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MONOLITHIC MULTIGRID SOLVERS
@ Flow problems in deformable porous media
@ Coupled flow and porous media problems (Stokes-Darcy and Stokes-Biot)

@ Flow problems in fractured porous media
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Poroelasticity problem. Introduction

@ A deformable porous material consists of an elastic matrix containing
interconnected fluid-saturated pores.

@ In physical terms, when a porous material is subjected to stress, the
resulting matrix deformation leads to volumetric changes in the pores.

@ Since the pores are fluid-filled, the presence of the fluid results in the flow
of the pore fluid between regions of higher and lower pore pressure.

@ The theory of poro-elasticity addresses the time dependent coupling
between the deformation of a porous material and the fluid flow inside it.
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Poroelasticity problem. Subsidence

SUBSIDENCE from groundwater pumping in San Joaquin Valley (California)

Courtesy of California Department of Water Resources
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Poroelasticity problem. Subsidence

SUBSIDENCE from groundwater pumping in San Joaquin Valley (California)

SUBSIDENCE 6.2 ft
1988-2016

Courtesy of California Department of Water Resources

C. Rodrigo Monolithic multigrid solvers for flow problems in porous media



Poroelasticity problem. Subsidence

SUBSIDENCE from groundwater pumping in San Joaquin Valley (California)

SUBSIDENCE 6.2 ft
1988-2016

Courtesy of California Department of Water Resources
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Poroelasticity problem

QUASI-STATIC BIOT'S MODEL:

Equilibrium equation: dive’ —aV p=pg, inQ,

(or equivalently diveo = pg, o = o’ — alp)
Generalized form of Hooke's law: o’ = Atr(e)l +2ue, in€Q,
Compatibility equation:  €(u) = 3(Vu+ Vu'), inQ.

Darcy's law: w = fiK(Vp — prg), InQ,
I

- . o (1 . .
Continuity equation: 7t (Mp—i—av u) +V-w=f, inQ.

A and p: Lamé coefficients

a: Biot-Willis constant and M: Biot's modulus

K: Permeability of the porous medium and p: density of the solid
e viscosity of the fluid and pf: density of the fluid

u: displacement vector and p: pore pressure

o’ and e: effective stress and strain tensors

w: velocity of the fluid relative to the soil

f: a forced fluid extraction or injection process and g: gravity vector
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Poroelasticity problem

Two-field (displacement-pressure) formulation

—VOA+p)V-u—V - -uVu+aVp=pg,
1 9dp 0 1 _

Three-field (fluid velocity) formulation

—VOA+pu)V-u—V - -uVu+aVp=npg,
K™ purw + Vp = prg,
1 0p

9]
Ma+aa(v~ u)+V-w="r.
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Poroelasticity problem - Many Applications!

Reservoir Engineering

Bioengineering

Earthquake Engineering

Carbon Dioxide Storage  Hydraulic Fracturing Animal Cells
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Poroelasticity problem - Many Applications!

Reservoir Engineering

Bioengineering

Earthquake Engineering

Large variation of model parameters in many practical problems !! J

Carbon Dioxide Storage  Hydraulic Fracturing Animal Cells

Caprock
" Decp Sae Ater
-
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Poroelasticity problem. Discretization schemes

@ Finite Difference schemes
- F.J. Gaspar, F.J. Lisbona, P.N. Vabishchevich, A Finite Difference Analysis of Biot's
Consolidation Model. Applied Numerical Mathematics, 44 (2003) 487-506.
- F.J. Gaspar, F.J. Lisbona, P.N. Vabischevich, Staggered grid discretizations for the
quasi-static Biot’s consolidation problem, Applied Numerical Mathematics 56 (2006) pp.
888-898.

@ Finite Volume methods
- R.E. Ewing, O.P. lliev, R.D. Lazarov, and A. Naumovich, On convergence of certain finite
volume difference discretizations for 1-D poroelasticity interface problems, Numerical
Methods for Partial Differential Equations 23 (3) (2007), 652-671.
- J. M. Nordbotten, Stable cell-centered finite volume discretization for Biot equations,
SIAM Journal on Numerical Analysis 54 (2) (2016) 942-968.

@ Finite Element discretizations
- M.A. Murad, V. Thomée, A.F.D. Loula, Asymptotic behavior of semidiscrete finite-element
approximations of Biot's consolidation problem, SIAM J. Numer. Anal. 33 (1996)
1065-1083.
- G. Aguilar, F. Gaspar, F. Lisbona, C. Rodrigo, Numerical stabilization of Biot's
consolidation model by a perturbation on the flow equation, Internat. J. Numer. Methods
Engrg. 75 (2008) 1282-1300.
- C. Rodrigo, F.J. Gaspar, X. Hu, L.T. Zikatanov, Stability and monotonicity for some

discretizations of the Biot's consolidation model, Computer Methods in Applied Mechanics
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Poroelasticity problem. Robust discretization schemes

Search for parameter-robust stable discretizations J

@ J.J. Lee, Robust error analysis of coupled mixed methods for Biot's consolidation model,
Journal of Scientific Computing 69 (2016) 610-632.

@ J.J. Lee, K.-A. Mardal, and R. Winther. Parameter-robust discretization and preconditioning
of Biot's consolidation model. SIAM Journal on Scientific Computing, 39 (2017) A1-A24.

@ J. Adler, F.j. Gaspar, X. Hu, C. Rodrigo, L.T. Zikatanov, Robust Block Preconditioners for
Biot's Model, Domain Decomposition Methods in Science and Engineering XXIV in Lecture
Notes in Computational Science and Engineering, Vol. 125, Bjostad, P.E., Brenner, S.C.,
Halpern, L., Kim, H.H., Kornhuber, R., Rahman, T., Widlund, O.B. (Eds.), 2018.

@ Q. Hong, J. Kraus, Parameter-robust stability of classical three-field formulation of Biot's
consolidation model, ETNA, 48 (2018) 202-226.
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Poroelasticity problem. Numerical difficulties

Standard discretizations in space give H H P1-P1 + Implicit Euler
nonphysical oscillations in the solution e — —
of the pressure. CNC) f\ A o
A
sl
_%<(A+2p)%>+%:o, ‘s\!]yx

8y o ey

ot \ Ox x \nox/)
ou

(A+2p)—=-1, p=0,
Ox

o _
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— =0, x€(0,1), t=0.
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Poroelasticity problem. Numerical difficulties

Standard discretizations in space give H H P1-P1 + Implicit Euler
nonphysical oscillations in the solution e — —
of the pressure. CNC) f\ A o
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Poroelasticity problem. Numerical difficulties

LAYERED POROUS MEDIUM WITH VARIABLE PERMEABILITY
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Poroelasticity problem. Numerical difficulties (FEM)

Table from “On the causes of pressure oscillations in low-permeable and
low-compressible porous media” by J. Haga, H. Osnes and H. Langtangen.

u Ps w p  Testl Test2 Test3

P - — P, Fal Fail Fail
P, - — P, Fal Fail Fail
P - - P, OK* OK*¥ OK*
P, - — P, OK*¥ OK* OK*
P, - RT;, P OK OK OK
P, - P, P, OK* OK* OK*
P; — P P, OK OK OK
Pf P, — P, OK*¥ OK* OK
P P, RTy P, Fail Fail Fail

Py Py RTy P OK OK OK
P, Py RT; Py OK OK OK
Py P, Pf P, OK OK OK
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Poroelasticity problem. Discretizations

DESIRABLE PROPERTIES

@ Free of non-physical oscillations (MONOTONICITY?)

@ Uniform stability with respect to the discretization and physical parameters
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Discretizations. FEM for the two-field formulation

FEM for the two-field formulation

We consider the discretization of poroelasticity problem given by operators of

/
the form Ac = ( g igc > where C is bounded, selfadjoint and positive
definite. 5
Ac is an isomorphism < For any g € QF , sup W >y llqll =1 qlc
A

veu,‘,‘

If inf-sup condition for B is satisfied with C = 0,
then it is also satisfied with C > 0

o
Stable finite element pair for Stokes is also stable for poroelasticity

C. Rodrigo, F.J. Gaspar, X. Hu, L.T. Zikatanov, Stability and monotonicity for some discretizations of the Biot's consolidation model,

Computer methods in applied mechanics and engineering, 2016

@ P1-P1 + Stabilization
@ MINI element + Stabilization

C. Rodrigo Monolithic multigrid solvers for flow problems in porous media



Poroelasticity problem. Solution of large-sparse systems

DESIRABLE PROPERTIES

@ Robust convergence with respect to the discretization and physical
parameters.

@ Efficient.
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Poroelasticity problem. Solution of large-sparse systems

DESIRABLE PROPERTIES

@ Robust convergence with respect to the discretization and physical
parameters.

@ Efficient.

Mainly two approaches:

@ lterative coupling methods: solve sequentially the equations for fluid flow
and geomechanics until a converged solution is achieved.

o Flexibility: two different codes for fluid flow and geomechanics can
be linked for solving the poroelastic problems.

o Most frequently used: fixed-stress split method.
J. Kim, H.A. Tchelepi, R. Juanes, Stability, Accuracy, and Efficiency of Sequential Methods for Coupled Flow and

Geomechanics. Society of Petroleum Engineers (2011)

A. Mikelic, M.F. Wheeler, Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci. (2013
J. Both, M. Borregales, J.M. Nordbotten, K. Kumar, F. Radu, Robust fixed stress splitting for Biot's equations in

heterogeneous media, Applied Mathematics Letters. (2017)

@ Monolithic or fully coupled methods: the linear system is solved
simultaneously for all the unknowns.
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Solution of large-sparse systems. Monolithic Approaches

MONOLITHIC APPROACHES

@ Preconditioners for Krylov subspace methods

@ L. Bergamaschi, M. Ferronato, G. Gambolati, Novel preconditioners for the iterative solution to FE-discretized coupled
consolidation equations, Comput. Methods Appl. Mech. Engrg. 196 (25) (2007) 2647-2656.

@ M. Ferronato, L. Bergamaschi, G. Gambolati, Performance and robustness of block constraint preconditioners in finite
element coupled consolidation problems, Internat. J. Numer. Methods Engrg. 81 (2010) 381-402.

@ N. Castelleto, J.A. White, H.A. Tchelepi, Accuracy and convergence properties of the fixed-stress iterative solution of
two-way coupled poromechanics, Int. J. Numer. Anal. Methods Geomech. 39 (2015) 1593-1618.

@ J.J. Lee, K.-A. Mardal, and R. Winther, Parameter-robust discretization and preconditioning of Biot's consolidation
model. SIAM Journal on Scientific Computing, 39 (2017) A1-A24.

@ J.H. Adler, F.J. Gaspar, X. Hu, P. Ohm, C. Rodrigo, and L.T. Zikatanov, Robust preconditioners for a new stabilized
discretization of the poroelastic equations, SIAM Journal on Scientific Computing, 42 (3) (2020) B761-B791.

@ M. Ferronato, A. Franceschini, C. Janna, N. Castelletto, and H. A. Tchelepi, A general preconditioning framework for
coupled multiphysicsproblems with application to contact-and poro-mechanics, Journal of Computational Physics 398

(2019), 108887.

@ Monolithic multigrid methods (design of the smoother)
== In this talk
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Monolithic Multigrid

@ Convergence factor independent of the discretization parameter.

@ Computational cost O(n).

@ For dealing with complex domains:

SEMI-STRUCTURED GRIDS # GEOMETRIC MG y

Hierarchy of grids:

@ Unstructured initial grid: Adequately represent the domain geometry.
@ Structured patches: Efficient implementation of geometric multigrid based

on stencil-based operations. Free-matrix code.

B. Bergen, T. Gradl, F. Hiilsemann, U. Riide. A massively parallel multigrid method for finite elements. Comput. Sci. Eng., 2006.

C. Rodrigo, Geometric Multigrid Methods on Semi-Structured Triangular Grids, PhD thesis, University of Zaragoza, 2010
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Local Fourier Analysis (LFA)

LOCAL FOURIER ANALYSIS

Main quantitative analysis for multigrid methods
To estimate the spectral radius of the k—grid operator which are quantitative
measures for the error reduction.

@ Based on the Fourier transform theory.
@ Very powerful tool for the design of new efficient multigrid methods.

@ Classically, LFA provides exact convergence rates of GMG on rectangular
domains with periodic boundary conditions.

@ Recently, it has been proved that LFA yields the exact convergence factors
for a wider class of problems.
C. Rodrigo, F.J. Gaspar, L.T. Zikatanov, On the validity of the Local Fourier Analysis, J. Comp. Math., 37 (2019), pp. 340-348.
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olithic Multigrid for saddle point problems

COUPLED OR VANKA SMOOTHERS: Decomposing the mesh into small
subdomains and simultaneously solve all the equations in each block

F.J.. Gaspar, F.J. Lisbona, C.W. QOosterlee, A stabilized difference scheme for deformable porous media and its numerical resolution by
multigrid methods, Computing and Visualization in Science, 2008

C. Rodrigo, Geometric Multigrid Methods on Semi-Structured Triangular Grids, PhD Thesis, University of Zaragoza, 2010

DECOUPLED SMOOTHERS:

@ Distributive: Transform the discrete system, smooth such system
equation-wise, perform a back-transformation to the original unknowns
R. Wienands, F.J. Gaspar, F.J. Lisbona, C.W. Oosterlee, An efficient multigrid solver based on distributive smoothing for

poroelasticity equations, Computing, 2004

@ Uzawa: Standard smoothing process for the displacements and updating
of pressure by a Richardson iteration with an appropriate parameter w
F.J. Gaspar, Y. Notay, C.W. Oosterlee, C. Rodrigo, A simple and efficient segregated smoother for the discrete Stokes equations.
SIAM Journal on Scientific Computing, 2014
P. Luo, C. Rodrigo, F.J. Gaspar, C.W. Oosterlee, On an Uzawa smoother in multigrid for poroelasticity equations, Numerical

Linear Algebra with Applications, 2017

@ Fixed-stress split smoother: Based on the iterative coupling fixed-stress
split method.
F.J. Gaspar, C. Rodrigo, On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics,

Computer Methods in Applied Mechanics and Engineering, 2017
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The fixed-stress split method

The fixed-stress split method is an iterative method where the flow problem is
solved first supposing a constant volumetric mean total stress, o, = tr(c)/3.
By using ov = KbV - u — ap, where Ky = XA+ 2u/d is the drained bulk
modulus, we write the flow equation

1 9dp 0 1 _

in terms of the volumetric mean total stress instead of the volumetric strain,
1 o? op a Ooy, 1
—+— )=+ -V | —K(Vp- =f.
(M+Kb) ot T K, ot o (VP —rrg)
The fixed-stress split scheme is based on solving the flow equation considering

known the volumetric mean total stress. In the discrete case, this is equivalent
to an iterative method based on the splitting of matrix A as

A BT A BT 0 0
= = 2
B -C 0 —C+eM, -B =M, |’
where M, is the mass matrix.
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Fixed-stress split smoother

Decoupled smoother in a multigrid framework combining the advantages of
being a fully-coupled method and the decoupling the flow and the mechanic
part in the smoothing procedure.

: - A BT 0 0
Consider the splitting A = Ma — Na = { 0 —C+LM, } - { _B LM, }

Iterative method based on the splitting reads:
L =L Jrae ([ ]2 ])
Pri1 Pk f Px
Relaxation procedure:
— Ma BT
0 Ms

where

@ My and Ms are suitable smoothers for operators A and S = —C + LM,

pri1 = px + Mg (g — Buk + Cpx)
U+l = Uk + /V’;l (f — Au, — BTPk+1)
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Fixed-stress split smoother

] [ My BT ] Ma = (Da + LA)D;I(DA + Ua),
ATL =
' 0 Ms Ms = (Dr + Lr)D7(Dg + Ug), R = —C + LM,
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Fixed-stress split smoother

M [ " ] Mo = (Da+ La)Dy"(Da+ Ua),
ATl = s
' 0 Ms Ms = (Dr + Lr)D7(Dg + Ug), R = —C + LM,

Ma1 = (Da + La)Dy*(Da + Un),
Ma = Ma1(2Ma1 — A) " Ma 1,

~ M
MaT2 = [ A
Ms = (Dr + LrR)Dg'(Dr + Ug),R = —C + LM,

0 Ms |’
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Fixed-stress split smoother

M { " ] Mo = (Da+ La)Dy"(Da+ Ua),
ATl = s
' 0 Ms Ms = (Dr + Lr)D7(Dg + Ug), R = —C + LM,

Ma1 = (Da + La)Dy*(Da + Un),
Ma = Ma1(2Ma1 — A) " Ma 1,

~ M
MaT2 = { A
Ms = (Dr + LrR)Dg'(Dr + Ug),R = —C + LM,

0 Ms |’

Ma1 = (Da + LA)DXI(DA + Ua),
~ Ms 0 -
Ma,p2 = { OA Ms } ) Ma = Ma1(2Ma1 — A)""Ma 1,
Ms = (Dgr + LR)Dg*(Dg + Ug), R = —C + LM,

C. Rodrigo Monolithic multigrid solvers for flow problems in porous media



LFA results. Fixed-stress split smoother

Comparison between the two-grid analysis convergence factors predicted by
LFA p and the experimentally computed asymptotic convergence factors pj, for
different numbers of smoothing steps, two different regular triangular grids
(right and equilateral) and K = 1073

v Ma, 11 Ma, 12 Ma,p2
1 | 0.45 (0.46) | 0.28 (0.29) | 0.28 (0.29)
Right | 2 | 0.28 (0.29) | 0.16 (0.17) | 0.16 (0.16)
3 | 0.20 (0.21) | 0.12 (0.12) | 0.12 (0.12)
4 | 0.16 (0.17) | 0.08 (0.09) | 0.08 (0.09)
1] 0.35(0.35) | 0.17 (0.17) | 0.17 (0.17)
Equilateral | 2 | 0.13 (0.14) | 0.05 (0.06) | 0.05 (0.06)
3 | 0.08 (0.08) | 0.03 (0.04) | 0.03 (0.04)
4 | 0.05 (0.06) | 0.02 (0.03) | 0.02 (0.03)
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LFA results. Fixed-stress split smoother

Two-grid analysis convergence factors predicted by LFA for different values of
parameter K, by using different numbers of smoothing steps, and considering
two different uniform triangular grids (right and equilateral)

Right Equilateral
v\ K 1 107° [ 107° 1 107° [ 10°°
1 045 | 045 | 045 | 0.35 | 0.35 | 0.35
Ma 2 0.28 | 0.28 | 0.28 | 0.13 | 0.13 | 0.13
’ 3 0.20 | 0.20 | 0.20 | 0.08 | 0.08 | 0.08
4 0.16 | 0.16 | 0.16 | 0.05 | 0.05 | 0.05
1 0.28 | 0.28 | 0.28 | 0.17 | 0.17 | 0.17
Ma s 2 0.16 | 0.16 | 0.16 | 0.05 | 0.05 | 0.05
’ 3 0.12 | 0.12 | 0.12 | 0.03 | 0.03 | 0.03
4 0.08 | 0.08 | 0.08 | 0.02 | 0.02 | 0.02
1 0.28 | 0.28 | 0.28 | 0.17 | 0.17 | 0.17
M pa 2 0.16 | 0.16 | 0.16 | 0.05 | 0.05 | 0.05
’ 3 0.12 | 0.12 | 0.12 | 0.03 | 0.03 | 0.03
4 0.08 | 0.08 | 0.08 | 0.02 | 0.02 | 0.02
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Numerical experiment. Poroelastic footing problem

u=0 on T
Iy UMH oxy =0, 0y, = —00, on I'Z
p=0, on Iy
(Vp)-n=0,0n TIp

Io where

ca—d 7= 10*, on the “central” part of Ty
°= o, on the rest of My
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Numerical example. Poroelastic footing problem

Ip Q

Iy VAVAY

@ Constant permeability

TK/pur  6levels 7 levels 8levels 9 levels 10 levels

1072 11 11 11 11 11
1074 11 11 11 11 11
10— 11 11 11 11 11
108 10 11 11 11 11
10710 12 11 10 10 11
10712 12 12 12 12 12
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Numerical example. Poroelastic footing problem

@ Two-layered porous medium
g =10*

10'°
——6 levels
——7 levels
— 1010 8 levels
< 10 ——9 levels
E=9x105v=0.15 o 10 levels|
K =107 S 5
€
>3
£
. . . =
E=3x104v=02 g
K=10TE
105
0 0 5 10 15

iterations

@ Random heterogeneous materials (the permeability is modeled as a
lognormal random field)

____|__| | o

average average
pverEe — 0,11 pverEe — (.33
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Numerical experiment. Poroelasticity on a cylindrical shell

@ POROELASTICITY ON A CYLINDRICAL SHELL

( .
Poroelasticity equations Outer boundary: U = 0
=VA+p)V-u=V-puVu+Vp=pg Mﬁ(fopfg)n -0
f
9 K \
ot (V-u)—V- ;(VP — prg) | =f(x, 1) Inner boundary:
o-n = (cosf,sinf)
Geometry and boundary L p =1
conditions:
@) n=0 Material parameters:
w0 Property Value Unit
Young's modulus 3 x 10°  N/m?
Poisson’s ratio 0.2 -
Permeability: K 1077 m?
Fluid viscosity: puf 1073 Pas
K/ s 107* m?/Pas
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Numerical experiment. Poroelasticity on a cylindrical shell

@) =0 T 't R
u=0 os; osk
> of > of
of | -
Ly 1 1 1 1 Ly 1 1 1 1
1 0.5 0 05 1 1 0.5 0 05 1
X X
Coarsest triangulation Grid after 4 ref. levels
10'°
—5 levels
_ 5 -6 levels .
g 10 7 levels History of the convergence of the
o . . .
g *S:ZVZE multigrid based on the fixed-stress
£ 0 —9lev . .
5 split smoother for different
g numbers of refinement levels
10°
-10
0% 5 10 15 20
iterations
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Coupled flow and porous media problems

interface . .
Free flow <" Flow in the porous medium J
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Coupled flow and porous media problems

interface . .
Free flow <" Flow in the porous medium J

Tubular Flow
(1215t

) Concentrate

'
ety

Permeate

(a) filtration process (b) blood flow simulation

(c) flooding simulation (d) waste water treatment

C. Rodrigo Monolithic multigrid solvers for flow problems in porous media



Coupled flow and porous media problems

interface . .
Free flow <" Flow in the porous medium J

DIFFERENT APPROACHES to solve the coupled problem:

@ Domain Decomposition Methods:
Decoupling the global problem so that mainly independent
subproblems are to be solved.

@ Monolithic Methods:
Simultaneous solution of the coupled multi-physics system.
Preconditioners and Multigrid methods.
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Basic equations

Qd

Figure: Geometry of the coupled Darcy/Stokes problem.

Porous medium description Free flow description:

K'u+vpi=0 inQ?, -v-of =f inQ",
vVoul=f inQ’. v-u'=0 inQ .
@ u? = (u9,v9) and p°. o uf = (uf,vf) and p'.
@ The hydraulic conductivity tensor @ of = —pf1+2uD(uf),
K= KI, K > 0. ) D(uf) = (Vuf + (Vuf)T)/2.
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Interface conditions

We fix the normal vector to the interface to be n = nf = —n“ and we denote T
as the tangential unit vector at the interface I'.

@ Mass conservation:

@ Balance of normal stresses:
fn-af~n:pd onTl.
@ Beavers-Joseph-Saffman condition: (« is a parameter)

£ f
au -T+T17-0 -n=0 onl,

No-slip condition:

u-T=0 onrl.
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Staggered grids

The computational domain is partitioned into square blocks of size h x h, so
that the grid is conforming at the interface I J

X 0 X 0 X 0 x: pd/f
e o o | o: ud/f Figure: Staggered grid
X X © X O—x— o v/f location of unknowns for the
° ° ° . r coupled model, and
X X X X corresponding control
i ° volumes.
X 0 X
d/f d/f d/f a/f d/f d/f
Yt} e S N I LN S il
= —¢ g
d/fJ W el d/f S/ LAt
Pij u?i/r' Pit1 .Vd/f -3 Xd/f i3
?%,j ij+i Pij
G > 29 ©
V.d(f 1 V.d/f. 1 “fi/fl . pfl(f “d/i . V.d(f 1
ij—3 i+lj—5 i=5. iJ it5.d =75

Figure: Control volumes for u?/f (left), v¥/7 (middle), p?/* (right).
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Discretization at the interface

A special discretization at and near the points on the interface
(combining the approximation of the governing equations and the considered
interface conditions)

Ty ° Py 7(0'xy)e*(0'xy)w _ (ayy)n—(ayy)s — (ff) 1
of f of h h/2 2 Jij+5
o A DT as!

% AR Y

® (ayy)n
r ® s L . d
W sar e | @ (oy)s = —ps
i=Lljt+3., ity /+1‘j*§§
o © (0y)e and (0xy)w
1)
Beavers-Joseph-Saffman condition:

. . . f u:"{+l.j+1_u£ Vif+1,j+l _Vif,j+l
Figure: Staggered grid location of au, — v 25/2 = 21 =0
the unknowns for the interface
conditions.

Peiyao Luo, Carmen Rodrigo, Francisco J. Gaspar, Cornelis W. Oosterlee, Uzawa smoother in multigrid for the coupled Porous Medium

and Stokes Flow System, SIAM Journal on Scientific Computing, 2017.
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(5% )(5)=(%)

e BT: discrete gradient. B: minus discrete divergence.

o A: discrete —vA for the Stokes equation.
discrete K~/ for the Darcy equation.

Coupled system

A0 (BT 0 u? 0
0 Af R (BNT of | | ff
BY R 0 0 pd | | 4|
0o Bf 0 0 pf 0

(2 3) 0 (5 8) (7 )

where R contains the relations given by the interface discretization
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Multigrid for the coupled problem

Multigrid components:

@ Choice of coarse grids and operators:

e Standard coarsening
o [ is present on the complete grid hierarchy
o Direct discretization of the continuous operators on coarse grids
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Multigrid for the coupled problem

Multigrid components:

@ Choice of coarse grids and operators:

e Standard coarsening
o [ is present on the complete grid hierarchy
o Direct discretization of the continuous operators on coarse grids

@ Inter-grid transfer operators:

o take into account the staggered arrangement of the unknowns

1 2 1 1 1 1 1
/;21’2/7:5 * 5 /I;/,2h:§ 2 * 2 5 /;2,,:1 *
1 2 1 b 1 1 b 1 1 5

o Prolongation operators: the adjoints of the restrictions.
o Inter-grid operators must be accordingly altered at boundary points
and at the interface points
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Multigrid for the coupled problem

Multigrid components:

@ Choice of coarse grids and operators:

e Standard coarsening
o [ is present on the complete grid hierarchy
o Direct discretization of the continuous operators on coarse grids

@ Inter-grid transfer operators:

o take into account the staggered arrangement of the unknowns

1 2 1 1 1 1 1
/;21’2/7:5 * 5 /I;/,2h:§ 2 * 2 5 /;2,,:1 *
1 2 1 b 1 1 b 1 1 5

o Prolongation operators: the adjoints of the restrictions.
o Inter-grid operators must be accordingly altered at boundary points
and at the interface points

@ Type of cycle: comparison of V— and W —cycles
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Multigrid for the coupled problem

Multigrid components:

@ Choice of coarse grids and operators:

e Standard coarsening
o [ is present on the complete grid hierarchy
o Direct discretization of the continuous operators on coarse grids

@ Inter-grid transfer operators:

o take into account the staggered arrangement of the unknowns

1 2 1 1 1 1 1
/;21’2/7:5 * 5 /I;/,2h:§ 2 * 2 5 /;2,,:1 *
1 2 1 b 1 1 b 1 1 5

o Prolongation operators: the adjoints of the restrictions.
o Inter-grid operators must be accordingly altered at boundary points
and at the interface points

@ Type of cycle: comparison of V— and W —cycles

@ Smoother???
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A BT\ ([ Ma ([ Ma—A BT
B 0 - B —wl} —w ) ))° J

@ w: some positive parameter.

@ Mju: Symmetric Gauss-Seidel for velocities
Ma = (Da + La)Dy*(Da + Ua)

The decoupled iteration can be described as:

(8 <) (5)= ("7 220 )(5)+ (%) |

@ apply smoother My to relax the system Au=g — B p;
e, 0=u-+ /\/I;1 (ngu - BTp) :
@ update the pressure: p=p+ w(Bi —f).

o Optimal Parameter wep:?
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Comparison between LFA and asymptotic results

h2
5K
o Stokes: wopt = v

o Darcy: wepr =

Darcy Stokes
vt | K=1 [ K=10°% | v=1] v=10"°
2 0.600 0.600 0.304 0.304
3 0.360 0.360 0.143 0.143
4 0.216 0.216 0.081 0.081

Table: Two-grid convergence factors, p predicted by LFA.

1 10°°
1 107° 1 107°
059 | 059 | 059 | 059

0.36 0.36 0.36 0.36
0.21 0.21 0.21 0.21

vy + 2

W N[Y|X

Table: Asymptotic convergence factors, pp, for the coupled problem.
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Multiblock multigrid algorithm

Multiblock two-grid algorithm:

(with only pre-smoothing)

X&X X bx
o o o o XOXOX X @ Relax velocity unknowns.
XOXOXOX o o o o Of 5 ’
>.-< >e< >e< >e< / XOXOX0X @ Stokes to Darcy: v — v (e).
VISR Pal el e ed © Update pressure unknowns.
o o o o P X XX
K XOX G XX Lelelgld @ Darcy to Stokes: p? — p© (x).
XOXOX X @ Compute the residual.
VI B S Rt I o 6. o
AR AN AR A VI SVES B @ Darcy to Stokes: r¢ — rf (o).
XOXOXOX o160 . g
PEEAREAREA \ XOXOXOX @ Restrict the residual.
XOXOX DX oo 0o o (O )
ol olole XOXOXOX @ Solve exactly the defect equation on
X pg;; XOXOX0X the coarsest grid.
o. u A
o vad/f @ Stokes to Darcy: ef — ef.
@ Interpolation and correction.
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Beavers-Joseph-Saffman interface condition

Analytical solution
d
d [ ui(x,y) \ [ —Ke’cosx
W) = ( va(x,y) ) - ( —KeYsinx )’
p?(x,y) = €’ sinx,

uf(x,y) = ( u'(x,y) > _ ( N (y) cos x )7

vi(x,y) A(y) sin x
pl(x.y) =0,
_ gy a  K,»
where \(y) = —K — o, (—m + E)y :

Q=(0,1) x (-1,1), Q¢ =(0,1) x (-1,0), Qf =(0,1) x (0,1).
Interface I = (0, 1) x {0}.

Free flow: Dirichlet conditions for uf and v at the outer boundaries.

e 6 6 o

Porous medium: fixed p? at the bottom, Dirichlet conditions for u?
and v at the lateral walls.
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Beavers-Joseph-Saffman interface condition

64 x 128 128 x 256 256 x 512

1.42x 107> [ 363 x10°% [ 0.19 x 107
4.09x107° | 1.19x 107> | 3.38 x 107°
9.11 x 1076 | 2.32x 107° | 5.84 x 10~
1.21x107° | 3.06 x 107° | 7.71 x 10~
2.97 x 1075 | 7.66 x 107° | 1.95 x 10~°
474 %1073 | 238 x 1073 | 1.19 x 1073

Table: Maximum norm errors of variables u?/f, v¥/f, p?/f for different
grid-sizes, by considering fixed values ¥ =1 and K = 1, and prescribing the
Beavers-Joseph-Saffman condition at the interface with o = 1.
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Beavers-Joseph-Saffman interface condition

K=1v=1 K=10"% v=10"°

K=1, »=1, W(2,2) K=10", +=10"%, W(2,2)

[Iresiduall| _/liright hand side||
[ residuall| /[right hand side||

0 2 4 6 8 10 12 14
number of multigrid cycles number of multigrid cycles

(a) (b)

Figure: History of the convergence of the W(2,2)—multigrid method for
different values of the physical parameters.
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Realistic problem: cross-flow membrane filtration model

f_oJ -
0.007 o =0 =0 Y
Exit 5 _ g
xy =
Block2 Block3 qf Blocké4
f
uf =0.1]
V; =0 uf =0
V=0
r
0.00:
EE ot =Vl =0
Block1
n o kd=0
0 0.00375  pd =0 0.01125  0.015 X

Figure: Geometry of the coupled problem.

@ 4 blocks, K =0.10or K=10"°% v =107°.
@ Beavers-Joseph-Saffman interface condition.
@ Communications on each level.

@ Excellent multigrid convergence factor 0.2 for W/(2, 2)-cycle for the
coupled system.
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Realistic problem: cross-flow membrane filtration model

g 2107 velocity vector g 2107 velocity vector

4 sessnsantar N .
T T SS AN .
kel - AR AR R AR R R 4
3 SO LA e
AVIVEN R R v
M ,
IR e
2 e ETRIN
Py
1 AN 2 ‘
IR RN R R RN RN [AEARERARN)
IR RN R R R [(AERRRRAER}
0 IR ARRRE RN RN 1 ERERRERERS
N
R
-1 0 L
0 0.005 0.01 0.015 o 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
x X

(a) K =0.1 (b) K =106

Figure: Velocity vectors over the cross-flow filtration domain with different
values of permeability.
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Heterogeneity test

To simulate heterogeneity in the porous medium, a Gaussian model
characterized by parameters A\, and o2 is considered, i.e.,

d2

2
C(dg) = o exp —)\—g ,
g

where d; is the distance between two points, A, defines the correlation
length and aé represents the variance.

0.0025

_

Figure: Example of random field of hydraulic conductivity K in log-scale, with
parameters \g = 0.3 and 0 = 1.

0
0.00375
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Heterogeneity test

o Two different values for parameter Az: Az = 0.1 denotes a more
heterogeneous porous medium than A\, = 0.3.

@ 50 realizations of the random field are generated and we record the
multigrid convergence factors of the W(2,2)-cycle.

h T [ A =03] A =01
25600 | 0.19 0.20
12800 | 0.19 0.21
6400 | 0.20 0.29

Table: Mean value of the multigrid convergence factors after 50 realizations.
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Coupled Stokes and Deformable Porous Medium System

t n i | ©
lnp lnr
Qf

Deformable Porous Media Stokes Flow

-V .-oP =fP in QF Suf

¢ f_ef i of
— —V.o' =f Q

%(Vmp)—i—v-q":f” in QF Por ~ VO n

q° = —KVpP in QP

V-u'=0 inQf

o uf = (uf,vf) and pf

@ uP = (uP,vP) and pP
o of = —pl+2vD(uf)

e oP =0of — PPl
o of(uP) = 2uD(uP) + Atr(D(uP))l o D(u’) = (Vu" + (Vu")7)/2
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Interface conditions

@ Mass conservation:
p

(uf . 5'u

ot

@ Balance of normal stresses in the fluid phase:

)'n:qp'n7

n-ocfn=—p°
@ Conservation of momentum:
f P —
n-o'n—n-oPkn=20

and

7 0fn—7.0Pn=0

@ Beavers-Joseph-Saffman interface condition:

OuP
f f
—r-on=pUu ——) -7
B’ - 52
@ No-slip condition:
£ ouP
u T = T
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Saddle point structure
At each time step: < g _B(T: ) < ; ) = ( % >

e BT and B = discrete gradient and the negative discrete divergence

@ For the poroelastic system:
o Ais —puA — V(A + p)V- and C corresponds to —7V - (KVp)

@ For the Stokes system:
o A represents 21 _ VA and Cis a zero block
T

B

Af RT (Bf)T (R/)T uf fr’
R A 0 (BT w | fe
Bf 0 0 0 of || o
R B> 0  —CP pP fP

AT RT B 0 0 0
(5 ) (7 &) (0 &)

wheere R and R’ contain the coupling at and near the interface.
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Monolithic multigrid

@ Uzawa smoother

@ Optimal relaxation parameter

o Poroelasticity system:

e RO+
~ BKT(A+2u) + h?

o Stokes system:
2
f_ ph
W=t 81

Relaxation parameters do not only depend on the model coefficients but
also on the grid size and on time step 7, thus w? and w’ are different on
each grid of the hierarchy in the multigrid method
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Analytical test. No-slip condition

Analytical solution

Q=(0,1) x (0,2), Qf =(0,1) x (0,1), Q” = (0,1) x (1,2)
Interface ' = (0,1) x {1}

@ Dirichlet boundary conditions for displacements and pressure at the
lateral boundaries of QF.

Stress conditions at the top of QP, where the fluid pressure is fixed

@ In Qf, stress conditions at both inlet and outlet, while a symmetric
boundary condition is imposed at the bottom.

Interface conditions with the simplified no-slip interface condition
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Analytical test. No-slip condition

64 x 128 x 4 | 128 x 256 x 8 | 256 x 512 x 16
ut [ 201 x107% [ 9.73x107° 476 x 107°
vi [120x10°% [ 447x10° | 231x10°
p’ | 316 x1073 [ 1.63x10°3 7.95x 1074
uP | 677 x 1073 | 3.46 x 1073 1.75 x 1073
vP [ 638x10% [326x10 % | 1.65x10 7
pP | 387x107% [1.68x10° [7.75x10°*

Table: Maximum norm errors of variables uf/p, vf/P and pf/" for different grid

sizes with parameters K =1, A=1,u=1,v=1and p=1.
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Analytical test. No-slip condition

K=10"% v =103 K=10"°%v=10""°

~=10", »=107, W(2,2) ~=10", »=10"%, W(2,2)

Irigh hand sidel |

3
2
]
2
2
=
=l

0 2 ) 6 8 0 12 14 16 0 2 4 6 8 0 12 14 16
number of multigrid cycles number of multigrid cycles

(a) (b)

Figure: History of the convergence of the W(2,2)—multigrid method for
different values of the physical parameters
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Multi-block realistic test

yl
0.5 oy =05 =0
uP =VvP[=0 Qr uP=vP=0
Block4
0.4 oc ~
f
T 7 0 | Blockl Block? Block3 | uf =vi=0
Jiy =0
Qf
0 - - >
0.2 ouf _ avf _ op 0.8 X

f
9y — 9y — oy

o Fluid inflow in Qf: of = —20000
o Small exit at the right vertical boundary (stress-free boundary)

e K=10"% X\ =109, w=25x 10%, » = 0.0035 and p=1

=0
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Drained conditions on the exterior of 2P

@ Drained conditions (p? = 0) for pressure on the exterior of Qf

velocity vectors (t=0.0025) t=0.0025
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Impermeable conditions on the exterior of Q2P

@ Impermeable conditions on the exterior of QP

K =0.01 K=10"*

velocity vectors (t=0.0025) velocity vectors (t=0.0025)

N >
NN

NN /%
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blogs.agu.org

Qutcrop in the Sotra island (Flemisch et al. 2018)

APPLICATIONS

@ Petroleum extraction

@ Long-term CO> and nuclear waste storage

@ Geothermal energy production

@ Biomedical applications, e.g., where capillaries can be

treated as fractures in the matrix
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blogs.agu.org Qutcrop in the Sotra island (Flemisch et al. 2018)

APPLICATIONS

@ Petroleum extraction

@ Long-term CO> and nuclear waste storage

@ Geothermal energy production

@ Biomedical applications, e.g., where capillaries can be
treated as fractures in the matrix

@ Development of numerical schemes to discretize fracture models

@ Design of efficient solvers for the corresponding flow models
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APPLICATIONS

@ Petroleum extraction

@ Long-term CO> and nuclear waste storage

@ Geothermal energy production

@ Biomedical applications, e.g., where capillaries can be
treated as fractures in the matrix

@ Development of numerical schemes to discretize fracture models

@ Design of efficient solvers for the corresponding flow models
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Models for flow in fractured media

Fractures can be incorporated to flow models in essentially two ways:

@ At small scales: DUAL-POROSITY MODELS

o Specific locations of micro-fractures are difficult to determine
o The fractures’ network and the bulk or porous matrix are two
interacting continua related by a transfer function

@ At large scales: DISCRETE FRACTURE MODELS (DFM)

o Localized networks of faults and macro-fractures
o Fractures can behave either as preferential flow paths or as
geological barriers
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Models for flow in fractured media

Fractures can be incorporated to flow models in essentially two ways:

@ At small scales: DUAL-POROSITY MODELS
o Specific locations of micro-fractures are difficult to determine
o The fractures’ network and the bulk or porous matrix are two
interacting continua related by a transfer function

@ At large scales: DISCRETE FRACTURE MODELS (DFM)

o Localized networks of faults and macro-fractures
o Fractures can behave either as preferential flow paths or as
geological barriers
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The mixed-dimensional model

@ Fine meshing of the fracture domain to guarantee accurate
approximations.

@ The thickness of the fractures is very small compared to their length and
also compared to the typical size of the domain of interest.
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The mixed-dimensional model

@ Fine meshing of the fracture domain to guarantee accurate
approximations.

@ The thickness of the fractures is very small compared to their length and
also compared to the typical size of the domain of interest.

.

A reduced model (or mixed-dimensional model) can be considered in which the
fractures are treated as (n — 1) dimensional interfaces in an n dimensional
medium

@ Different models can be considered within the fractures and in the porous
matrix.

@ Here: single-phase Darcy-Darcy and Darcy-Fochheimer couplings between
the fractures and the porous matrix.
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The mixed-dimensional model

@ For simplicity, we assume the existence of a single fracture Qf that
separates €2 into two connected subdomains: Q, (.

Transmission problem Interface problem

V. Martin, J. Jaffré, J.E. Roberts (2005) Modeling fractures and barriers as interfaces for
flow in porous media, SIAM J. Sci. Comp. 26, pp. 1667-1691.
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The mixed-dimensional model problem. Darcy-Darcy

@ Consider linear Darcy flow in the subdomains
u,=—KiVp;, divui=gq;, inQ; fori=1,2,

with p; = 0 on 0€2;, for i = 1,2. We assume K is diagonal.

@ Consider linear Darcy flow in the fracture too
u,=—Kr,dV:.py, diviuy=¢gy+ (u1-n1+u2-n2), on~,

with py, =0 on 0.

@ Impose the interface condition
Qy Pi = Qy Py + (Euj-nj — (1 — &) ujy1 - njpq), in v, for i = 1,2,

where a, = 2% e e (3,1], and i+1=11if i =2.
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The weak formulation

We consider the following function spaces
M =L(Q1) x L*(Q2) x L*(v),
W ={u = (uy,uz,uy) € H(div, Q1) x H(div,£2) x H(div,7) :
ui-n e l’(y),i=1,2}.

@ Define the forms a: W xW — Rand b: W x M — R by

2
a(u,v) Z( TR ,) ((dKf’T)iluvv"w)w

i=1

2

+ ; (a5 (€ mi = (1= Q) uisa - i), vi ni)7 7

- 2
b(u, r) IZ (divui, ri)g, + (divruy, ry), — (Z . rw) .
i i=1 ~

@ Define the linear form L; : M — R by:
2
= Z(qiv fi)a, + (@, ry), -
i=1
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The weak formulation

@ The variational problem may be written in standard mixed form as:

Find u = (u1,uz,u,) € W, p = (p1, p2,py) € M sit. :

a(u,v) — b(v,p) =0 VveW,
b(u, r) = Lg(r) VreM.

V. Martin, J. Jaffré, J.E. Roberts (2005) Modeling fractures and barriers as interfaces for
flow in porous media, SIAM J. Sci. Comp. 26, pp. 1667-1691.
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The mixed finite element method

@ Let 7h,; be a rectangular partition of Q;, i = 1,2 and suppose that the
meshes T,,; match at the interface v, i.e. they induce a unique partition
on v denoted by Tp .

@ Then, Th = U7, i = 1,2,, consists of both n dimensional elements in
Q; and (n — 1)-dimensional elements on ~.

@ Let W, ; x My,; be the Raviart-Thomas mixed finite element spaces of
lowest order associated with 7y, i =1,2,7.

@ Let us define
W, =W,1 @Wyo® Wy,

My = Mp1 @ Mp2 ® My .
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A quadrature rule

@ For v,q € R? let us introduce the quadrature rule:
(v,q)tm = (vi, q1)txm + (v2, g2)mxT
where the trapezoidal rule in one direction is tensored with the midpoint
rule in the other.

@ Define the form

an(u,v) :i (K,-_lu,-,v,-)n + ((d K )7t U%Vw)
i—1 is
+ i (a;1(§ ui-n— (1 =& uit1 - nig1),vi - ni)

i=1

T

5

T. F. Russell and M. F. Wheeler, Finite element and finite difference methods for continuous
flows in porous media, in The Mathematics of Reservoir Simulation, R. E. Ewing, ed., vol. 1
of Frontiers in Applied Mathematics, SIAM, Philadelphia, 1983, pp. 35-106.
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The mixed finite element approximation

@ The mixed finite element approximation for the interface problem may be
written as:

Find up = (up,1, un2,un~) € Wh, pn = (ph,1, Ph2, Phy) € My s.t. :
an(un, vh) — b(vh, pn) =0 Vv € W,
b(uh, I’h) = Lq(rh) Y rn, € M.

@ This method is closely related to the two-point flux approximation
(TPFA) method.

R. Eymard, T. Galloiiet, C. Guichard, R. Herbin, and R. Masson (2014) TP or not TP, that
is the question, Comput. Geosci., 18 pp. 285-296.
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The algebraic linear system

The corresponding algebraic linear system is a saddle-point problem of the form:

(AL CT 0 Bf 0 F1 [w 0
ct A 0 o0 B F U, 0
o 0o A 0 o0 BJ| |U]| |0
BB 0 0 0 0 O Pl |
0 B 0 0 0 © P, *
| /R B, 0 0 0] [P] | * |

where A;, i = 1,2,~, are diagonal matrices.
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The monolithic multigrid method

@ We need a hierarchy of grids of various sizes.
@ Perform direct discretization of the problem on each grid.
@ Perform W(2,2)-cycles.

@ The coarsest grid should be built taking into account the location of the
fractures.
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The monolithic multigrid method

@ We need a hierarchy of grids of various sizes.
@ Perform direct discretization of the problem on each grid.
@ Perform W(2,2)-cycles.

@ The coarsest grid should be built taking into account the location of the
fractures.

| i
| |
T
| | | |
| | | |
F-"i-=—a--r~- -t
| | | |
' ' ' '
i i i i
| | | | | |
T Y B
| | | | | |
| | | | | |
F--i--a--r--[--a--r--1--1
| |
| |
|
|
.

Coarsest grid corresponding to the fracture network for benchmark problem
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The monolithic multigrid method

@ We need a hierarchy of grids of various sizes.
@ Perform direct discretization of the problem on each grid.
@ Perform W(2,2)-cycles.

@ The coarsest grid should be built taking into account the location of the
fractures. Then, apply regular refinement on each cell of the initial mesh.

Gk Gh+1
+ + +
I x 1 x 4
ks x + : :
[ « 1 x 1 X pressure in the porous matrix
] i i + velocity in the porous matrix
‘ é i i O pressure in the fracture
r T T ® velocity in the fracture
+ x + ! !
I x 1 x 4
+ + +

Grid refinement procedure and location of the unknowns
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The monolithic multigrid method

The KEY is to consider MIXED-DIMENSIONAL MULTIGRID COMPONENTS |

MIXED-DIMENSIONAL INTER-GRID TRANSFER OPERATORS

@ Inter-grid transfer operators in the porous matrix:

| T T T T T X X X X
Il Il Il Il
R R 1
= 2 14 L = = 1 1/4
8 - T T T X X X X
\\‘/‘78 NS \(4/1/4
23 ' 8 1/4,
o T kel T |
A i
8
T T T T T X X X X
‘ ‘
@ Inter-grid transfer operators in the fracture
o o ———0o 0
1 1 1 1 1
i\, z/z i\, /3
—o——S—0—
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The monolithic multigrid method

The KEY is to consider MIXED-DIMENSIONAL MULTIGRID COMPONENTS |

MIXED-DIMENSIONAL SMOOTHER

. >< -+
B L. X pressure in the porous matrix
77777 P : T : + velocity in the porous matrix
[ P ‘ O pressure in the fracture
i,, X —J ® velocity in the fracture
[ o | T X T
A—— i

@ Use mixed-dimensional Vanka smoothers for the unknowns on the matrix
and within the fractures.

@ Consider block Gauss-Seidel smoother for the intersections (if any).
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Example 1: one fracture with constant permeability

@ Dirichlet boundary conditions for the fracture, width d = 1072,

@ Permeability tensor in the fracture K = Kr Id.

y
un=0 pr=1
1
K=1

Kr -1

p=0 p=
0

0 un=0 pr=0 2 x
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Example 1: one fracture with constant permeability

@ Pressure distribution for Ky = 10? (left) and Kr = 1072 (right)

1
09
08
5 L 06
R
2 R
3 QR 05
= SRR
5 R
R 0.4
R
03
02
0.1
0
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Example 1: one fracture with constant permeability

@ Number of iterations to reduce the initial residual in a factor of 1071° for
different grid sizes and different values of Kf

32 x 16 64 x 32 128 x 64 256 x 128 512 x 256

Kr MG MG MG MG MG
10-° 8 8 9 9 9
10— 8 8 9 9 9
102 8 8 9 9 9
102 10 9 9 10 10
104 8 9 9 9 10
109 8 9 9 9 10
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Example 1: one fracture with constant permeability

@ Number of iterations to reduce the initial residual in a factor of 1071° for
different grid sizes and different values of Kf

e as stand-alone solver (MG)
e as preconditioner (Prec) of the Flexible GMRES method (a single
W(2,2)—multigrid cycle per iteration)

32 x 16 64 x 32 128 x 64 256 x 128 512 x 256
Kr MG/Prec  MG/Prec MG/Prec  MG/Prec  MG/Prec

10-° 8/8 8/8 9/9 9/9 9/9
10—* 8/8 8/8 9/9 9/9 9/9
102 8/8 8/8 9/9 9/9 9/9
102 10/9 9/9 9/9 10/9 10/10
10* 8/9 9/9 9/10 9/10 10/10
10° 8/9 9/9 9/10 9/10 10/10
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Example 1: one fracture with constant permeability

Heterogeneous porous medium

@ The permeability in the porous matrix is represented by a lognormal
random field. We consider the following Matérn covariance function,

pl-ve r\” r
C = 2 —_— 2 c~ KV 2 cN
“0) = o (2 ) K (v ).
characterized by the set of parameters ® = (v, A, 02)

1 1

0.5 0 0.5

0
0 0.5 1 1.5 2 0 0.5 1 1.5 2

®; = (0.5,0.3,1) ®, = (0.5,0.1,3)

Average number of 9 iterations for the parameter set ®1,
and around 13 iterations for ¢,
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Example 2: one fracture with variable permeability

@ Neumann boundary conditions for the fracture, width d = 1072

@ Permeability tensor in the fracture:

Krld, if0<y <ior3<y<l,
Keld, if <y < 3.
y
un=0 u =0
1
Kfl
K=1
p=0 Kfz p=1
0 L2
0 un=0 u =0 2 x
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Example 2: one fracture with variable permeability

@ Pressure distribution for Kr; = 10° and K, = 2 x 1073 (left)

@ Convergence of the multigrid method - residual vs. iterations (right)

1 10°
09 ——64x32
0.8 ——128x64
256128

07 10° ——512x256
0.6 <

S
05 8
0.4 108 \
03 \
02
0.1 10710

5 10 15 20

iterations
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Example 3 : four fractures

@ Fracture network and settings:

Setting 1 (S1)

y

p=1
1

Kpy = 1072

Ky = 1072
un=20 Kpy = 107 un=20
Kpy = 1072
0
0 1
p=0 *

@ lterations to reduce the initial residual in a factor of 1071°

40x40 80x80 160 x 160 320 x 320 640 x 640 1280 x 1280
S1 9 9 10 10 11 11
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Examples 3-4: four fractures

@ Fracture network and settings:

Setting 1 (S1) Setting 2 (52)
y y
p=1 p=1
1 1
Kpy = 1072 Ky =107
Ky, = 1072 Kpp =102 Ky, =107
un=0 Kyy = 107 un=20 un=0 un=0
Kpy =107
Kpy = 1072
Kps = 102
0 0
0 1 0 1
p=0 x p=0 x

@ lterations to reduce the initial residual in a factor of 1071°

40x40 80x80 160 x 160 320 x 320 640 x 640 1280 x 1280
S1 9 9 10 10 11 11
S2 11 11 11 12 13 13
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Example 5: benchmark problem

@ Fracture network, width d = 10™*.

y
un=0

1

G
un=-1 p= 1

11
72

0

0 un=0 1 %

B. Flemisch, |. Berre, W. Boon, A. Fumagalli, N. Schwenck, A. Scotti, |. Stefansson, A.
Tatomir (2018) Benchmarks for single-phase flow in fractured porous media, Adv. Water
Resour. 111 pp. 239-258.
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Example 5:

nchmark problem

@ Pressure distribution for Ky = 10* (left)

@ Convergence of the multigrid method - residual vs. iterations (right)

1.6 1010
15 ——6464
s ——128x128
10 256 256
14 _ ——512x512
E]
13 S 10°
1
12
10°
1.1
10710
1 0 5 10 15 20
iterations
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Example 5: benchmark problem

@ Pressure distribution for Kr = 10™* (left)

@ Convergence of the multigrid method - residual vs. iterations (right)

35 10°
——64x64
3 ——128x128
o 256 %256
_ 10 —-512x512
25 ]
S
(73
o
P L
10°
15
1.0 10710
5 10 15 20
iterations
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Example 6: Local Fourier analysis test

Local Fourier analysis (LFA) is the main quantitative analysis to predict the
convergence rates of multigrid algorithms

@ Comparison between the predicted LFA two-grid convergence factor for
Darcy problem and the asymptotic convergence factors experimentally
obtained from the numerical experiments performed in the fractured
porous media.

One fracture Four fractures
WA | Test1 | Test2 | Test3 | Test4 | Denchmark
0.04 [ 0.039 | 0.077 [ 0.045 [ 0.08 | 0.085

C. Rodrigo Monolithic multigrid solvers for flow problems in porous media



The mixed-dimensional model problem. Darcy-Forchheimer

@ Consider linear Darcy flow in the subdomains
u; = —KiVp;, divui=gq;, inQ; fori=12
with p; = 0 on 0€2;, for i = 1,2. We assume K; is diagonal.
@ Consider nonlinear Darcy—Forchheimer flow in the fracture
(4 D usyuy = —Ker dVepy, diveu, = gy (uembuema),in g,
with py, =0 on 0.
@ Impose the interface condition

Qry Pi = Qly Py + (gui ‘N — (1 75) Uit1 * nl'+1)a in Y for i = 1725

where a, = 2% e e (3,1], and i+1=11if i = 2.

N. Frih, J. E. Roberts, A. Saada (2008) Modeling fractures as interfaces: a model for
Forchheimer fractures, Comput. Geosci., 12 pp. 91-104.
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The weak formulation

We consider the following function spaces:
M =L2(Q1) x L*(Q2) x L*/?(%),

W ={u = (u1,ur,u,) € H(div, Q1) x H(div, Q) x L3(%) :
divou, — (ur-ni 4 uz-m) € L2(7), ui-n; € L*(y),i =1,2}.

@ Define the forms a: W x W — Rand b: W x M — R by

2
_ 1 _
a(u,v) :Z (K,- lu;,v,-)Q. + (E (1 + §|u.y|) Kt u.y,v.y>
i=1 ! vy
2
+> (aw_l(ﬁ ui -0 — (L =& uipr - niga), v - n,-) ;
i—1 v
2 2
bu.r) =" (divus, n)g, + (diveuy, 7). — (Z"f -, fw) :
i=1 i=1 v

@ Define the linear form Ly : M — R by:
2

Lo(r) = (ai,ri)q, + (G4, 1), -

i=1

C. Rodrigo Monolithic multigrid solvers for flow problems in porous media



The weak formulation

@ The variational problem may be written in standard mixed form as:

Find u = (u1,uz,uy) € W, p = (p1, p2,py) € M sit. :

a(u,v) — b(v,p) =0 VveW,
b(u,r) = Lg(r) Vre M.

P. Knabner and J. E. Roberts (2014) Mathematical analysis of a discrete fracture model
coupling Darcy flow in the matrix with Darcy-Forchheimer flow in the fracture, ESAIM
Math. Model. Numer. Anal., 48 pp. 1451-1472.
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Mixed finite element discretization. The algebraic

nonlinear system

@ We consider again the mixed finite element discretization as before.

@ The corresponding algebraic nonlinear system is again a saddle-point
problem of the form:

(A, CT 0 Bl 0 F7 [ul [0]
ct A 0 0 B F'| |Wb 0
o 0 AWU,) 0o o BJ| U] |0
Bi 0 0 0 0 0 Pl |x
0 B 0 0 0 o0 P> *

R B, 0 0 0] [P] |* |

where A;, i = 1,2, and A,(U,) are diagonal matrices.
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The monolithic FAS multigrid method

Let Ak ux = fi denote a nonlinear system of equations

Full Approximation Scheme (FAS)

@ Pre-smoothing: Compute @ by applying v1 smoothing steps on G:
ug =S uy.

@ Restrict the residual and the current approximation to the coarse grid:
re—1 = R:fl(fk — Ac ), and up | = R,fflt_l,'(".

@ Solve the coarse-grid problem Ax_1(ef1) = Ak—1 uf_1 + rk—1.

@ Interpolate the error approximation to the fine grid and correct the current
fine grid approximation: U7 = " + R¢_1(e-1 — ul 7).

@ Post-smoothing: Compute uL”“ by applying v» smoothing steps:

m+1 __ vy ~m
u = S.2uy.

@ If As is a linear operator, FAS scheme is identical to the standard linear
multigrid method.
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Example 7: one fracture with constant permeability

@ Dirichlet boundary conditions for the fracture.
@ Permeability tensor in the fracture K = Kr Id.

@ Forchheimer coefficient 5 = 10.

y
un=20 pf=105
1
K=10"
p=0 K p=10°
0
0 wun=o0 Pr=0 2 X

N. Frih, J. E. Roberts, A. Saada (2008) Modeling fractures as interfaces: a model for
Forchheimer fractures, Comput. Geosci., 12 pp. 91-104.
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Example 7: one fracture with constant permeability

@ Pressure distribution for Ky = 107° (left)

@ Convergence of the multigrid method - residual vs. iterations (right)

10°
——64x32
N ——128x64
0N 256x128
R
oo NN 0 ——512x256
T O OIS — 10
kel
)
o
10°
10710

0O 2 4 6 8 10 12 14 16
iterations

[
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Example 7: one fracture with constant permeability

@ We fix the Forchheimer coefficient 8 = 10 in order to study the
robustness of the mixed-dimensional multigrid method with respect to

different values of the permeability of the fracture K.

K h1=32 h'l=64 h1=128 h1=256
10 8 8 8 9
1074 9 9 9 9
1072 9 9 9 10

1 10 10 11 11

Number of W/(2,2)-iterations of FAS to reduce the initial residual
in a factor of 107
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Example 7: one fracture with constant permeability

@ We fix the permeability of the fracture as Ky = 107°, and study the
robustness of the mixed-dimensional multigrid method with respect to the

Forchheimer coefficient .

B h1=32 hl=64 h'1=128 h1=256
0 8 8 8 9
10 8 8 8 9
50 8 9 9 10
100 9 9 10 10
200 10 10 10 10

Number of W/(2,2)-iterations of FAS to reduce the initial residual
in a factor of 107°
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Example 8: two intersecting fractures

@ Permeability in the porous matrix K = 107%(1 4 xy) Id (heterogeneous
permeability)

@ Permeability tensor in the fracture K = K¢ Id.

y
p=1

1
un=20 un=20

0

0 o 1 4

(a) Fracture network (b) pressure solution for

and settings Kr =1072 and 8 = 100
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Example 8: two intersecting fractures

@ We illustrate the robustness of the proposed algorithm with respect to the
permeability in the fracture. The Forchheimer coefficient is fixed to
B = 100.

K h =32 hl=64 h1=128 h1=256
10 9 9
10~* 9 9
1072 9 9

9 9
2

1

Number of W/(2,2)-iterations of FAS to reduce the initial residual

in a factor of 1071°
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Example 8: two intersecting fractures

@ We test the robustness of our solver for different values of the Forchheimer
parameter. We set the permeability in the fracture to a value Kr = 1073,

J¢] h1=32 hl=64 h'1=128 h1=256
0 9 9 9 9
10 9 9 9 9
50 9 9 9 9
100 9 9 9 9
200 9 9 9 9

Number of W/(2,2)-iterations of FAS to reduce the initial residual
in a factor of 107°
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Conclusions

MONOLITHIC MULTIGRID METHODS FOR SOLVING:

@ Flow problems in deformable porous media (Biot's model) (key:
appropriate smoothers)

F.J. Gaspar, C. Rodrigo, On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics,

Computer Methods in applied mechanics and engineering 326, 526-540, 2017.

@ Coupled flow and porous media problems (key: monolithic approach of
both systems + interface conditions)

P. Luo, C. Rodrigo, F.J. Gaspar, C.W. Oosterlee, Uzawa smoother in multigrid for the coupled porous medium and Stokes flow

system,, SIAM Journal on Scientific Computing 39 (5) $633-5661, 2017.

P. Luo, C. Rodrigo, F.J. Gaspar, C.W. Oosterlee, Monolithic multigrid method for the coupled Stokes flow and deformable porous
medium system, Journal of Computational Physics 353, 148-168, 2018.

@ Flow problems in fractured porous media (key: mixed-dimensional
multigrid components)

A. Arrards, F.J. Gaspar, L. Portero, C. Rodrigo, Mixed-dimensional geometric multigrid methods for single-phase flow in fractured

porous media. SIAM Journal on Scientific Computing 41 (5) B1082-B1114, 2019.

A. Arraras, F.J. Gaspar, L. Portero, C. Rodrigo, Geometric multigrid methods for Darcy-Forchheimer flow in fractured porous

media. Computers & Mathematics with Applications 78, 3139-3151, 2019.
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