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SUMMARY 
This paper is concerned with the development of a computational algorithm for the solution of the 
uncoupled, quasi-static boundary value problem for a linear viscoelastic solid undergoing thermal and 
mechanical deformation. The method evolves from a finite element discretization of a stationary value 
problem, leading to the solution of a system of linear integral equations determining the motion of the 
solid. An illustrative example is included. 

INTRODUCTION 

In observing the mechanical behaviour of viscoelastic solids, it is common experience that the 
strcss at a particle depends on both the history of (localized) motion of the solid as well as the 
temperature history at the particle. Although a general theory of thermomechanical behaviour of 
materials has been developed by Coleman, among others, the application to engineering practice 
seems remote at the present time. However, if limitations on the generality of the theory are intro- 
duced, it is possible to  develop more specialized methods of characterizing thermomechanical 
behaviour leading to computational techniques for boundary value problems. This paper is 
concerned with such a procedure. A thermomechanical constitutive equation appropriate to 
viscoelastic solids undergoing small, quasi-static deformations is utilized, along with field 
equations for this class of deformation. The heat conduction equation is assumed to be unaffected 
by the deformation and is therefore solved separately, but simultaneously, with the mechanical 
field problem. 

We begin with a discussion of a mechanical constitutive equation for solids undergoing small 
deformations and subjccted to temperature changes. A constitutive functional linear in deforma- 
tion but non-linear in temperature is adopted and various representations are discussed. Specializa- 
tion appropriate to thermorheologically simple solids is indicated. 

On page 48, field equations are adjoined to the constitutive equation and the uncoupled, 
quasi-static boundary value problem for a class of viscoelastic solids is posed. A functional whose 
stationary value is equivalent to the indicated boundary value problem is stated on page 48. 
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On pages 49 and 51, a computational algorithm based upon the finite element technique of 
discretizing the stationary value problem of a functional is described. As an application of the 
method a problem recently studied by Lockett and Morland’ is examined. Agreement with their 
results, which depend on a method of more limited scope, is generally good. 

CONSTITUTIVE EQUATIONS FOR A CLASS OF VISCOELASTIC SOLIDS 

Consider a body undergoing small deformations from an unstressed reference state and 
simultaneously subjected to temperature changes relative to the same reference state. The 
theory of simple materials postulates that the stress at a particle of the body is determined by 
the histories of deformation and temperature at the particle. In the present context in symbolic 
formt this is expressed by the equation 

~ ( x ,  t )  = F:ZL, [E(x, s), T(x,  s); X, t ]  (1) 

where a, E are the stress and (small) strain tensors at the place x at time t ;  T is the temperature 
at x and F is the thermomechanical response functional of the material of the body, i.e. the 
functional that assigns to every small strain history and temperature history the value of the stress 
tensor at x. Guided by experience with many engineering applications of. viscoelastic solids, we 
introduce the assumption that the thermomechanical response functional is linear in strain and 
non-linear in temperature. With this in mind and with further restriction to homogeneous, 
non-ageing materials we replace equation (1) by the hereditary integral representation$ 

(2) 
a 

o(t) = czzh [T(s);  t - T ]  - ar [E(T)  - @(,)I d7 

In equation (2) we have introduced the pseudo-temperature 

O(T) = /Io a(T‘) dT‘ 

where a is the temperature-dependent thermal coefficient of expansion tensor and the kernel 

(3) 

c = czb [T(S) ; t - T] (4) 

is a fourth-rank relaxation modulus tensor whose value depends upon the temperature history of 
the material. For a prescribed temperature history the relaxation modulus reduces to 

c = C( t ;  t - -7) ( 5 )  

This form resembles the kernel of an ageing linear viscoelastic solid and emphasizes the role of 
temperature history on viscoelastic material properties, i.e. temperature has an effect equivalent 
to ‘ageing’ of the material whose relaxation modulus is of the form of equation (4). Development 
of related computational algorithms will not be discussed further here in this connection (see 
Reference 2). Instead we first return to equation (4) and examine the case where the temperature 
is constant, but different from the reference temperature To. 

We then adopt the postulate for thermorheologically simple (TS) materials, i.e. 

C(t; = C“); TI (6) 

t For the present direct notation will be employed, i.e. symbols in bold type are tensors of order indicated by 
the context. Further, for the class of small deformations considered, no distinction between ‘particle’ and 
‘place’ need be made. 
Dependence of field variables on x is understood. 
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where the reduced time 5 is defined by 

((0 = tP(T) (7) 
and the temperature shift function p(T) is assumed to be intrinsic material property normalized 
by the condition p(TJ = 1. Using equation (7) it is possible to compare the mechanical behaviour 
of a material at different constant temperatures. To extend the idea of a temperature shift function 
to non-isothermal applications a further postulate is required. In the past, more from lack of 
contrary evidence than from experimental confirmation, it has been assumed that equation (4) 
could be replaced by 

c:zt, [t - 7; W)l = C[t(t> - 5(7> ; To1 (8) 
where the reduced time is now defined by 

((4 = j; P[T(dl ds (9) 

For constant temperature, equation (9) clearly reduces to equation (6).  Equation (9) is only one 
of many postulates that might be used to extend the notion of a TS material to non-isothermal 
cases. For example, we might assume that the reduced time depends on both temperature and 
temperature ratz histories, i.e. 

or possibly on time derivatives of arbitrary order. In the case of equation (lo), assuming that the 
temperature history shift function is separable, 

we have for the case of a linear (in time) temperature history T(s) = ks, the following result 

(12) 

from which it follows that 
log(* =log++log(  

that is, the presence of a temperature rate function t,h admits the possibility of two time shifts, one 
for temperature and one for temperature rate. In the case of constant temperature, k = 0 and by 
taking +(O) = 1 we have [* = 5, i.e. the TS postulate is recovered. We will not pursue this matter 
further here but remark once again that determination of the response functional for non- 
isothermal histories requires a further postulate for TS materials. In the sequel any definition of 
reduced time of the form (10) or generalizations thereof will be admissible. 

Returning to equation (2) and using equation (6) we adopt as our response functional 

Anticipating later applications of equation (14) we introduced the equivalent abbreviated form 

where 
o(t) = c o [&(I) - e(1q (15) 
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and the symbol (0) denotes the integral of the composition of the adjoined tensors. In equation (14) 
since C is of rank four and E, 8 of rank two, the symbol in equation (15) denotes the integral of a 
doubly contracted composition whose value is a second-rank stress tensor. In component form, 
equation (15) is 

a 
C# [m - 5 ( 4 ;  To1 - e,,(7)1 dT 

We assume in the sequel that Cijkl = Cknj. 

FORMULATION OF THE BOUNDARY VALUE PROBLEM 

By a thermomechanical boundary value problem for a viscoelastic solid we understand the 
following : a niechanically linear, TS material undergoing quasistatic deformation and subjected 
to an independently determined temperature field satisfies the equilibrium equations 

V.ts+f = 0 (16) 
Q = a T  

where f is a prescribed body force vector, the strain-displacement equations 

2E = [VU+(VU)T] (17) 
where u is the displacement vector, and constitutive equations 

= c 8 lE( l )  - w] 
in a region of space R occupied by the body. To these equations are adjoined the following 
boundary conditions : 

T ( x , t ) = n . a = T  onS,  (19) 
u(x, t )  = ii on S,  

In equation (19) n is the outward unit vector normal to the boundary surface of the body, and 
T, ii are prescribed values of the surface traction vector and displacement vector on complementary 
parts of the boundary of the body, S,  and S,, respectively. The temperature of the body is assumed 
to be a prescribed function of position and time. 

A direct computational method for attacking the boundary value problem follows in the next 
section. 

A VARIATIONAL THEOREM 

For computational purposes it is expedient to recast the boundary value problem posed in 
the previous section as a stationary value problem for a functional. Accordingly, we define a 
thermomechanical state functional V{u} through the equation 

V{U} = [+C 8 E * E - C  @ 8 * E - h  * f * U] dv- h * T* uds (20) SR ISo 

In equation (20) h is the Heaviside step function defined as unity for t > 0 and zero for t < 0; the 
asterisk (*) denotes the convolution of two functions in the sense 

f * g  = f(t-~)g(T)dT (21) 

We assume that the body is undisturbed over the interval - oc < T < O + ;  consequently an explicit 
statement of initial conditions is not required. 
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We define an admissible thermomechanical state associated with the functional V{u} as follows : 
I .  The (symmetric) stress tensor is determined by the constitutive equation (18). 
2. The strain-displacement equations (1 7) are satisfied. 
3. The displacement vector satisfies equation (19). 
4. The pseudo-temperature 8 is a prescribed function of place and time associated with a 

We now state -the variational theorem: Among all admissible thermomechanical states, that 
solution of the heat conduction boundary value problem for the body. 

which satisfies the equilibrium equations (16) and stress boundary conditions (19) is given by 

sv= 0 (22) 
Executing the variation of equation (20), using the Divergence Theorem and equation (18), 
leads to 

SV = - { h  * [V. (C 0 dl)- C 0 8"') +f] * 6u} d~ + [h * (T-T) * SU] ds = 0 (23) SR ss, 

Application of a corollary of Titchmarsh's Theorem12 (i.e. f *g = 0 implies eitherf= 0 or g = 0) 
and using the constitutive equation (18) in the volume integral yields the equilibrium equation (16) 
and stress boundary condition, equation (19). 

In the sequel, along with equation (23) we will adopt a variational theorem, presented by Wilson 
and NickelP for obtaining solutions of the heat conduction equation. The finite element computer 
algorithm developed therein, along with the algorithm for the thermomechanical problem to be 
developed on this page and on page 51 form the basis of the computational work reported here. 

SPECIALIZATION FOR AXISYMMETRIC DEFORMATION O F  ISOTROPIC 
VISCOELASTIC SOLIDS-FINITE ELEMENT SOLUTION 

For isotropic thermomechanical response both C and 0 appearing in equation (18) are isotropic 
functions and the following constitutive equations result: 

4 
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where 

3 E  = Err+ E/ jO+  E,, 

and 
I‘ 

0 = /To a(T’) dt’ 

and the material functions K, G have the the form, equation (8). Equation (20) can now be more 
conveniently written? 

[+Ai j@ Si * Si- 0, * Si- h *fa * u,] rdrdz- (204 

where 

(28) 

A, is a 5 x 5 symmetric array whose non-zero components are 

A,, = AZ2 = A,, = 4(3K+4G) 

A,, = A13 = A23 = i(3K-2G) 

A ,  = A,, = A,, = G 

Bi denotes thermal terms whose non-zero components are 

el = e2 = e3 = K O  0 

u, = (UP, u 3  

fa = (f,,fZ) 

T, = (T,, Tz) 
and 

A Ritz-type solution to equation (20a) may be obtained by a finite element method. To this 
end, the volume and surface integrals are expressed as a sum of integrals over a set of subregions 
(finite. elements) defining R. Assumed solutions are taken for each element in such a way that 
displacement continuity is maintained between contiguous elements. In the present developments 
triangular elements are used together with a linear expansion of the displacement field in each 
element. 

Use of standard finite element procedures for spatial dis~ret izat iod~ and application of the 
first variation of Y yields a set of 2N linear integral equations in terms of the 2N nodal displace- 
ments (N equals the number of nodes). These may be expressed as 

8% 
at1 

K,,(E- f ‘ )  - dt‘ = R,(t) 

where 6’ = ( ( t ’ ) ,  K,, is an assemblage of element stiffness relaxation functions for the body, and 
R, is an assemblage of surface and body loads. The solution of equation (29) yields the nodal 
point displacement history. The strain and stress histories can then be computed from equations 
(25) and (26). 

t Latin indices range from 1 to 5 while Greek indices range over 1, 2. Summation convention is implied. 
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SOLUTION OF SIMULTANEOUS INTEGRAL EQUATIONS 

The approximate spatial reduction by a finite element method leads to  a set of simultaneous 
integral equations. In the absence of variable temperature history equation (29) reduces to a set 
of Volterra integral equations of the second kind which theoretically can be solved by integral 
transform methods. However, with variable temperature history these equations are no longer 
tractable by transform techniques. Therefore, in order to  solve equation (29) direct numerical 
methods will be employed: A standard numerical technique for solving this class of equations is a 
step-forward integration procedure. In connection with viscoelastic analyses a finite difference 
technique has been used to solve the convolution inter-relationship between creep and relaxa- 
t i ~ n . ~ ,  5. lo Stress analyses have also been performed utilizing a finite difference numerical step- 
forward integration procedure.', 11, l4 The numerical integration procedure consists in expansions 
into a series of time increments where integrations are performed over each increment according 
to some difference approximation. The great disadvantage of this method (in connection with 
computer applications) is that all past solutions are required. Thus, in the case of equation (29) 
extensive amounts of information are required to obtain solutions over extended time periods. 
Also, considerable computer time is required (it is to be anticipated that a viscoelastic analysis 
will require a considerable increase in computer time over that of a similar elastic analysis). 

Recently some modifications to the above procedure have been proposed. One is based upon 
the premise of a finite memory in the material, hence, the solution at any time involves only 
knowledge of a limited history of the past  deformation^.^ Thus it is necessary to retain only a 
finite number of past solutions to obtain a solution at any time. This modification achieves a 
considerable saving in computation time. However, for large numbers of nodes, the finite element 
reduction to equation (29) results in excessive computation times. 

To obtain a computationally efficient compromise between representation of material response 
by a finite number of parameters and time required to solve equation (29), an alternative scheme 
is used here. We represent the kernel functions of the integral equation (29) by the series 

If the functionsfi,gi are elements of a complete set, as I approaches infinity the series uniformly 
approximates the kernel.lR As a practical matter I cannot be taken too large and care must be 
taken in the choice of approximating functions. Furthermore, since a theoretically complete 
characterization of response cannot be obtained when I is finite, care must be taken to evaluate 
the free parameters in a given approximation using histories that are representative of the problem 
under consideration. Experience has shown that generalized Maxwell models (with related 
negative exponential functions) often constitute good approximations to the response of visco- 
elastic materials. Furthermore, from a theoretical viewpoint it is known that negative exponentials 
are complete on the range 0 < t < Finally, it should be noted that for an ageing viscoelastic 
material in the sense of Arutyunyan,20 a generalization of equation (30) can still be used. When 
the stress-strain equations are expressed in integral form the kernel function then has the series 
representation 

where Gi are constants associated with instantaneous response, X i  are constants associated with a 
discrete relaxation spectrum (each h, can be called a relaxation time) and I is the number of 
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Maxwell elements used to approximate the materials' relaxation modulus. From equation (3 1) it 
follows that 

1 

The above decomposition has previously been used in connection with a finite difference 
integration technique for approximate solution of viscoelasticity problems.', 14. l7 The method is 
used herein as a finite element concept for the approximate solution of viscoelastic problems 
which include temperature effects through the thermorheologically simple postulate. The solution 
technique is similar to  that used in References 8 and 13. In order to discuss the solution technique 
we consider the single integral equation 

au 
0 at 

G(() u(0) + p G(5- 5') -i dt' = r ( t )  (33) 

Equation (33) may be considered as a typical term in equation (29), consequently, any conclu- 
sions obtained from equation (33) are directly applicable to the solution of equation (29). In 
equation (33) G(5) represents a particular relaxation modulus function (i.e. shear or bulk), r ( t )  is 
a known forcing function and u(t) is the sought solution. Substituting into equation (33) the 
material property representation given by equation (32) we obtain 

(34) 
1 I 

i= l  

G o l : g d i ' +  C I Giexp(-f/Xi) au 
i = l  at 

exp(5'/Xi)--;dt' = r ( t ) - u ( 0 )  Go+ C Giexp(-5/Xi) 

As in the spatial reduction by a finite element method, equation (34) may be discretized by piece- 
wise expansions in time of the dependent variable u(t). A continuous time response may be 
obtained by assuming a polynomial time expansion and matching nodal displacements between 
each succeeding time expansion. The simplest expansion is given by the linear Lagrangian inter- 
polation function 

where 

Un = ~ ( t n )  
At ,  = t ,  - tnPl 

Consequently the time derivative of u during each time increment is constant and is expressed by 

If we introduce the notation? 

then at time t , ,  an approximate solution to equation (33) is given by 

t It should be noted that h,(O) = I ; hence, instantaneous loading and unloading may be considered by setting 
Af to zero. 
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of the reduced time at the present real time t,. It is possible to rewrite equation (38) such that 
each new solution may be computed directly from the previous solution. To this end we let 

and note that a recursion formula may be deduced as 

gdt,)  = exP (- At,/Ai) [gi(tn-l> + Gihi(Atn-1) 4 - 1 1 ,  n 2 1 (40) 
where gi(to) = 0, Au, = u,, and At, = tn- tnP1. Equation (38) may now be written as 

For a single integral equation (41) is an efficient solution algorithm for both short and long 
duration loads. The solution effort at each discrete time is proportional to the number of Maxwell 
elements used in the material characterization, whereas, in previous developments (see 
Reference 5) ,  the solution effort was proportional to the number of previous solution points. 
In connection with a finite element method of spatial discretization equation (41) may be applied 
to each term of equation (29) separately and the resulting simultaneous linear algebraic equations 
may be solved by standard techniques, e.g. Gauss elimination is used in a computer program, 
called THVISC, listed in Reference 16. 

The discretization errors involved in the above process are related to the order of the time 
interpolation polynomials. It is possible to  increase the discretization error by using poor 
approximations to equation (37). The evaluation of equation (37) in closed form is in general not 
possible for non-uniform temperature states. An approximation may be obtained by some 
numerical integration or other approximation which will allow a closed form evaluation. If it is 
assumed, as in Reference 6, that 5 is linear in time between t j- l  and t i ,  which corresponds to the 
assumption of constant temperature in the time interval, the integrals, equation (37), may be 
evaluated, yielding 

hi(Atj) &[l -exp(-A&/&)]/A& (42) 
An alternative to  equation (42) is the simple trapezoidal integration procedure. This method 

has previously been used with a finite difference approximation to effect solutions of integral 
 equation^.^.^^ In this procedure each integral is approximated by 

hi(Ati) A +[l +exp(-A&/Ai)] (43) 
For isothermal problems equation (42) represents an exact evaluation to equation (37) while 
equation (43) is in all cases an approximation (see Figure I). By considering the solution to a 
single integral equation we can illustrate that for a given time discretization careful evaluation of 
equation (37) is much more crucial in controlling the numerical error than the approximation of 
the dependent variable. It should be noted at the outset that our argument is based upon the fact 
that material characterization uses relaxation modulus functions together with a displacement 
method. Thus, in equation (33) if we consider a unit step forcing function, u(t)  is the creep 
compliance. For arbitrary inputs u( t )  will have time variations that are related to the time 
characteristics of the creep compliance. Consequently the numerical determination of the creep 
compliance serves as a check on the accuracy of equation (41). From the inter-relationship 
between the relaxation modulus, G(t),  and the creep compliance, J(t) ,  it may be shown that the 
retardation time, 7, is always greater than the relaxation time, A, by the amount 
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(7) 
Figure 1 .  Evaluation of integrals, equation (42). versus trapezoidal rule 

where Go, J,, are initial values and G,, J ,  are final values of the relaxation and creep functions, 
respectively (see Figure 2). Consequently for relaxation moduli with low relative equilibrium 

k 

Figure 2. Comparison of relaxation and retardation times. (a) Relaxation modulus, h = relaxation time; 
(b) creep compliance, T = retardation time 
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values the creep compliance and consequently u(t) will have significant time effects long after the 
relaxation modulus has reached a near equilibrium value. To illustrate this effect we consider the 
relaxation modulus used in Reference 7. 

G(t)  r- 0.75 x lo7+ 8.2925 x lO9exp (- t/2) (45) 

where the known solution is 

[ 8.2925 exp ( -- 3t )] 
6640 

u(t) = ~ ( t )  = + x 10-7 I -- 
8.3 

The retardation time is 6640/3 and the relaxation time is 2. The numerical solution for J ( t )  using 
exact and trapezoidal integrals to represent hi is shown in Table I. The necessity of accurate 

Table I. Creep compliance computation comparison for exact and trapezoidal integration 
of equation (37) 

Creep compliance: J(1) x lo8 

A t :  2 A t :  200 A t :  lo00 
t Trapezoidal Exact Trapezoidal Exact Trapezoidal Exact 

0 0.12 0.12 0.12 0.12 0.12 0.12 
-. ~~~ . .._____ ..________~ -~ 

200 10.79 1 1 *63 0.36 11.17 
400 20.61 22.14 0.60 21-30 
600 29.64 31.75 0.84 30-59 
800 37.95 40.53 1.08 39.12 

1000 45.59 48-54 1.32 46.93 0.36 41.60 
1200 52.62 55.87 1.56 54.10 
1400 59.09 62.56 1-80 60.67 
1600 65.04 68.68 2.03 66-70 
1800 703 1 74.26 2.27 72.22 
2000 75.54 79.37 2.51 77.29 0.60 70.17 

-. - __ 
Error at 2000 (%) 5 -0 97 2-5 99 + 11.5 

evaluation of equation (37) is clearly illustrated by the results in Table I. The trapezoidal integra- 
tion scheme depends upon accurate estimates of the relaxation modulus integrals; these are 
obviously related to the hi and At as seen in Figure 1, If equation (42) is used the solution increment 
is primarily related to the retardation times, 7i and these are always larger than A,. Consequently 
extensive reduction in computational effort is possible by using approximations to equation (37) 
which are accurate for large increments of time. This is especially important for problems involving 
change in temperature since the reduced time increment may be several orders of magnitude 
greater than the real time increment. A consequence of poor approximation to equation (37) is 
illustrated in the next section. 

NUMERICAL EXAMPLE 

As an application of the present development the thermal stress analysis of a thin-walled cylinder 
under conditions of plane strain with a time-dependent boundary temperature was investigated. 
This problem was considered by Lockett and Morland.' Previous closed-form solutions of 
thermorheologically simple problems by integral transform methods have been limited to one- 
dimensional slabs and spheres where symmetry was used to uncouple the single integral law in 
reduced time from the remaining field equations in real time. More general axisymmetric 
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geometries are not amenable to this method of solution. Lockett and Morland have shown that 
for thin-walled cylinders, a perturbation scheme in the thinness parameter permits a similar 
uncoupling at  each stage of the solution. 

The numerical example presented in Reference 7 shows only the first-order solution, which the 
authors state should be valid for a sufficiently thin cylinder. In general, this problem admits four 
characteristic times, that of the applied boundary temperature, the diffusion time of heat transfer, 
the relaxation time' of the viscoelastic material and the time of the solution (retardation time). 
Since the primary purpose of the example was to show the effect of temperature-dependent 
material properties, the diffusion time was assumed to be negligible. As illustrated in the last 
section, the retardation time is even more significant than the relaxation time for numerical 
applications. In general the time steps must be selected small enough so that the piecewise linear 
approximation in time of temperature, displacements and applied loads sufficiently capture the 
transient phenomenon. 

For a time-dependent inner boundary temperature and a prescribed zero outer boundary 
temperature, the first-order steady-state temperature solution is linear and assumed to be achieved 
instantaneously. Using the notation of Reference 7 with 8, p and x normalized temperature, time 
and distance respectively, the applied boundary temperature is taken as , 

B(o, p) = 1 - exp (- 2p) (46) 

&,p)  = (1-4[1-exp(-2p)l (47) 

Consequently, the instantaneous steady-state temperature is given by 

The shift function, based on data for polymethylmethacrylate, is taken as 

p(x,p) = 3981.lexp[-6.2172(1- 8)(1.333+0+ 1.09582)] (48) 

where the strong dependence on temperature is seen from the following table: 

Table 11. Tabulated shift function 

e 4 p (x = 0) 
~ 

0.0 1 .o 0 
0.4 3.22 0-25 
0.6 12.2 0.45 
0.8 118 0.8 
0.9 572 1.15 
1 .o 398 1 2-5 

The approximate times at  which the temperature is attained at the inner boundary are indicated 
in the third column. 

The material moduli are characterized by an elastic bulk modulus and a standard solid shear 
relaxation modulus : 

K = 2.50 x 10'O 

G(5) = 0.75 x lo7 + 829.25 x 10'exp (- 5) (49) 

In Reference 7, the numerical solutions were obtained by using finite difference methods for 
both the spatial and time variables. The authors state that it was necessary to use 40 spatial points 
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and 100 time points to attain a solution with an overall estimated error of 2 per cent. A finite 
element solution based upon the present development was obtained using only 12 nodal points 
(1 1 elements as shown at the top of Figure 3) and 40 time points. The results of both analyses are 
reproduced in Figures 3 and 4. In Figure 3 a plot of the normalized hoop stress is shown for 
3 times. Both analyses compare very favourably at  p = 0.5. This corresponds to a normalized 
temperature of about 0.6 and a reduced time increment of about 25 times the real time increment. 
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Ib 
K O  - 

-04 
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-0.3 

Outer . 
radius) 

p=0 .50  

p.0.79 

p= 1.26 

0 0.2 0.4 0.6 0.8 1.0 

Figure 3. Hoop stress versus time, temperature-dependent properties; 0, per THVISC, Reference 16; 
-, per Reference 7 

X 

Based upon results from the previous section and the time increment used, we estimated that 
trapezoidal integration should be adequate. On the other hand, for p = 0.79 and 1.26 the reduced 
time increments are about 110 and 600 times the real time increment respectively. For these time 
increments estimates show that the trapezoidal integration should lag behind the expected solu- 
tion. The estimates are confirmed by the results obtained in Reference 7. It is physically impossible 
to obtain their response as shown near the inner radius (i.e. for small x). The stresses at  the high 
temperature will decrease faster than at lower temperatures; consequently, due to the discretiza- 
tion error the results of Reference 7 are apparently in error. To verify this conclusion the solution 
was obtained for temperature-independent properties and compared to the results of Reference 7. 
Here excellent agreement has been obtained as seen in Figure 4. The results for the temperature- 
dependent solution are also replotted in Figure 4. 
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