural constraints are 
typically linearized in terms of either the design variables or 
their reciprocals, or a mixture of both (Starnes and Haftka 
1979). After finding an optimum for the approximate prob- 
lem, an exact analysis is carried out and a new approximation 
is constructed. This way the number of exact analyses is re- 
duced considerably. 

The second aspect mentioned above concerns the effi- 
ciency of the optimization method (i.e. the optimizer) used 
for solving the approximate problem. As the number of de- 
sign variables increases, this aspect can become more critical 
than the first aspect and hence it represents a limiting fac- 
tor for the capability of a structural  optimization algorithm. 
Discretized optimality criteria methods (DOC) proposed by 
aerospace scientists (Berke 1970; Venkayya, Khot and Berke 
1973), and later in a unified form - known as dual methods - 
by Fleury (1979), improved this aspect of structural optimiza- 
tion algorithms. In these methods, separable convex approx- 
imate problems are transformed into quasi-nonconstrained 
dual problems in which the variables are Lagrangian multi- 
pliers corresponding to the behavioural constraints and hence 
the only constraints for the dual problem are the nonnegativ- 
i ty requirement of those dual variables. The number of active 
constraints is often smaller, in some cases much smaller, than 
the number of design variables. Therefore, the dual problem 
usually involves fewer variables and only trivial constraints, 
which gives it a distinct advantage over the primal MP meth- 
ods for problems where convex separable approximation can 
be used. 

The approximation methodology was generalized in re- 
cent years (Vanderplaats and Salajegheh 1988, 1989; Zhou 
1989; Zhou and Xia 1990; Canfield 1990) for a much broader 
class of structures. These authors have realized that for 
more complex structural  systems, such as frames qr plates 
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or some geometrical optimization problems, the behavioural 
constraints are more directly influenced by some intermedi- 
ate quantities rather than the design variables themselves. 
By linearizing the behavioural constraints or some interme- 
diate responses in terms of those intermediate variables, the 
quality of approximation is highly improved and, therefore, 
the number of reanalyses is reduced. 

Another important general methodology is decomposition 
(Sobieszczanski-Sobieski et al. 1983, 1985), in which a large 
optimization problem is converted into a set of much smaller, 
separate but coordinated subproblems. This methodology 
becomes increasingly important in the rapidly expanding field 
of multi-disciplinary optimization. 

An excellent review of methods of the numerical school is 
given in a book by Haftka et al. (1990). 

Concerning the optimiztion capability of various algo- 
rithms, it appeared until recently that the dual method had 
reached the absolute limit of efficiency. It will be shown in 
this paper, however, that a further rather dramatic improve- 
ment is possible. A new class of optimality criteria methods 
for cross-sectional optimization problems will be presented 
on the basis of the general methodology developed by the 
so-called "analytical school" of structural optimization. 

The origin of the analytical approach is usually traced 
back to the theory of least-weight trusses, developed by 
Michell (1904) around the turn of the century. This field has 
been developed very intensively since the sixties by Prager, 
his associates and others (e.g. Prater and Shield 1967; Prager 
and Taylor 1968; Masur 1970; Prager and Rozvany 1977; 
MrSz 1972; Olhoff 1976). A rather broad class of structural 
optimization problems have been investigated by the ana- 
lytical school, although closed form solutions were limited to 
simple, ideMized problems. The general methodology used in 
this field is the so-called continuum-type optimality criteria 
method (COC), which is based on the Euler-Lagrange type 
minimality conditions in infinite dimensional design spaces, 
derived from variational principles. An extensive treatment 
of the COC method is given by Rozvany (1989) in his recent 
book. 

The fundamental feature of the COC method is that the 
analysis equations are considered explicitly in the optimiza- 
tion problem as equality constraints. This is a natural feature 
of analytical investigations since no analyser is available for 
deriving solutions automatically. For the cross-sectionai op- 
timization of static systems, the COC formulation has the 
following characteristics. 

(1) Displacement constraints are formulated by means of the 
virtual work principle. 

(2) The flexibility formulation for the real and virtual load 
systems is used and the basic unknowns involved are 
then the real and virtual forces together with the cross- 
sectional parameters. 

(3) Kinematical admissibility of the real force system is te m - 
porarily omitted in the formulation of the original prob- 
lem, since the stationarity conditions (i.e. necessary con- 
ditions of optimality) imply automatically kinematical ad- 
missibility. This also follows from the stationary mutual 
energy theorem (Shield and Prager 1970; Huang 1971) 
that states that among all statically admissible solutions, 
the solution representing stationary mutual energy is also 

kinematically admissible. 

More recently, an iterative algorithm coupling the COC 
methods and FE analysis for problems with stress constraints 
and a single displacement constraint has been developed by 
the authors (Rozvany and Zhou 1991a, 1991b; Zhou and Roz- 
vany 1991). It has been shown that the COC methods are 
extremely efficient in handling stress constraints since the 
latter are uncoupled in the optimality criteria and the corre- 
sponding Lagrangians can, therefore, be obtained explicitly 
at the element level. The effect of active stress constraints 
is represented by applying modified kinematic conditions for 
the virtual load system corresponding to the displacement 
constraint. For example, for beams with constant depth and 
variable width, the virtual curvature has a given constant 
value at the cross-section where the flexural stress constraint 
is active (Rozvany and Zhou 1991a). This modified virtual 
force system is termed adjoint system in the COC methodol- 
ogy. A disadvantage of optimality criteria in the continuum 
form is that they are not suitable for engineering structures 
of a discretized nature, and also the adjoint stress-strain re- 
lations can be complicated to implement in the FE analysis. 

In this paper, discretized optimality criteria methods for 
structural systems subject to stress constraints and multiple 
displacement constraints under multiple load conditions are 
developed on the basis of the fundamental principles of the 
COC methodology. For historical reasons, we term this ap- 
proach the DCOC method in order to distinguish it from the 
DOC methods. General optimality criteria for discretized 
structural systems are derived on the basis of the flexibil- 
ity formulation of matrix analysis and Kuhn-Tucker optimal- 
ity condition. Then, an iterative algorithm for coupling the 
DCOC method with FE analysis is developed. 

For a better understanding of the DCOC algorithm, we 
can compare it with the very popular semi-intuitive DOC- 
FSD method, in which the displacement constraints are 
treated by rigorous optimality criteria but the fully stressed 
design concept is used for stress constraints. The iterative 
procedure for the updating phase of the DCOC method is ex- 
actly the same as that for the DOC-FSD method. However, 
rigorous optimality of the DCOC solution is ensured through 
modifying the virtual load systems for the displacement con- 
straints, by applying initial displacements in members where 
stress constraints are active. 

Table 1 shows the quantities influencing the computer 
time requirement of the primal MP, dual or DOC, DOC-FSD 
and DCOC methods in optimizing structural systems with 
static behavioural constraints where N is the number of de- 
sign variables, m d is the number of displacement constraints 
and ms is the number of stress constraints. For large struc- 
tural systems, the number of active displacement constraints 
is usually much smaller than the number of stress constraints, 
which results in a very high efficiency of the DCOC method 
for such systems. The above contention will also be verified 
by numerical examples. 

With regard to formulation and derivation of optimal- 
ity criteria, the main differences between the DOC and 
COC/DCOC methods are summarized in Table 2. 

In order to demonstrate the fundamental features of the 
DCOC method, optimality criteria are derived for stress con- 
straints and a single displacement constraint in Section 2 and 
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Table 1. Quantities determining the optimization capability of 
various methods 

Primal MP 

Critical N 
quantity 
Solution Optimal 

DOC, DOC-FSD DCOC 
Dual 

m d + ms m d m d 

Optimal Non- Optimal 
optimal 

Table 2. Main differences in the formulation of the DOC and 
COC/DCOC methods 

DOC COC/DCOC 
Variables Design variables Design variables, 

Real and 
virtual forces 

formulation of through equivalent directly in terms 
stress constraints displacements of real forces 

equilibrium implicit explicit equality 
constraints 

compatibility implicit not included, 
implied by 
optimality 

calculation of iteratively, explicitly, 
Lagrangians for at system at element 

stress constraints level level 

the corresponding solution algorithm is presented in Section 
3. This algorithm is illustrated with a detailed formulation 
for trusses in Section 4. Several numerical examples for this 
class of problems are given in Section 5, where the efficiency 
of the DCOC method is compared with other methods. Ex- 
tensions to problems with multiple displacement constraints 
and multiple loading conditions are discussed in Section 6, 
which also includes an illustrative example. The treatment 
of some difficulties encountered in the DCOC method is dis- 
cussed in Section 7. 

A detailed description of the DCOC computational algo- 
rithm for multiple deflection and stress constraints and sev- 
eral load conditions will be given in Part II. 

2 Der iva t ion  o f  op t ima l i ty  cr i ter ia  for  l inear ly  elas- 
tic s t ruc tu re s  wi th  s tress  cons t ra in t s  and  one dis- 
p lacement  cons t ra in t  

2.1 Problem formulation 

The above class of problems can be stated as 

minimize W(x) ,  

subject to u D - u D a  < 0 ,  

g ~ ( x ) < 0  ( j = l , . . . , J e ;  e = l , . . . , U E ) ,  

x ~ x F ,  (1) 
where W(x) is the objective function, x the design variable 
vector of length N, u D and UDa , respectively, the displace- 
ment at the specified degree of freedom D and the corre- 

e with j = 1,.. Je are stress sponding allowable value, gj ., 
constraints for the e-th element and x F is the feasible do- 
main for x. Denoting the number of elements by NE, x can 
be expressed in N E partitions 

x~-- { x l . . . x e . . . x  N E } T  (2) 

in which each partition x e of length ne represents cross- 
sectional variables of the e-th finite element 

x ~ = { x ~ . . . x ~ . . . x ~  )T .  (3) 

The  feasible domain x F is usually described with lower and 
upper bounds on the design variables 

(x~) L <_ z~ < (x~) U (i = l , . . . , n e  ; e = I , . . . , N E ) .  (4) 

The objective function W(x) often represents the weight or 
volume of the structure. 

2.2 Formulation of the behavioural constraints in terms of 
nodal forces 

In order to derive optimality criteria, the relevant behavioural 
constraints in the original problem (1) will be expressed ex- 
plicitly in terms of the element nodal forces and the de- 
sign variables. This can be achieved through the flexibility 
method of structural analysis (Gallagher 1975; McGuire and 
Gallager 1979). The governing equations for a structural sys- 
tem can be expressed as 

{P} = [B]{FS}, (5) 

[B]r{u)  = [f]{Ff} + .'{ufi}, (6) 

in which {P)  is the applied nodal load vector, [B] the statics 
matrix, {F f}  a vector of length N f  containing all element 
nodal forces {F~} according to the flexibility formulation, 

{u} the nodal displacement vector, If] the unassembled global 
flexibility matrix and {u f i  ) a vector of length N f  containing 
all element initial relative displacements {u~i } (length n f) .  
The subscript f of the nodal force and relative displacement 
vectors refers to degrees of freedom that are free to displace 
when an element is supported in a stable, statically determi- 
nate manner. Relations (5) and (6) are termed, respectively, 
equilibrium and compatibility equations. 

By the principle of virtual work (McGuire and Gallagher 
1979), the displacement of the specified degree of freedom D 
can be expressed as 

- - e  T e 
u D = E { F f }  {us} = {Ff)T[f]{FS} + { F f } T { u f i } ,  (7) 

e----1 

where {F f}  are the virtual element nodal forces caused by the 

virtual unit dummy load {~V} applied at the specified degree 
of freedom D. If u D refers to a linear combination of several 

displacements, then {~V} represent the weighting factors of 
such a combination. It is important to note that the real 
forces {Fs)  must satisfy both equilibrium and compatibility 

conditions and the virtual forces {Ff} need only to satisfy 
the equilibrium conditions. The equilibrium equations of the 
virtual load system can be expressed as 

{ p v }  = [ B l { f f } .  (8) 
For simplicity, we consider here stress constraints that are 

linear in terms of the nodal forces. However, generalization 
to other types of stress constraints is straightforward. The 
stress constraints g~ in (1) can therefore be expressed as 

e e T e fS e 1TrFe 1 e gj = {Sj) { F f )  + "t jd l  l j d l  -- ~ja ,  (9) 
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where {S~} T is a vector converting the element nodal forces 

into a stress at a specified point j ,  ~e the permissible stress, ja  
{F~d } are forces at the point j caused by the distributed 

load applied within the element e, {S~d } is a vector convert- 

ing {F~d } into the stress at the point j .  In general, {S~} and 

{S~d } are functions of the element cross-sectional dimensions 

x e, and {F~d } contains invariant quantities. Comparing (7) 

with (9), some fundamental differences between displacement 
constraints and stress constraints can be noted. Relation (7) 
implies that the constrained displacement depends on the 
cross-sectional dimensions and the real and virtual forces of 
the entire system. On the other hand, a stress constraint 
concerns only the cross-sectional dimensions and real forces 
of the relevant element. For this reason, we term displace- 
ment constraints global constraints and stress constraints lo- 
cal constraints. A side constraint is a special kind of local 
constraints which contains only a single cross-sectional di- 
mension. Relation (9) can also be expressed as 

e c ) T { F f )  e T e e gj = {S; + {S/d) {Fjd} - ~ja, (10) 

in which the vector {S~} is extended, by adding zero com- 
e portents, to a vector {SjG } which has the same length as 

{rs}, 
Making use of (4), (5), (7), (8) and (10), a relaxed form 

of the original optimization problem (1) can be expressed as 
follows: 

minimize W(x) ,  

subject to {Ff}T[ f ] {Ff )  + { F f } T  {uf i  } - UDa <_ O, 

e G}T{FI}  e T e e gj----- {S; + { S / d  } {Fjd } - o ' j a  <_0 

(j = 1 , . . . , J e ,  e = 1 , . . . ,NE)  , 

{ P } - [ B ] { F f }  = {0}, 

{pV} _ [B]{F/} = {0}, 

e e L  } 
-x i+(z i )  <0 (i=l, . . . ,ne; (11) 

e e U e = l ,  . ,NE) .  
~i-(xi)  <o "" 

It is important to note that  the compatibility conditions (6) 
for the real force system {Ff}  are not involved in (11), and 
therefore the latter is a relaxed form of (1). However, it will 
be shown that the stationary solution of this relaxed problem 
satisfies the compatibility conditions for {F f}  and therefore 
it also represents the stationary solution of the original prob- 
lem. The basic variables involved in (11) are the element 
cross-sectional dimensions x, the element nodal forces {F f}  

of the real system and the element nodal forces {F f} of the 
virtual system. The entries of {u}i } are usually functions of 
x e, but {F~d } is independent of x e. 

2.3 Optimality criteria 
The Lagrangian function of the optimization problem in (11) 
can be written as 

Z: = W(x) + v ( {F f }T[ f l {F  f }  + { F f } T  {uf i  } -- UDa ) + 

NE & 
e T e e + E E ' ~  ({S;G)T{Ff}+{Sjd } {Fjd)-°'Ja) + 

e=l j = l  

NE ne 

, L , .I + ) (12) 
e=l i=1 

where v, A~, {aR},  {aV},  fie and 7 e are Lagrangian mul- 
tipliers. The well-known necessary condition for a stationary 
solution of the problem in (11) is the Kuhn-Tucker condition, 
which here takes the form 
0£ 

= 0 (i = 1 , . . . ,  ne ; e = 1 , . . . ,NE)  , (13) 

0£ 
O ( F f ) i - O  ( i = l , . . . , N f ) ,  (14) 

o£  
------:---- = 0 (i = 1 , . . . ,  g f ) .  (15) 
a(Fs)i 
In addition, all Lagrangian multipliers for inequality con- 
straints in (11) must be non-negative. Moreover, if a con- 
straint is not active, then the corresponding multiplier must 
be zero; {a R} and {a  V} are not required to be non-negative 
because they are Lagrangian multipliers for equality con- 
straints. 

Relations (12) and (13)imply 

OW ( { v f } T  Of {~  )TrOUt  i1~  

+ E } + 
j = l  z 

+' /~=0 ( i = l , . . . , n e ;  e = I , . . . , N E ) .  (16) 

Moreover, by (12), (14) and (15) we have 

NE Je 
v[fl{Ff} + E E )~{S~G} - [BITlaR} = O, (17) 

e=l j = l  

v([f l{Ff} + {ufi})  - [B]T{o~ V} = 0. (18) 

Here we assume thai the displacement constraint is active and 
therefore v > 0. Using the notation 

{~f i}  = {~}i We ~N~ ~T (19) "'" f i " "  f i  -j ' 
& 

l e e  e ,  - )~j{Sj} (20) 
j=l  

(17) and (18) can be rewritten as 

[f]{Ff} + {uf i}  = [B]T{u}, (21) 
with 

{~} = ~ { a R } ,  (22) 

[fl{Ff} + {ufi  ) = [B]T{u}, (23) 
with 

{u) = l { a v } .  (24) 
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It can be seen that (23) represents the compatibifity condi- 
tions for the real force system {F f )  which were omitted in 
the relaxed problem represented by (11). 

Relation (21) provides compatibility conditions for the 
virtual load system which was not required to be kinemati- 
cally admissible in the original problem. Since fictitious ini- 
tial displacements { u f i }  are involved in the compatibility 
conditions represented by (21), {~} can be interpreted as a 
fictitious displacement vector. Using the COC terminology 
(Rozvany 1989), the fictitious system defined by the equilib- 
rium equations (8) and the compatibility equations (21) is 
termed "adjoint" system. It is important to note that the 
terminology of "adjoint" has also been used in the field of 
sensitivity analysis with a different meaning (Haftka et al. 
1990). 

If all stress constraints are inactive, we have {~ f i }  = {0} 
and (21) reduces to 

[f]{Ff} = [B]T{~}, (25) 

which refers to the standard compatibility equations for the 
virtual force system. If some of the stress constraints are 
active, the fictitious initial displacements { ~ f i )  given by (19) 
and (20) are included in the virtual load system. Therefore, 
the so-called "adjoint" system is, in fact, a modified virtual 
load system in which the structure is subject to both the 

virtual loads {pV} and fictitious initial displacements {~}i } 

(e = 1 , . . . , N E ) .  
Of , Oufi  ~089Gl  

Since [~-xe.]~ {--~-~-xe } _ _  and ~--~xe j in (16) concern, re- 

spectively, only the submatrix [e e] and subvectors {u}i} and 

{S~} associated with the e-th element, (16) can be rewritten 
a s  

Je e osel T e as} d IT{Fe }I 
j = l  I 

+7  e = 0  ( i = 1 , . . . ,  ne; e = I , . . . , N E )  , (26) 

where W e is the contribution of element e to the objective 
function W. 

3 Solu t ion  a l g o r i t h m  

3.1 General scheme 

In general, all equations governing the optimum design can 
not be solved simultaneously. For this reason, an iterative 
algorithm must be employed, and as usual, the following two 
main steps are involved in each iteration: 

(a) analysis of the real and adjoint systems, and 
(b) updating of the cross-sectional dimensions x. 

Details of the implementation of the analysis phase will be 
discussed in the next section. 

The governing equations for the updating phase are the 
optimality criteria in (26) and the active local (stress and 
side) constraints, as well as the active displacement con- 
straint 

NE 

e = l  

The other governing equations will be represented sym- 
bolically in the following form. 

Optimality criteria [as in (26)] 

he(x e , ( e , u ) = 0  ( i = l , . . . , n e ;  e = I , . . . , N E ) .  (28) 

Active local (stress and side) constraints 

¢~(x e ) = 0  ( j = l , . . . , m e ;  e = I , . . . , N E )  , (29) 

where ¢~ (j = 1 , . . . ,  me) represent the active stress and side 

constraints of the e-th element, and (e = { (~ , . . . ,  (~¢ }T are 
the corresponding Lagrangian multipliers. 

Once u is updated on the basis of (27) and (28), then (29) 
represent N E uncoupled sets of equations involving only the 
variables for one element e. Therefore, the natural iterative 
procedure of the updating phase involves the following two 
basic steps: 

1. update the Lagrangian multiplier u on the basis of (27); 
2. update x e and (e (e = 1 , . . . ,  NE)  on the basis of N E 

uncoupled sets of simultaneous equations (28) and (29). 

For the second step of the updating phase u is consid- 
ered to have a given value determined in Step 1. If all the 
local constraints are inactive for the e-th element, then the 
Lagrangian multipliers corresponding to the local constraints 
equal zero, and (28) provides ne equations governing ne un- 
knowns x e. If me local constraints (i.e. stress and side con- 
straints) become active, then these equality constraints pro- 
vide me additional equations in the e-th set of equations, and 
me additional unknowns (i.e. the corresponding Lagrangian 
multipliers) appear in the problem. It follows that (28) and 
(29) usually determine x e and ~e sufficiently. However, (28) 
and (29) become singular if the number of active local con- 
straints is greater than the number of design variables for 
the e-th set of equations, i.e. me > he. In this case, some 
equations ¢~(x e) = 0 [j = 1 , . . . ,  me] under (29) become de- 
pendent, the number of dependent equations being me - he. 
Therefore, the ne + me unknowns (x e, ~e) are not given 
uniquely by the 2he < [me + ne] independent equations rep- 
resented by (28) and (29). This situation is experienced in 
truss optimization when the stress constraint and side con- 
straint of an element are simultaneously active. One way 
to remove this difficulty is to upgrade me - ne active stress 
constraints into global constraints. Details of the upgrading 
technique will be discussed in Section 7.1. 

From the above discussion we can see that  once the La- 
grangian multiplier u corresponding to the displacement con- 
straint is determined, x e and ~e can be calculated from (28) 
and (29) for (e = 1 , . . . ,  NE).  

Since If el and {u~i } are functions of design variables x e, 

which depend on u given by (28) and (29), the displacement 
constraint in (27) represents an implicit function of u, i.e. 

= ~[x(u)]. (30) 

In general, (28) and (29) are non-separable, nonlinear equa- 
tions if each element involves several sizing variables. Hence, 
a rather complicated iterative method must be employed for 
both steps of the updating operation. However, for a class of 
simple problems in which only a single design variable x e is 
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associated with each element, (28) provides an explicit rela- 
tion between x e and u. This means that anexplicit equation 
can be obtained from (30) for calculating v and thus the 
updating algorithm becomes extremely simple. In order to 
demonstrate the fundamental features of the proposed method, 
applications of the DCOC method in this paper are limited to 
classes of such simple problems. 

Examples of the considered class of problems are as fol- 
lows: 

1. Bernoulli beams with a rectangular cross-section of vari- 
able width or variable depth; 

2. plane frames with a rectangular cross-section of variable 
width; 

3. trusses of variable cross-sectional areas. 

Details of the iterative procedure for trusses is described in 
Section 4. 

3.2 Analysis of the real and adjoint systems 

Since the optimization problem and optimality criteria were 
expressed in terms of forces, the resulting formulation of the 
real and adjoint systems in (5), (8), (21) and (23) repre- 
sent standard flexibility formulation. It is well-known that 
in modern computerized numerical analysis, the flexibility 
method is much less popular than the stiffness method in 
which the nodal displacements are the basic unknowns. Thus 
it is preferable to solve the real and adj~)int systems by the 
stiffness method. 

The stiffness equation governing the response of a linear 
structural system subject to static loading condition is of the 
form 

[K]{u} = {P},  (31) 

with 

{P} -- {PN} + {PE}, (32) 
where [K] is the system stiffness matrix, and {u} and {P} 
are the vectors of unknown displacements and known applied 
nodal loads. The load vector {P} includes two parts ({PN} 
and {PE}),  which represent, respectively, the loads applied 
directly on nodes and the equivalent nodal loads caused by 
distributed loads applied within the elements, initial displace- 
ments and thermal strains. The system stiffness matrix [K] 
and load vector {P} can be generated from element level stiff- 
ness matrices [K el and equivalent load vector {P~} using an 
assembly technique known as the direct stiffness method: 

ArE 
[K] = ~ [Te]T[K el[Tel, (33) 

e--1 

NE 
e T  e { P } = { P N } + E [  T ] {PE} ,  (34) 

e--1 
where IT el is the orthogonal transformation matrix of the 
e-th element. The equivalent nodal loads {P~:} are the re- 
versed fixed-end forces [F~] caused by distributed loads, ini- 
tial displacements and thermal strains within the e-th ele- 
ment, i.e. 

{P~} ---- - -{F~} .  (35) 

The element stiffness relationships are 
{F e} = [Ke]{u e} -4- {F~} ,  (36) 

where {F e} is the vector of element nodal forces and {u e} 
the element nodal displacement vector. Both {1 ee} and {u e} 
have a length of ns representing the total number of degrees 
of freedom of the element. Thus the number of degrees of 
freedom in the stiffness formulation is by nr greater than that 
for the flexibility formulation, where nr denotes the number 
of rigid motion, i.e. ns = n f  -4- hr. The forces at a point 
j inside an element include two parts which are the forces 
caused by the nodal forces {F e} and the forces caused by the 
distributed loads applied within the element. 

The calculation of fixed-end forces for the real structural 
system is a standard operation. However, the fixed-end forces 
for the adjoint system must be generated from the fictitious 
displacements {u~i} given in (19) and (20). We designate 

{~[} of length ns as the extended adjoint initial displace- 
ment vector of {u~i}, in which the displacements of nr sup- 

ported degrees of freedom are set to zero. Then, the fixed-end 
forces corresponding to the adjoint initial displacements can 
be expressed as 

{F~} = - rKel t~¢~ (37) 
t J t  $ 3 '  

and the equivalent nodal loads are 

{ E} (38) 
Then, by (34), the load vector for the adjoint system can be 
expressed as 

NE 
{P} = {pV} + E [ y e ] T { p ~ } ,  (39) 

e--1 

where {~V} is the virtual load vector corresponding to the 
displacement constraint. 

The solution of the stiffness equation (31) is based on the 
[L][D][L] T decomposition and variable bandwidth technique 
of the stiffness matrix (McGuire and Gallagher 1979). There- 
fore, the analysis of the adjoint system concerns only once 
more the forward and backward substitution of the adjoint 
load vector {P}. 

4 App l i ca t ion  to  t russes  

~.1 Element mechanical relationships 

The truss element is shown in Fig. 1. The element force and 
displacement vectors for the stiffness formulation are 

{F e} = {F~ F~} T , (40) 

{u e} = {u~4 UeB} T .  (41) 

The element force-displacement relationships are 

{F e} = [Eel{s t} ,  (42) 

[Ke]= Le 1 , (43) 

in which A e is cross-sectional area, E e Young's modulus and 
L e the length of the e-th element. The above element forces, 
displacements and stiffness matrix are corresponding to the 
element local coordinate system. The coordinate tranforma- 
tion matrix for a three-dimensional truss can be expressed 
a s  

0 0 0 ]  
0 0 cosa cosf~ cos7 ' 
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N 

za 

X a  

Fig. 1. Truss element 

in which ~, fl and 7 are, respectively, the angles between 
the local element longitudinal axis X and the global system 
coordinates XG, YG and Z G. 

For a flexibility formulation, the truss element must be 
supported in a statically determinate manner. Supposing a 
simple support at end B of the element, the displacement- 
force relationships are 

= (45 )  

in which the element flexibility matr ix reduces to a single 
component 

L e 
[ f ~ ] -  EeAe , (46) 

and UefA in (45) represents the shortening of the e-th element. 

~.2 Optimality criteria 

The design variables of a truss are the cross-sectional areas 
of the truss members ,  i.e. x e = A e (e = 1 , . . . , N E ) .  The 
objective function considered is the structural weight which 
can be expressed as 

WE 
W(x) : ~ TeLex e , (47) 

e : l  
in which 7 e is the specific weight. Denoting w e = 7eL e then 
(47) can be rewritten as 

NE 
W(x)  = E wexe" (48) 

e = l  

The optimali ty criteria will be derived in terms of flex- 
ibility relationships. We define the support conditions for 
an element the same way as for (45). Then, by (7) for the 
displacement at a specified degree of freedom D we have 

N E N E -fieA F~4 L e 
--e T e e (49) UD : E {FA} [f~II{FA } : E Eex e 

e : l  e= l  
The stress constraints for trusses become 

ge ~e IF.,~I o.e = --o'~= xe -- a<_O (e - - - -1 , . . . ,NE) .  (50) 

By using "the optimali ty criteria in (20) and (26), the stress 
constraint can be expressed in the standard form shown in 
(9) as follows: 

sgn F~t 
ge = { se}TF~  _ ~ <_ O, with {se} _ x e 

(e = 1 , . . . , N E ) .  (51) 

Then by (49) and (51) the optimali ty conditions given in (26) 
for the considered problem becomes 

we -F~F£ Le ~e I~1  _ f i e = O  ( e = l , . .  ,NE)  (52) 
. ,  , 

where fie is the Lagrangian multiplier corresponding to the 
lower side constraint. Upper side constraints are assumed to 
be inactive in this application. 

By (51) the adjoint initial displacements given in (20) can 
be written as 

~efi A -  A e sgn F~t (e = 1 , . . .  NE) , (53) 
/2 X e 1 

which shows that  for the adjoint system initial shortenings 
exist in those truss elements in which stress constraints are 
active. By (37) the fixed-end forces of an element correspond- 
ing to the adjoint initial displacements can be evaluated from 

{Y~} = - rKe l - "~  ~.~ (54) 
L J t  S J '  

where {~e. 1 is the extended adjoint initial displacement vec- 
tor 

{u~} = A . (55) 

4.3 Iterative algorithm 

For the equations governing a truss element, four combina- 
tions of active local constraints can be encountered: 

Rd: none of the local constraints (stress and lower side con- 
straints) are active; 

Ra: the stress constraint is active; 

RI: the lower side constraint is active, and 
Rat: both stress and lower side constraints are active. 

As already discussed in Section 3.1, the fourth kind of re- 
gion Rat causes singularity of the equations governing the 
relevant design variable and Lagrangian multipliers corre- 
sponding to the stress and side constraints. In this case, 
(52) contains two unknowns A e and fie and, therefore, A e 
cannot be evaluated at the element level. A technique for 
removing this difficulty is to upgrade stress constraints asso- 
ciated with an Rat region into a global constraint which can 
be expressed in the same way as displacement constraints. 
Since this technique concerns the problem with multiple dis- 
placement constraints, it will be discussed later in Section 
7. 

It follows that  the resizing rule can be expressed as 

= (xL) } ,  (56) 

where 
TeFeL  e 

( ~ ) 2  = ~ Eew~ ' (57) 

e IFel 
XO.-- ~a ' (58) 

and x~ is the lower limit on x e. 
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The subscript A o f F  e and F e are omitted since the force 
in a truss member is constant and we have 

F ~ 4 = - F  e and T ~ 4 - - - Y  e ( e = l  . . . .  , N E )  , (59) 

if we define the sign convention of the forces F e and T e as 
positive for tension and negative for compresion. 

The fixed-end forces corresponding to the adjoint initial 
displacements can be derived as follows. 
For e ERv,  we have )e > 0 and then (52) implies 

-~e Fe L e 
W e _ ~ - -  

A e = Ee(xe)2 (60) 
IFel 

(xe)2 
Since for e E Ra (58) applies, (60) can be rewritten as 

-~a ( - f e F e L e ~  (61) 
.,~e : we x e -- U E e x  e ] . 

Then, by (43) and (53)-(55) the fixed-end forces correspond- 
ing to the adjoint initial displacements can be expressed as 

{F}} = ~ - ~ s g n  F e 1 " (62) 

The Lagrangian multiplier u can be derived using the ac- 
tive displacement constraint which by (49) takes the form 

NE "-~eFeLe 
Eexe u D . = 0 .  (63) 

e----1 
Then by (56)-(58) and (63) we have 

5" ( w e y e F e n e ' ~ l / 2  

~1/2 = e~Rd ~ Ee J 
_Fe Fe Le . (64) 

UDa - 
e~Rd Eexe  

The iterative algorithm for the considered problem is 
shown in the flow chart given in Fig. 2. The computational 
steps in Fig. 2 involve the following operations. 

(A) Input of given information defining the problem and of 
the initial design parameters and performance of one-time 
computations such as calculating the geometrical param- 
eters of the elements, bandwidth of the stiffness matrix, 
etc. 

(B) Analysis of the real and adjoint systems. At the first 
iteration, the adjoint load vector takes simply the virtual 
loads corresponding to the displacement constraint. For 
subsequent iterations, the adjoint load vector is the sum of the virtual load vector and the equivalent nodal loads 
caused by the adjoint initial displacements applied on the 
elements with active stress constraints (i.e. e ERa) .  

(C) Updating the Lagrangian multiplier u using (64). The 
definition of the structural regions Rd, Ra  and Rg comes 
from the prior iteration. At the first cycle, it is assumed 
that all elements are displacement controlled, i.e. e E R d 
for e = 1 , . . . , N  E. 

(D) Updating the cross-sectional parameters x using ( 5 6 ) -  

(58). 
(E) The reason for this step is as follows. If the displacement 

controlled region R d has changed, then (64) would give 
an incorrect estimate of u and hence steps (C) and (D) 
must be repeated. 

(A) P R E P R O C E S S O R  

• Init ial  Design 

• One Time Computa t ions  

(B)~ ANALYSER 

-I  " Real System 

I Adjoint System 

(C~, Upda te  Lagrangian ] 

- I Mulitiplier u 

yes  

t 
(F) I Upda te  Adjoint Load Vector 

Fig. 2. Flow chart of the DCOC procedure 

n o  

$/e8 

(F) Updating the adjoint load vector. The equivalent element 
nodal loads for e E Rv are the reversed fixed-end forces 
which can be evaluated from (62). 

(G) The convergence criterion is 

t T, (65) 

where T is a given tolerance value. 
Since most of the results obtained by DCOC will be com- 

pared with those obtained by other methods, a highly ac- 
curate solution is desirable. Therefore, unusually stringent 
tolerance values (e.g. T = 10 -8)  will be employed in the test 
examples to be presented. 

5 Numer ica l  examples  

All computational results reported in this paper were ob- 
tained on an HP 9000 work station with double precision 
(FORTRAN 77). For the beams and frames in the second 
and third" examples, details of the formulation of the DCOC 
method are given elsewhere (Zhou 1992). The dual method 
used for comparison is based on quadratic approximation of 
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the objective function and linear approximation of the be- 
havioural constraints in terms of reciprocal variables (Zhou 
1989). 

5.1 Ten-bar truss 

The ten-bar truss shown in Fig. 3 is a well-known example 
(Haftka et al. 1990). A modified version of the ten-bar truss 
is considered herein, in so far as a displacement constraint is 
Iv6] < 5.0 (in), where v 6 is the vertical displacement at node 
6. The purpose of this modification is to set a problem, for 
which the optimal solution contains an Ra region but no Rag 
region. The material  properties are as follows: 

= e 25000psi, E e 107 ps i ,  3 , e=0 .11b / in  3, aa = 

x ~ = 0 . 1 i n  2 for (e = l , .  .. ,10) . 

Table 3. Results for the ten-bar truss in Section 5.1 

Cross-sectional area (in 2) 
e 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

No. of 
analyses 
Weight 

(lb) 

DCOC Dual DOC-FSD 
12.161173957 12.161173956 12.126576172 
8.707029023 8.707029026 8.827450732 
0.100000000 0.100000000 0.100000000 
6.040579884 6.040579884 6.046585281 
5.560164853 5.560164853 5.564322434 
8.573640198 8.573640196 8.497882192 
8.542669996 8.542669996 8.551162911 
0.100000000 0.100000000 0.100000000 
0.100000000 0.100000000 0.100000000 
0.100000000 0.100000000 0.100000000 

24 18 25 

2139.1049799781 2139.1049799779 2139.1979257067 

L i_ L _l 

o I; l; 
L = 3 6 0 i n ,  P = 1 0 5 t b  

Fig. 3. Ten-bar truss 

Since the purpose of this example is to verify the valid- 
ity of the DCOC method, a convergence tolerance value of 
T = 10 -12 was employed for the DCOC method as well as 
for the DOC-FSD and dual methods used for comparisons. 
The results are given in Table 3, which shows that  the opti- 
mal weight obtained by the DCOC method has 13 significant 
digits agreement with that  of the dual method, and the de- 
sign variables obtained by these two methods show an at least 

9 significant digits agreement. As expected, the DOC-FSD 
method does not yield the same solution as the other two 
methods, although it is very close to them. 

5.2 Clamped beam with rectangular cross-section of variable 
width 

The beam shown in Fig. 4a has a variable width. Since the 
beam and loads are symmetric, the half beam shown in Fig. 
4b can be considered. Normalized parameters are as follows: 

3 , = 1 ,  E = 1 2 ,  d = l ,  q = l ,  VDa-=l ,  a = l ,  

where 3' is the specific weight, E Young's modulus, d the 
constant beam depth, q the uniformly distributed load, VDa 
the permissible displacement prescribed at midspan and a the 
half beam span. The flexural and shear stress constraints are 
represented by x e _< k l l M ~ a , I  and x e < k2lF]~maxh where 
Meax  and e F~,ma x are, respectively, the maximum moment 
and shear force of the e-th element, and k I = 0.23 and k 2 = 
0.03 are given constants. 

q 

• 1 1 l l I 1 I ~ ~ .... L. I g (~) 
I _  a _ ID_ a __1 
F "  - I  - t  

q 

a 
["- - - I  

(b) 

Fig. 4. Clamped beam example 

The half beam is discretized into N E prismatic beam ele- 
ments. Two models consisting, respectively, of 100 and 1000 
elements are considered. For the 100 element model, a con- 
vergance tolerance of T = 10 - 8  was used for all computa- 
tions concerned. The optimum weight and CPU times for 
the DCOC, DOC-FSD and dual methods are given in Ta- 
ble 4. The CPU times given for "analysis" include those 
for the analysis of the adjoint system (DCOC), analysis for 
the virtual load system (DOC-FSD) and sensitivity analysis 
(dual method). The optimum weight obtained by the DCOC 
method has an eight significant digits agreement with that of 
the dual method, and the optimal design variables for these 
two methods have shown an at least five significant digits 
agreement (Zhou 1992). Again, the solution of the DOC- 
FSD method does not show the same degree of agreement 
with the results of the other two methods. The CPU time 
needed for the optimization phase of the dual method is much 
more than that  for the DCOC method, since 76 stress con- 
straints and one deflection constraint are active at the opti- 
mum. It can be seen that  a much larger number of analyses 
were needed for the DCOC method and DOC-FSD method. 
This is because in those two methods, the resizing rule for 
the members with active stress constraint is based on known 
forces and the dependence of the forces on design variables 
is not considered. For this reason, the treatment of stress 
constraints in the resizing procedure of the DCOC and DOC- 
FSD methods can be regarded as a zero order approximation. 
On the other hand, the dual method is based on first order 
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approximation which achieves a faster convergence. Table 4 
shows that  about the same analysis time was needed for the 
dual method with only 9 iterations as for the DCOC method 
(with 29 iterations). This is because the sensitivity analysis 
needed b y  the dual method is very expensive. The optimal 
width distributions obtained by the DCOC method for both 
models with 100 and 1000 elements are shown in Fig. 5. 

Table 4. Results for the clamped beam example 

100 Element model 
DCOC DOC-FSD Dual 

0.064202389 0.064203018 0.064202389 Optimal weight 
Number of analyses 
CPU ! optimization 
times analysis 
(sec.) total  

29 28 9 
7.84 3.63 535.28 

116.95 112.70 117.41 
124.79 116.33 706.69 

1000 Element model 
DCOC DOC-FSD 

Optimal weight 0.063996543 0.063999993 
18 20 

57.35 34.98 
928.59 1126.41 
985.84 1161.39 

Number of analyses 
CPU optimization 
times analysis 
(sec.) total  

For the 1000 element model, for which a convergence tol- 
erance o f t  = 10 - 6  was used, the results of DCOC and DOC- 
FSD methods are also given in Table 4. The displacement 
constraint is active in the solutions for both methods. There 
are 730 active stress constraints in the solution of the DCOC 
method. Table 4 shows that  for both DCOC and DOC-FSD 
methods the CPU time needed for the optimization phase is 
a fraction of that  needed for the analysis phase. The 1000 
element model was not solved by the dual method because, 
due to over 700 active constraints, the computer time would 
have been prohibitively high. 

5.3 Ten-storey, three-bay frame 

The considered frame is shown in Fig. 6, which has 70 ele- 
ments with rectangular cross-section of variable width. The 
material properties are as follows: 

E = 2.1. 107KN/m 2 , o" a -- 3.0- 105KN/m 2 , 

Va = 5.0 • 104KN/m 2 , 

where E is Young's modulus, o" a the permissible flexural 
stress and r the permissible shear stress. A horizontal dis- 
placement at the left top corner of the frame is constrained 
to a value of A <: 0.3(m). The given constant depth is 
d = 0.3(m) for all the elements. The loading condition is 
shown in Fig. 6, in which the values of the distributed loads 
are: 

ql --- 10 .0KN/m,  q2 = 20 .0KN/m,  q3 = 5.0KN/m. 

With the initial design variables of z e = 0.6(m) for all ele- 
ments, a stress constraint violation of 47.6% occurs. A con- 
vergence tolerance value of T = 10 - 4  was used. The results 
of the DCOC method are compared with those of the DOC- 
FSD and dual methods in Table 5. The reason for small 
constraint violations in the results of the DCOC and DOC- 
FSD methods is the zero order treatment of stress constraints 
discussed in Section 5.2. The optimal width distribution is 
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Fig. 5. Optimal width distribution in the beam example: (a) 
NE = 100, (b) NE = 1000 

X 

shown in Fig. 7. For detailed results the reader is referred to 
Zhou's dissertation (Zhou 1992). 

T a b l e  5. Results for ten-storey and three-bay frame 

DCOC DOC-FSD Dual 

Optimal volume (m 3) 53.51 53.57 53.50 

Constraint violation 0.19 % 0.74 % 0.00 % 

Number of analyses 13 8 12 

CPU optimization 2.63 1.20 108.55 

times analysis 49.61 34.67 197.20 

(sec .) total  52.24 35.87 305.75 
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Fig. 6. Multistorey frame example 
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6 G e n e r a l i z a t i o n  to  m u l t i p l e  d i s p l a c e m e n t  con- 
s t r a i n t s  a n d  m u l t i p l e  l oad  c o n d i t i o n s  

6.1 Optimality criteria and solution algorithm 

For structural systems subject to multiple displacement con- 
straints together with stress constraints under multiple load 
conditions, the optimality criteria (26) can be extended as 
(Zhou 1992) 

OW e NL Not f 

+ E E + 
g=l k=l  L°Xi j 

' =1  j = l  \[~ Oxe j 

+ l  OSed " T 

Ozi J / k 

(i = 1 , . . . , he  ; e = 1,. . . ,ARE) , (66) 

where g = 1 , . . . , N  L are the load conditions and k = 
1 , . . . , N D I  the displacement constraints for the load con- 
dition l ,  F~ek the adjoint nodal forces associated with the 
k-th displacement constraint under t he  i - th  loading condi- 
tion, F ~ l  the real nodal forces associated with the g-th load, 

uef, i the inital relative displacements under the ~-th load and 

F~e d forces at point j caused by the load acting within the 

element e under the £-th load. The generalized form of (17) 
becomes 

Fig. 7. Optimal width distribution in the frame example 

NDl 

k=l  

(~ = 1 , . . . , N D ,  (67) 
with 

& 

{~,i} = ~ ~{s~}, (68) 
j=l 

and (18) is replaced by 

+ {us,,}) : 
(g = I , . . . , N  L; k = l , .  ,ND,  ). (69) 

Under the assumption that at least one displacement con- 
straint is active for each load condition, we have by (69) 

[ f ] { F f g } + { u f d  } = [ B I T { u g }  ( I = I , . . . , N L ) ,  (70) 

and 

{ u g } =  ut-kl { a V }  ( g = I , . . . , N  L', k = I , . . . , N D t  ).  (71) 

Relation (70) implies the compatibili ty conditions for the 
real forces {Ffg} (g = 1 , . . . ,  NL). Relation (67) represents 
N L sets of compatibili ty equations governing N L sets of fac- 

NDt 
torized combination of adjoint forces ~ Ugk{Ff,  k}, where 

k=l  
{Yfgk}  (g = 1 . . . .  ,NL ; k = 1, . . .  , N o ,  ) are required to be 
statically admissible, i.e. 

[B]{~S,k} = { ~ v } ,  

(g = 1 , . . . , N  L ; k = 1 , . . . , N D ,  ) .  (72) 
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Relations (67) and (72) represent the compatibili ty and equi- 
librium conditions for the virtual load (or "adjoint") system. 
If more than one displacement constraint is active for a given 
load condition g, then a single compatibili ty condition is not 
sufficient for determining uniquely the adjoint nodal forces 
F f l k .  One admissible solution can be obtained by splitting 
the single compatibihty equation for each load case g in (67) 
into NDl  compatibifity equations. This can be done by in- 
troducing the following relations: 

NDt 

k=l  

{ ufiki } ag--k-k { u f l i }  
Vik 

(g = 1 , . . . , N L )  , (73) 

(g = 1 , . . . N L  ; k = 1 , . . . , N D g ) ,  

(74) 

ND£ 
E agk = l ( £=  I , . . . , N L ) .  (75) 
k=l  
Then (67) can replaced by the following separate compatibi- 
lity equations: 

If] {Ffgk } + {ufgki  } = [B] T {Ugk } 

(t = 1 . . . .  ,NL  ; k = 1 , . . . , N D I ) ,  (76) 

It is easy to check that  (67) is satisfied if (73)-(76) are ful- 
filled. The property of nonuniqueness of the adjoint forces is 
still kept since a~k (~ = 1 , . . . , N  L ; k = 1 , . . . , N D I  ) can be 
chosen arbitrari ly within the constraint (75). 

The general solution algorithm described in Section 3 
can also be applied to the multi-displacement and multi-load 
problems considered in this section. The evaluation of La- 
grangian multipliers t,/k (g = 1 , . . . , N L ,  k = 1 , . . . , N D g  ) 
becomes the most complex and time consuming task of the 
updating phase, which can be solved using the equations pro- 
vided by the active displacement constraints and the relations 
between the Lagrange multipliers vg k and design variables x 
provided by the optimality criteria (66) and active local con- 
straints. Some techniques (e.g. Newton algorithm) employed 
in the DOC and dual methods for generating Lagrangian mul- 
tipliers can be directly used for the DCOC method. The de- 
tailed computational algorithm will be presented in Par t  II 
of this study. It can be seen easily that,  the DCOC method 
would reduce to the DOC-FSD method if we were to neglect 
the fictitious initial displacements of the adjoint system in 
(76). For details of the derivation of the above equations, the 
reader is referred to Zhou's doctoral thesis (1992). 

6.2 Illustralive example 

The ten-bar truss considered in Section 5.1 is used here again 
as a test example for problems with multiple displacement 
constraints. The displacement constraints are [u61 _< 1.0 
(in) and Iv6[ < 5.0 (in), where u 6 and  v 6 are, respectively, 
horizontal and vertical displacement of node 6. The other 
conditions are the same as described in Section 5.1. I t  has 
been shown by the dual method that  both displacement con- 
straints and the stress constraint at 5-th bar are active at the 
optimum design. Therefore, it  is an ideal example to exam- 
ine the surprising feature of the adjoint systems outlined in 
Section 6.1. 

The following cases of the DCOC method are tested for 
the ten-bar truss [see (75)]: 

C a s e A :  a 1 = 1 ,  a 2 = 0 ,  (77) 

Case B : a 1 = 0, a 2 - 1, (78) 

Vl a 2 - v2 (79) 
Case C : a l  -- v I A- v~ ' v I -4- v " " " ~  ' 

where the subscript 1 and 2 refer, respectively, to the dis- 
placement constraints on u 6 and v 6 (the first subscript of 
agk is omitted since we are considering only one loading con- 
dition). I t  is easy to check all the three cases satisfy (76). 
Although completely different adjoint forces were generated 
under the above three cases, the final results gave in all three 
cases "exactly" the same design as the dual method. The 
results from the DCOC, dual and DOC-FSD methods are in- 
dicated in Table 6, for which a convergence tolerance value 
of T = 10 -12 was used. 

Table 6. Results for the ten-bar truss in Section 6.2 

Cross-sectional area (in 2) 
e 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

No. of 
analyses 
Weight 

(lb) 

DCOC Dual DOC-FSD 
10.8278891 10.8278891 10.8362276 
12.2950243 12.2950243 12.3310330 
0.1000000 0.1000000 0.1000000 
8.6028430 8.6028430 8.5691720 
5.6417060 5.6417060 5.6433667 
7.6192547 7.6192547 7.5675629 
7.6052513 7.6052513 7.6484854 
0.1000000 0.1000000 0.1000000 
0.1000000 0.1000000 0.1000000 
0.1000000 

A c 
23 23 

2220.352475375 

0.1000000 0.1000000 

19 29 

2220.352475375 2220.390773364 

7 S o m e  di f f icul t ies  a n d  t h e i r  t r e a t m e n t  

The optimality criteria and iterative algorithm given in Sec- 
tion 6.1 are based on the assumption that  at least one dis- 
placement constraint is active in each load condition. It is 
obvious that  this assumption is not always satisfied in all de- 
sign problems. However, in order to restore the validity of 
the above assumption, one of the stress constraints for the l-  
th load case can be upgraded into a displacement constraint 
if no displacement constraint is active for the t - th  load case. 
The same procedure is used for all stress constraints in the 
DOC method. In general, a stress constraint in the form of 
(9) can be expressed as follows: 

= - Crka, (80) 

where {Qk } is a vector converting the displacement vector 
into the relevant stress and a~a is the allowable stress. If 

we regard {Qk} as a virtual load vector, then the stress con- 
straint gel  can be considered as a special kind of displacement 
constraint. 

As already discussed in Section 3.1, certain difficulties oc- 
cur if the number of active local constraints of an element is 
higher than the number of design variables of this dement.  
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For example, this situation arises in truss design if the stress 
constraint and lower side constraint are simultaneously active 
for an element. The above problem can also be solved by up- 
grading the considered stress constraint into a displacement 
constraint using the above technique. 

7.1 Illustralive example 

The technique of upgrading stress constraints into global con- 
straints is illustrated herein by another version of the ten-bar 
truss considered in Section 5.1. The single displacement con- 
straint is changed to Iv6[ ~_ 4.0 (in) where v 6 represents the 
vertical displacement of node 6. Other design conditions are 
exactly the same as those given in Section 5.1. As a result of 
this modification, the optimal solution contains both Ra and 
Rag type regions. It was found by using the dual method that  
the displacement constraint and the stress constraints for the 
5-th and 9-th elements are active and the cross-sectional area 
of the 9-th bar takes the lower side value. Therefore, the 
DCOC method including the technique of upgrading stress 
constraints in Rag region must be applied. 

A convergence tolerance value of T = 10 -10 is used. The 
optimum results of the DCOC, DOC-FSD and dual methods 
are given in Table 7, which shows that  the optimum design 
obtained by the DCOC method is "exactly" the same as that 
of the dual method. The displacement constraint, stress con- 
straints for the 5-th and 9-th bars and the side constraint of 
the 9-th bar are active in the solutions of the DCOC and dual 
methods. The DOC-FSD method gives a significantly differ- 
ent solution in which the side constraint of the 9-th element 
is not active. A much larger number of analyses is needed by 
the DOC-FSD method for the considered example. 

Table 7. Results for the ten-bar truss 

e 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

No. of 
analyses 
Weight 

(lb) 

in Section 7.1 

Cross-sectional area (in 2) 
DCOC Dual DOC-FSD 

14.9738773 14.9738773 15.5500216 
11.7177294 11.7177294 11.2224966 
0.1000000 0.1000000 0.1000000 
7.7002256 7.7002256 7.7176393 
5.5316570 5.5316570 5.0834934 

10.1886802 10.1886802 10.9668895 
10.8897635 10.8897635 10.9143902 
0.1000000 0.1000000 0.1000000 
0.1000000 0.1000000 0.4168275 
0.1000000 0.1000000 0.1000000 

18 16 191 

2608.76228367 2608.76228367 2641.76476299 

Note .  The number of iterations used in most test examples 
of this paper is relatively high due to the unusually stringent 
convergence criteria used, resulting in an eight to twelve dig- 
its agreement between weight values of the DCOC and dual 
methods. For an accuracy required in practical problems, a 
much smaller number of iterations is sufficient (see the multi- 
storey frame example in Section 5.3). 

8 C o n c l u d i n g  r e m a r k s  

The following conclusions can be drawn from the results re- 
ported in this paper: 

• The DCOC method increases the optimization capability 
by several orders of magnitude for structural systems with 
a large number of active stress constraints. 

• Whilst  the iterative procedure for the updating phase of 
the DCOC method is the same as that  of the DOC-FSD 
method, rigorous optimali ty of the DCOC method is as- 
sured through modifying the virtual load systems by ap- 
plying the appropriate initial displacements in members 
where the stress constraints are active. 

• It is hoped that  the DCOC algorithm helps to bridge over 
the communication gap between the analytical and nu- 
merical schools of structural  optimization. 

• Since topological optimization usually involves an ex- 
tremely large number of design variables, DCOC is par- 
ticularly suitable for these problems (Zhou and Rozvany 
1991). 

• The illustrative examples of this paper were restricted to 
simple problems involving mainly a single displacement 
constraint. However, the detailed computational algo- 
r i thm and several s tandard test examples for multiple dis- 
placement constraints and multiple load conditions will be 
presented in Part  II. 
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Errata  

Struct. Oplim. 4, No. 3-4, Svanberg, K.: "A.new approxima- 
tion of the constraints in truss sizing problems: an explicit 
second order approximation which is exact for statically de- 
terminate truss structures." 

p. 170: First and sixth references, publisher of the Proceed- 
ings of the NATO ASI  "Optimization of large structural sys- 
tems" is Kluwer Academic Publishers, Dordrecht 

p. 171: Last equation, the last term in the denominator 
should read X4XlX 2 instead of X4XlX. 

Third line from the bottom, 75 % should read 0.75 % 

Last line, 1.99998 should read 0.99998 


