
SHAPE OPTIMAL DESIGN OF A RADIATING FIN 1,2 

M.C.Delfour 
Centre de recherche de 
math~matiques appliquges 
Universit~ de Montreal 
C.P. 6128, Succ.A 
Montreal, Quebec H$C 3J7 

G. Payre 
D~partement de 
G~nie Chimique 
Universit~ de Sherbrooke 
Sherbrooke, Quebec 
Canada JIK 2RI 

J.-P. Zol~sio 
D~partement.de 
Math~matiques 
Universit~ de Nice 
06054 - Nice - C~dex 
France 

i. INTRODUCTION. Current trends indicate that future communications satellites and 

spacecrafts will grow ever larger, consume ever more electrical power, and dissipate 

larger amounts of thermal energy. Various techniques and devices can be employed to 

condition the thermal environment for payload boxes within a spacecraft, but it is 

desirable to employ those which offer good performance for low cost, low weight and 

high reliability. 

A thermal radiator (or radiating fin) which accepts a given thermal power flux 

(TPF) from a payload box and radiates it directly to space, can offer good perform- 

ance and high reliability at low cost. However without careful design, such a 

radiator can he unnecessarily bulky and heavy. It is the mass-optimized design of 

the thermal radiator which is the problem at hand. We may assume that the payload 

box presents a uniform TPF (typ. 0.1 to 1.0 W/cm 2) into the radiator at the box/ 

radiator interface. The radiating surface is a second surface mirror which consists 

of a sheet of glass whose inner surface has silver coating. We may assume that the 

TPF out of the radiator/space interface is governed by the T 4 radiation law, although 

we must account also for a constant TPF [typ. 0.01W/cm 2) into this interface from 

the sun. Any other surfaces of the radiator may be treated as adiabatic. Two con- 

straints restrict freedom in the design of the thermal radiator: 

(i) The maximum temperature at the box/radiator interface is not to exceed some 

constant (typ° SO°C), and 

(ii) no part of the radiator is to be thinner than some constant [typ. imam). 

A similar problem with a convective rather than a radiative condition has been 

considered by G.E.Schneider, M.M.Yovanovich and R.L.D.Cane [I] in connection with 

the cooling of hanks of electronic circuitry where extensive use is made of inte- 

grated circuit devices. This work is also connected with the design of solar col- 

lectors and collector plates. 

Shape optimal design techniques (of. J.C~a [1,2,319 have been successfully 

used in the design of mass-optimized thermal diffusers (cf. M.Delfour, F.Payre and 

J.P.Zolesio [I], and Ph.Destuynder [I]). 

i. This problem has been suggested by A.S.Jones (Spar Aerospace Ltd., Toronto, 
Canada.)The above detailed statement has been provided by Dr.V.A.Wehrle 
(Communications Research Centre, Department of Communications, Ottawa, Canada). 

2. This research has been supported by the Natural Sciences and Engineering 
Research Council of Canada, Strategic Grant G-0654 in Communications. 
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In this paper we present an efficient iterative method of solving the finite 

element approximation to the non-linear boundary value problem describing the tem- 

perature distribution in the radiating fin. This basic tool will be used many times 

to find the solution of the optimal design problem. 

For the optimal design problem, the theory and gradient computations are obtain- 

ed for the finite element model. 

Shapes are restricted to a family of polygonal domains characterized by a finite 

number of shape parameters. Gradient computations involve partial derivatives of 

the position of the nodes with respect to F~he shape parameters and partial material 

derivatives of the state variable with respect to the position of each node. Both 

ingredients are combined to obtain the gradient of the penalized cost function with 

respect to the shape parameters. A £ewsteps of some very preliminary computations 

are  presented. However, at this stage, the program has not yet been carefully 

checked and is not completely operational. 

Notation. Let ~ be the field of all real numbers. For an integer K ~ i, IR K 

will be the K-dimensional Euclidean space. Given an open domain ~ c ~K Lp(~ ) will 

be the space of p-integrable functions from ~ into ~, I ~ p ~ -, and L=(~) the 

space of essentially bounded functions from ~ into ~. WI'P(~), 1 ~ p ~ -, will de- 

note the Sobolev space of LP(~) functions with distributional derivatives of the 

first order in LP(~). Define HI(~) = WI'2(~). cO(B) will denote the space of 

bounded continuous functions from ~ inter. 

2. STATEMENT OF THE PROBLEM. We assume that the radiator is a volume e symmetric- 

al about the z-axis (cf. Figure i) whose boundary surface Z is made up of three 

regular pieces: the contact surface Z 1 (a disk perpendicular to the z-axis with 

center at the point (r,z) = (0,0), the lateral adiabatic surface Z 2 and the radiat- 

ing surface Z 3 (a disk perpendicular to the z-axis with center at (r,z) = (0,L)). 

More precisely 

Z 1 = {(x,y,z) Iz=0 and x2+y 2 _< R~}, Z 2 = {(x,y,z) Ix2+y2=R(z) 2, 0 -< z _< L} 

{I) Z 3 = {(x,y)z)Iz=L, x2+y 2 ~ R(L) 2} 

where the radius R 0 > 0 (typ. 10cm) the length L > 0 and the function 

{2} R : [ O , L ]  -+]R, n ( o )  = RO, R(z)  > O, 0 -< z -< L 

are  g i v e n .  (~ ,  t h e  f i e l d  o f  r e a l  n u m b e r s ) .  

The temperature distribution (in Kelvin degrees) over this volume ~ is the 

solution of the stationary heat equation 

(3) AT = 0 (the Laplacian of T) 

with the following boundary conditions on the surface Z = Z 1 IJ Z 2 lJ Z 3 (the 

boundary of ~): 
~T aT %T 

(4) k ~-~ = qin on ZI, k ~-~ = 0 on E2, k ~ + ~eT 4 = qs on Z3, 
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where n always denotes the outward normal to the boundary surface Z and 8T/Sn is the 

normal derivative on the boundary surface Z. The parameters appearing in (I) to (6) 

are k = thermal conductivity (1.8 W/cmx°C), qin = uniform inward thermal power flux 

at the contact surface (typ. 0.1 to 1.0 W/cm2), ~ = Boltzmann's constant (5.67×10 -8 

W/m2K4), ~ = surface emissivity (typ. 0.8), qs = solar inward thermal power flux 

(0.01W/cm2). 

The Dptiraal design problem consists in minimizing the volume 

(5) J(R,L) : ~f~R(z)2dz" 

over all lengths L > 0 and shape functions R subject to the constraint 

(6) T(x,y,z) ~ Tf (typ. 50~C), ~ (x,y,z) ~ ~. 

In the present analysis we drop the requirement (ii) in section i. 

3. SCALING AND VARIATIONAL FORMULATION OF THE NON-LINEAR BOUNDARY VALUE PROBLEM. It 

is convenient to int1"oduce the following changes of variables (cf. Figure 2) 

('7) ~ -- z/L, ~1 = x/R0' ~2 = Y/Ro' k = L/R 0 

(8) y(~1,~2,~) = k l /3 (oeR0/k) l /3  T(R0~I,R0~2,1~). 

This defines the ~w shape f~nction 

(9) p(~) = R(L~)/R0, p:[0,1] ~ R+, p(0) = 1, O(~) > 0 in [0,i],. 

and the dimen8ionZe88 parameter X > 0. The new volume ~ and its boundary ~ are 

given by 

(10) ~' = {(~]1.,~2,;g)tO < ~ < 1, ~1+~2 < p (~ )2 } .  '~' = ZIUZ2UZ3 

"~ 2 2= ,~ 
Z1 = { t Kl ,~2,0)  iKl+t:2_l} ' s2 = { C~1,~2,~ ) i0~_<1 ' E12,[2=p(~ ) 2  2} 

(11) ,,~ 
= 2+ 2 

Z3 {(~1"~2 '1 )  t~l ~2 -< P(1)2}"  

Equations (3) and (4) become 

+ + = 0 ina, (12) A(y) = -[k2( ~ ? 
8~ 2 ~q 

(13) av A qin on Z I, av A ~2' a, A = qs on Z 3 

where 

(14) 13 = (o~R~/k4)1/3"  ~in = ~qin X4/3' ~s : ~qs x4/3" 

The so lu t ion  y only depends on X, ~qin '  ~qs and the shape £unetion p. Once~qin  and 

~qs have been f ixed,  the optimal desi#n problem cons i s t s  in f inding the parameter ), 

and the shape funct ion 0 which minimizes the volume 
( lS)  J ( k , p )  = rrXJ';p(;~)2d~- 

subjec t  to  the constraint 

(16) sup{y (o )  Io" E '~'1 } -< ~'1' 71 = TfCcY~Ro Ik)113klI3. 
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It wa~ shown in Delfour, Payre and Zolesio [2], that the solution 

.~2+~2 
(17) yCr,~) = YC~I,E2)~), r = V~l~ 2 

(in cylindrical coordinates) of the above boundary-value problem coincides with the 

minimizing element of the functional j 

i . .÷.PC1) 1 5 ~ i 
(18) j (~) = ~XL~,q~) 3 0 2~rdr[~l~01 -qsO]-fo2~rdrqino 

0"~ 0-'~" ÷ ~ "  ~ - ] 2 , r d r d ~ ,  

over the f u n c t i o n  space 
8~ a~ 5 

(20) W(A) = {~[%r{r ~, V~'~., V ~ .  E L2(A), V~IS3 ( L5($3)}. 

The functional j is Gateau differentiable and its derivative at ~ in the # direction 

is given by 

ak(o,~) +foP(1) 2~rdr[ 3 "~ 1 *" (21) dj (,p;~k) = _ I~ I ~0-qs]*-fc2~rdrqinXP. 

The minimizing element y is completely characterized by the variational equation 

(22) dj (y;#)  = O) V# ( W ( A ) .  

Moreover the function y is positive over the closure A of A. The Hessian can also be 

explicitly computed: 

(23) d2j (O;~,~) = ak(,,*)+f~(1)2~rdr 

4. FINITE ELEMENT APPROXIMATION OF THE NLBVP. The function space W(A) is approx- 

imated in two steps. First an approximation oh of the shape function p as a conti- 
nuous piecewise linear function. The function 9 h generates an approximation 

(24) A h = {(r,~)lO < ~ < 1) 0 < r < ph(~)} 

to the cross-section A; by revolution about the ~-axis) A h generates the volume ~h" 

Then, define a triangulation rh on the cross-section A h and associate with it 

the finite element approximation 

(25) W h = {~h]Oh ( cO(Ah ), ~0 h linear on each triangle in ~h }. 

The finite element approximation Yh of the minimizing function y is given by the 

solution of the variational equation 

.(26) dJh(Yh;gh) = O, V~ h ( Wh, 

where Jh is defined by (18) with O h and A h instead of P and A. Various non-linear 

programming algorithms have been developed in Delfour-Payre-Zoleslo [2] tc) compute 

Yh" In this paper we use the following new iterative scheme. Given the real func- 

tion 

(27) f(x) = (]xl3x-c4)l(x-c), c4 = "~qs' 

we consider the following sequence of minimization problems: at step n >_ I, Yn is 

known and Yn+l ( Wh is constructed as follows: 

(28) jn(Yn÷]) = Inf{Jn(Oh) l~ h ( Wh} ~ 
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where 

(29) 
1 ~h (1) 1 1~ 

Jn (@) =~tk(@'@) * f 0  f (Yn)~  I~-c122nrdr  - ; 0 q i n  $2~rdr" 

S. DISCRETE OPTIMAL DESIGN PROBLEM. Given the function Ph' the cross-section A h 

and the triangulation Th,the temperature distribution Yh in W h is the solution of 

(26). The "discrete optimal design problem" is the same as the one in section 3 

except for the fact that p is replaced by Ph in (15) and (16). This constrained 

problem is solved by penalization of (16): 

1 1 ~ + 2 
(30) Je (k ,~h)  = J (k ,ph)  * ~ 0 { [ y h - Y l  ] } 2~rdr ,  ~ > 0 

where [u] + = max{u,0} and T h i n d i c a t e s  t ha t  Je depends no t  on ly  on Ph but  a l so  on 

the triangulation through the state Yh" 

6. CONSTRUCTION OF THE TRIANGULATION r AND INTRODUCTION OF THE SHAPE PARAMETERS. 

For simplicity we drop the subscript "h" associated with the "discrete problem". It 

has been noticed that the state y does not only depend on the surface A but also on 

the chosen triangulation T and, afortiori, on the set of nodes M={Mill~iSm} (m, an 

integer) which defines T. It is not computationally and physically desirable to 

leave all the nodes completely free. So we introduce a fixed set of shape para- 

meters, ~ = {~kIISkSp+q} (p and q, integers) to "control" ~. 

The domain A is divided into two parts by introducing a focus F = (Fr,O), 

F r > i, and two sets of nodes ~p = {EilO 5 i 5 p} (E 0 = (0,0), Ep = (Fr,l)) and 

~q = {Ell p < i S p+q} (E i = (Eir, l)) distributed along the ~-axis and the boundary 

S 3 (ef. Figure 3). In the first part, rays are drawn from F to each node Ei, 

0 ~ i ~ p ; in the second part, lines are drawn parallel to the ~-axis through each 

point of ~. The boundary S 2 and, afortiori, the function p are defined by the 

set of positive parameters ~ in the following way. The boundary points are 

Ei+(F-E i ) g i / I F - E  i l ,  1 ~ i 5 p, 
(31) B i = 

~Ei-(O,~i), p < i ~ p+q 

By joining the points B 0 = (I,0), BI, B 2 ..... Bp+q and Ep+q by straight lines, the 

function Ph and the boundary S 2 are generated. In the actual computations the first 

component of the node E was also considered as a shape parameter controlling the 
p+q 

nodes Ei, p < i < p+q. However, for lack of space, we do not describe this cons- 

truction here. 

7. ELEMENTS IN THE COMPUTATION OF THE GRADIENT OF THE COST FUNCTION WITH RESPECT TO 

THE SHAPE PARAMETERS. Though the  s u r f a ce  A i s  comple te ly  de termined by the  bound- 

ary  nodes ,  the  f i n i t e  e lement  s t a t e  y depends on the whole t r i a n g u l a t i o n  ~ and 

thence on the  se t  of  nodes ~. In genera l  we can w r i t e  

(32) y = y (~) ,  A = A(M) and Js  = J s (A(~) )"  

By c o n s t r u c t i o n  the  nodes ~ are  comple te ly  de termined by the  f ixed  nodes Ep, ~q and 
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F and the  shape parameters ~.  Therefore we w r i t e  

and the  cost function becomes a function L of 

(34) L(~) = J (A(~(~))). 

As a result, using the chain rule, 

(35) 8L m 8J 8r i ~Jc a~i 
a lk  i } t k  + ~ a~kk ] '  g i  ( r i ' ( i ) '  1 _ r _ m, 

where the  p a i r s  { ( a J s / a r i ,  8 J s / aKi )  [1 -< i -< m} a re  t he  p a r t i a l  m a t e r i a l  d e r i v a t i v e s  

of Je wi th  r e s p e c t  to  t he  node M i and the  p a r t i a l  d e r i v a t i v e s  o f  r i and ~ i  wi th  

respect to ~k" The computation of (35) involves the p a r t i a l  m a t e r i a l  d e r i v a t i v e 8  
t , 

[Yr "Y~ ) of the state y with respect to the position of each node M i and the in- 
i tro~uctlon of an adjoint state. This will require the construction of appropriate 

deformation fields. 

8. PARTIAL MATERIAL DERIVATIVES. We briefly recall the speed method for boundary 

value problems over smooth domains S?. Given a smooth deformation vector field 

V defined in a neighbourhood of S?, each point X in ~ at time t=O is transported into 

a point x(t) at time t > 0 through the differential equation 

(36) d x ( t ) / d t  = V ( t , x ( t ) ) ,  x(O) = X. 

This induces a smooth transformation Tt(V)X = x(t) which maps E onto ~t = Tt(V)E' 

The Eulerian derivative of the cost function J at a for the field V is defined as 

(cf. J,P.Zol~sio [1,2]) 

(37) dJ (a;V) = (d/dt)J(S2t) [t=O. 

In t he  d i s c r e t e  c a s e ,  t he  s t a t e  y depends on the  nodes ~ through the  t r i a n g u l a -  

tion • . Given a node M i = (ri,~i) and a small t > 0 we perturb the nodes ~ into 

(38) ~ = {Mj+t(6ij,0) ll -~ j -< m} or '~ = {Mj+t(0,6ij)ll -< j -< m} 
i i 

where 6ij is the Kronecker index function. Now we want to construct in each case 

vector fields which will transport triangles in T onto a new set of triangles ct and 
• -+ 

the shape functions e = {ejll -< j -< m} in W h for ~ onto shape functions ~ = 

{e~ll < j-< m} in W~ for Tt: 

(39) e~(Mi), (resp. e?(M[)) = 8ij 1 -< i,j ~ m. j 
J.P.Zolesio [4] has shown that an appropriate choice is 

(40) Vr.[r,~) = (ei(r,~),0) (resp. V~i(r~) = (O,ei(r,~))). 
I 

Such a field maps each triangle of T onto a triangle of T t and each basis element 

ej onto a basis element et3" Moreover if Yt is a solution of the boundary value 
t 

problem in Wh, then 

(41) ytr'l = Yt°Tt (Vr")l (resp. Y~it = YtoTt (V~I)). 

belongs t o  W h.  Thus the  partial material derivative of  y i s  an e lement  o f  W h 

;r.  : d¢: . /d t l t .O Cresp. " dy /dtlt.O  
1 I 
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and the pcu~%~:al, Eulez~an der, i v a t i v e  of  J i s  given by 

(43) ~J /~r i = dJ (A;Vr.) (reap. bJ /~ i = dJ (A;V~i)). 
z 

It can be shown that for vector fields V = (vr,~) of this type (that is, Vr. or 

V~i), the Eulerian derivative of Je is given by (cf. J.P.Zol6sio [1,4]) x 

(44) dJ¢ (A;V) =/A 2~ [vr+r(~rVr+~V ~) ]drd~ +fA<A'Vy,Vp>2~drd~+fs3 (y4-~s)P(vr+rsrVr)dr, 

where %r and 6~ denote partial derivatives and~au ' is the 2x2 matrix 

(45) ~' = (divV)B-(DV)B-B(DV)*+VrE, B = rE, E =" [ X2 0 " ] 
[ 0 1 

DV is the Jacobian matrix of V, (DV)* its transpose and p is the solution in W h of 

the variational equation 
2 1 "~ * 

(46) d2j (Y;p,9) + ~o[Y-Yl  ] ~2~rdr = O, V~ ~ W h- 

The substitution of Y = V r (rasp. V -- V~ ) will yield an explicit expression for 

(43) in terms of el, y and ~. Combining t~is with the chain rule (35), the optimal 

design problem can be solved by any gradient method. 

9. NUMERICAL RESULTS. The results presented here are very preliminary. They 

only show a few iterations with a computer program which has not yet been carefully 

checked and which is not completely operational. The triangulation is made up of 

167 nodes and 275 elements (linear on each triangle). 

The tests have been divided into two steps. Firstly the geometry of the 

boundary S 2 has been chosen as two straight lines (of. Figure 4): one from (I,0) to 

(R,Z), 0 < Z < I (R is the r-component of the point Ep+q = (R,I)) and one from (R,Z) 

= to Ep+q (R,I). After a series of eva]uations of the volume and the constraint, 

the parameters X, R and Z were chosen in the following way: XR 0 = L = icm, 

ZL = 0,9 cm, RR 0 = 18,75 cm, R 0 = 5 cm. During the iterations,k, R and Z 

were fixed and the algorithm began to dig into the surface S 2. Five such iterations 

are shown in Figure S. The evolution of the volume, the constraint and the cost as 

a function of the iteration number are shown iN Figure 6. The temperature profiles 

at iteration 5 are shown in Figure 7. The hottest profile is 49,?5 = on the side 

of the boundary ~3 near the ~-axis. The shape obtained at iteration 5 is not 

necessarily optimal since iterations were not continued. Nevertheless the algorithm 

seems to converge towards a "physical" solution. 
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Figure 7. Temperature profiles at iteration S. 


