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Outline

 MONOLITHIC MULTIGRID SOLVERS

Flow problems in deformable porous media

Coupled flow and porous media problems (Stokes-Darcy and Stokes-Biot)

Flow problems in fractured porous media
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Poroelasticity problem. Introduction

A deformable porous material consists of an elastic matrix containing
interconnected fluid-saturated pores.

In physical terms, when a porous material is subjected to stress, the
resulting matrix deformation leads to volumetric changes in the pores.

Since the pores are fluid-filled, the presence of the fluid results in the flow
of the pore fluid between regions of higher and lower pore pressure.

The theory of poro-elasticity addresses the time dependent coupling
between the deformation of a porous material and the fluid flow inside it.
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Poroelasticity problem. Subsidence

SUBSIDENCE from groundwater pumping in San Joaquin Valley (California)

Courtesy of California Department of Water Resources
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Poroelasticity problem
QUASI-STATIC BIOT’S MODEL:

 
Equilibrium equation: divσ′ − α∇ p = ρg, inΩ,

(or equivalently divσ = ρg, σ = σ′ − αIp)

Generalized form of Hooke’s law: σ′ = λtr(ε)I + 2µε, inΩ,

Compatibility equation: ε(u) = 1
2
(∇u +∇ut), inΩ.

Darcy’s law: w = − 1

µf
K(∇p − ρf g), inΩ,

Continuity equation:
∂

∂t

(
1

M
p + α∇ · u

)
+∇ · w = f , inΩ.

λ and µ: Lamé coefficients

α: Biot-Willis constant and M: Biot’s modulus

K : Permeability of the porous medium and ρ: density of the solid

µf : viscosity of the fluid and ρf : density of the fluid

u: displacement vector and p: pore pressure

σ′ and ε: effective stress and strain tensors

w: velocity of the fluid relative to the soil

f : a forced fluid extraction or injection process and g: gravity vector

C. Rodrigo Monolithic multigrid solvers for flow problems in porous media



Poroelasticity problem

Two-field (displacement-pressure) formulation

−∇(λ+ µ)∇ · u−∇ · µ∇u + α∇ p = ρg,
1

M

∂p

∂t
+ α

∂

∂t
(∇ · u)−∇ ·

(
1

µf
K(∇p − ρf g)

)
= f .

Three-field (fluid velocity) formulation

−∇(λ+ µ)∇ · u−∇ · µ∇u + α∇ p = ρg,
K−1µf w +∇p = ρf g,
1

M

∂p

∂t
+ α

∂

∂t
(∇ · u) +∇ · w = f .
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Poroelasticity problem - Many Applications!

Reservoir Engineering

Bioengineering
Earthquake Engineering

Large variation of model parameters in many practical problems

 

Carbon Dioxide Storage Hydraulic Fracturing Animal Cells
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Poroelasticity problem. Discretization schemes
Finite Difference schemes

- F.J. Gaspar, F.J. Lisbona, P.N. Vabishchevich, A Finite Difference Analysis of Biot’s

Consolidation Model. Applied Numerical Mathematics, 44 (2003) 487-506.

- F.J. Gaspar, F.J. Lisbona, P.N. Vabischevich, Staggered grid discretizations for the

quasi-static Biot’s consolidation problem, Applied Numerical Mathematics 56 (2006) pp.

888-898.

Finite Volume methods

- R.E. Ewing, O.P. Iliev, R.D. Lazarov, and A. Naumovich, On convergence of certain finite

volume difference discretizations for 1-D poroelasticity interface problems, Numerical

Methods for Partial Differential Equations 23 (3) (2007), 652-671.

- J. M. Nordbotten, Stable cell-centered finite volume discretization for Biot equations,

SIAM Journal on Numerical Analysis 54 (2) (2016) 942-968.

Finite Element discretizations

- M.A. Murad, V. Thomée, A.F.D. Loula, Asymptotic behavior of semidiscrete finite-element

approximations of Biot’s consolidation problem, SIAM J. Numer. Anal. 33 (1996)

1065-1083.

- G. Aguilar, F. Gaspar, F. Lisbona, C. Rodrigo, Numerical stabilization of Biot’s

consolidation model by a perturbation on the flow equation, Internat. J. Numer. Methods

Engrg. 75 (2008) 1282-1300.

- C. Rodrigo, F.J. Gaspar, X. Hu, L.T. Zikatanov, Stability and monotonicity for some

discretizations of the Biot’s consolidation model, Computer Methods in Applied Mechanics

and Engineering 298 (2016) 183-204.C. Rodrigo Monolithic multigrid solvers for flow problems in porous media



Poroelasticity problem. Robust discretization schemes

Search for parameter-robust stable discretizations

J.J. Lee, Robust error analysis of coupled mixed methods for Biot’s consolidation model,

Journal of Scientific Computing 69 (2016) 610-632.

J.J. Lee, K.-A. Mardal, and R. Winther. Parameter-robust discretization and preconditioning

of Biot’s consolidation model. SIAM Journal on Scientific Computing, 39 (2017) A1-A24.

J. Adler, F.j. Gaspar, X. Hu, C. Rodrigo, L.T. Zikatanov, Robust Block Preconditioners for

Biot’s Model, Domain Decomposition Methods in Science and Engineering XXIV in Lecture

Notes in Computational Science and Engineering, Vol. 125, Bjostad, P.E., Brenner, S.C.,

Halpern, L., Kim, H.H., Kornhuber, R., Rahman, T., Widlund, O.B. (Eds.), 2018.

Q. Hong, J. Kraus, Parameter-robust stability of classical three-field formulation of Biot’s

consolidation model, ETNA, 48 (2018) 202-226.
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Poroelasticity problem. Numerical difficulties

Standard discretizations in space give
nonphysical oscillations in the solution
of the pressure.

 

Terzaghi’s problem

− ∂

∂x

(
(λ + 2µ)

∂u

∂x

)
+
∂p

∂x
= 0, x ∈ (0, 1),

∂

∂t

(
∂u

∂x

)
− ∂

∂x

(
κ

η

∂p

∂x

)
= 0.

(λ + 2µ)
∂u

∂x
= −1, p = 0, x = 0,

u = 0,
∂p

∂x
= 0, x = 1,

∂u

∂x
= 0, x ∈ (0, 1), t = 0.

 

 ଴ߪ

P1-P1 + Implicit Euler
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Poroelasticity problem. Numerical difficulties

LAYERED POROUS MEDIUM WITH VARIABLE PERMEABILITY

 

 

 

 

 

 

 

 

plot line 

 

 

 

 

p = 0, σ · n = g, with g = (0,−1)t , on Γ1

∇p · n = 0, u = 0, on Γ2

P1–P1

 

P1–P1 + stab
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Poroelasticity problem. Numerical difficulties (FEM)

Table from “On the causes of pressure oscillations in low-permeable and

low-compressible porous media” by J. Haga, H. Osnes and H. Langtangen.

 
u ps w p Test 1 Test 2 Test 3

P1 − − P1 Fail Fail Fail
P2 − − P2 Fail Fail Fail
P+

1 − − P1 OK* OK* OK*
P2 − − P1 OK* OK* OK*
P2 − RT1 P0 OK OK OK
P2 − P2 P1 OK* OK* OK*
P+

2 − P+
2 P−1 OK OK OK

P+
1 P1 − P1 OK* OK* OK

P+
1 P1 RT1 P0 Fail Fail Fail

P+
2 P−1 RT1 P0 OK OK OK
P2 P0 RT1 P0 OK OK OK
P+

2 P−1 P+
2 P−1 OK OK OK
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Poroelasticity problem. Discretizations

DESIRABLE PROPERTIES
 

Free of non-physical oscillations (MONOTONICITY?)

Uniform stability with respect to the discretization and physical parameters
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Discretizations. FEM for the two-field formulation

FEM for the two-field formulation
 

We consider the discretization of poroelasticity problem given by operators of

the form AC =

(
A B ′

B −C

)
, where C is bounded, selfadjoint and positive

definite.

AC is an isomorphism ⇔ For any q ∈ Qk′
h , sup

v∈Uk
h

〈B v , q〉
‖ v ‖A

≥ γB ‖ q ‖ − ‖ q ‖C

If inf-sup condition for B is satisfied with C = 0,
then it is also satisfied with C > 0

 

Stable finite element pair for Stokes is also stable for poroelasticity
C. Rodrigo, F.J. Gaspar, X. Hu, L.T. Zikatanov, Stability and monotonicity for some discretizations of the Biot’s consolidation model,

Computer methods in applied mechanics and engineering, 2016

P1-P1 + Stabilization

MINI element + Stabilization
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Poroelasticity problem. Solution of large-sparse systems

DESIRABLE PROPERTIES
 

Robust convergence with respect to the discretization and physical
parameters.

Efficient.

 
Mainly two approaches:

Iterative coupling methods: solve sequentially the equations for fluid flow
and geomechanics until a converged solution is achieved.

Flexibility: two different codes for fluid flow and geomechanics can
be linked for solving the poroelastic problems.
Most frequently used: fixed-stress split method.
J. Kim, H.A. Tchelepi, R. Juanes, Stability, Accuracy, and Efficiency of Sequential Methods for Coupled Flow and

Geomechanics. Society of Petroleum Engineers (2011)

A. Mikelic, M.F. Wheeler, Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci. (2013)

J. Both, M. Borregales, J.M. Nordbotten, K. Kumar, F. Radu, Robust fixed stress splitting for Biot’s equations in

heterogeneous media, Applied Mathematics Letters. (2017)

Monolithic or fully coupled methods: the linear system is solved
simultaneously for all the unknowns.
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Solution of large-sparse systems. Monolithic Approaches

MONOLITHIC APPROACHES
 

Preconditioners for Krylov subspace methods

L. Bergamaschi, M. Ferronato, G. Gambolati, Novel preconditioners for the iterative solution to FE-discretized coupled

consolidation equations, Comput. Methods Appl. Mech. Engrg. 196 (25) (2007) 2647-2656.

M. Ferronato, L. Bergamaschi, G. Gambolati, Performance and robustness of block constraint preconditioners in finite

element coupled consolidation problems, Internat. J. Numer. Methods Engrg. 81 (2010) 381-402.

N. Castelleto, J.A. White, H.A. Tchelepi, Accuracy and convergence properties of the fixed-stress iterative solution of

two-way coupled poromechanics, Int. J. Numer. Anal. Methods Geomech. 39 (2015) 1593-1618.

J.J. Lee, K.-A. Mardal, and R. Winther, Parameter-robust discretization and preconditioning of Biot’s consolidation

model. SIAM Journal on Scientific Computing, 39 (2017) A1-A24.

J.H. Adler, F.J. Gaspar, X. Hu, P. Ohm, C. Rodrigo, and L.T. Zikatanov, Robust preconditioners for a new stabilized

discretization of the poroelastic equations, SIAM Journal on Scientific Computing, 42 (3) (2020) B761-B791.

M. Ferronato, A. Franceschini, C. Janna, N. Castelletto, and H. A. Tchelepi, A general preconditioning framework for

coupled multiphysicsproblems with application to contact-and poro-mechanics, Journal of Computational Physics 398

(2019), 108887.

Monolithic multigrid methods (design of the smoother)
 

In this talk
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Monolithic Multigrid

Convergence factor independent of the discretization parameter.

Computational cost O(n).

For dealing with complex domains:

SEMI-STRUCTURED GRIDS
 

GEOMETRIC MG

Hierarchy of grids:
 

   

Unstructured initial grid: Adequately represent the domain geometry.

Structured patches: Efficient implementation of geometric multigrid based
on stencil-based operations. Free-matrix code.

B. Bergen, T. Gradl, F. Hülsemann, U. Rüde. A massively parallel multigrid method for finite elements. Comput. Sci. Eng., 2006.

C. Rodrigo, Geometric Multigrid Methods on Semi-Structured Triangular Grids, PhD thesis, University of Zaragoza, 2010
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Local Fourier Analysis (LFA)

LOCAL FOURIER ANALYSIS

Main quantitative analysis for multigrid methods
To estimate the spectral radius of the k–grid operator which are quantitative

measures for the error reduction.

Based on the Fourier transform theory.

Very powerful tool for the design of new efficient multigrid methods.

Classically, LFA provides exact convergence rates of GMG on rectangular
domains with periodic boundary conditions.

Recently, it has been proved that LFA yields the exact convergence factors
for a wider class of problems.
C. Rodrigo, F.J. Gaspar, L.T. Zikatanov, On the validity of the Local Fourier Analysis, J. Comp. Math., 37 (2019), pp. 340-348.
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Monolithic Multigrid for saddle point problems
COUPLED OR VANKA SMOOTHERS: Decomposing the mesh into small
subdomains and simultaneously solve all the equations in each block
F.J.. Gaspar, F.J. Lisbona, C.W. Oosterlee, A stabilized difference scheme for deformable porous media and its numerical resolution by

multigrid methods, Computing and Visualization in Science, 2008

C. Rodrigo, Geometric Multigrid Methods on Semi-Structured Triangular Grids, PhD Thesis, University of Zaragoza, 2010

DECOUPLED SMOOTHERS:

Distributive: Transform the discrete system, smooth such system
equation-wise, perform a back-transformation to the original unknowns
R. Wienands, F.J. Gaspar, F.J. Lisbona, C.W. Oosterlee, An efficient multigrid solver based on distributive smoothing for

poroelasticity equations, Computing, 2004

Uzawa: Standard smoothing process for the displacements and updating
of pressure by a Richardson iteration with an appropriate parameter ω
F.J. Gaspar, Y. Notay, C.W. Oosterlee, C. Rodrigo, A simple and efficient segregated smoother for the discrete Stokes equations.

SIAM Journal on Scientific Computing, 2014

P. Luo, C. Rodrigo, F.J. Gaspar, C.W. Oosterlee, On an Uzawa smoother in multigrid for poroelasticity equations, Numerical

Linear Algebra with Applications, 2017

Fixed-stress split smoother: Based on the iterative coupling fixed-stress
split method.
F.J. Gaspar, C. Rodrigo, On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics,

Computer Methods in Applied Mechanics and Engineering, 2017
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The fixed-stress split method

The fixed-stress split method is an iterative method where the flow problem is
solved first supposing a constant volumetric mean total stress, σv = tr(σ)/3.
By using σv = Kb∇ · u− αp, where Kb = λ+ 2µ/d is the drained bulk
modulus, we write the flow equation

1

M

∂p

∂t
+ α

∂

∂t
(∇ · u)−∇ ·

(
1

µf
K (∇p − ρf g)

)
= f .

in terms of the volumetric mean total stress instead of the volumetric strain,(
1

M
+
α2

Kb

)
∂p

∂t
+

α

Kb

∂σv

∂t
−∇ ·

(
1

µf
K (∇p − ρf g)

)
= f .

The fixed-stress split scheme is based on solving the flow equation considering
known the volumetric mean total stress. In the discrete case, this is equivalent
to an iterative method based on the splitting of matrix A as

[
A BT

B −C

]
=

[
A BT

0 −C + α2

Kb
Mp

]
−
[

0 0

−B α2

Kb
Mp

]
,

where Mp is the mass matrix.
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Fixed-stress split smoother

Decoupled smoother in a multigrid framework combining the advantages of
being a fully-coupled method and the decoupling the flow and the mechanic
part in the smoothing procedure.

Consider the splitting A =MA −NA =

[
A BT

0 −C + LMp

]
−
[

0 0
−B LMp

]
Iterative method based on the splitting reads:[

uk+1

pk+1

]
=

[
uk
pk

]
+M−1

A

([
g
f

]
−A

[
uk
pk

])

Relaxation procedure:

M̃A =

[
MA BT

0 MS

]
where

MA and MS are suitable smoothers for operators A and S = −C + LMp

{
pk+1 = pk + M−1

S (g − Buk + Cpk)

uk+1 = uk + M−1
A

(
f − Auk − BTpk+1

)
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Fixed-stress split smoother

M̃A,T1 =

[
MA BT

0 MS

]
,

{
MA = (DA + LA)D−1

A (DA + UA),

MS = (DR + LR)D−1
R (DR + UR),R = −C + LMp

M̃A,T2 =

[
MA BT

0 MS

]
,


MA,1 = (DA + LA)D−1

A (DA + UA),

MA = MA,1(2MA,1 − A)−1MA,1,

MS = (DR + LR)D−1
R (DR + UR),R = −C + LMp

M̃A,D2 =

[
MA 0
0 MS

]
,


MA,1 = (DA + LA)D−1

A (DA + UA),

MA = MA,1(2MA,1 − A)−1MA,1,

MS = (DR + LR)D−1
R (DR + UR),R = −C + LMp
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LFA results. Fixed-stress split smoother

Comparison between the two-grid analysis convergence factors predicted by
LFA ρ and the experimentally computed asymptotic convergence factors ρh, for

different numbers of smoothing steps, two different regular triangular grids
(right and equilateral) and K = 10−3

 

ν MA,T1 MA,T2 MA,D2

Right
1 0.45 (0.46) 0.28 (0.29) 0.28 (0.29)
2 0.28 (0.29) 0.16 (0.17) 0.16 (0.16)
3 0.20 (0.21) 0.12 (0.12) 0.12 (0.12)
4 0.16 (0.17) 0.08 (0.09) 0.08 (0.09)

Equilateral
1 0.35 (0.35) 0.17 (0.17) 0.17 (0.17)
2 0.13 (0.14) 0.05 (0.06) 0.05 (0.06)
3 0.08 (0.08) 0.03 (0.04) 0.03 (0.04)
4 0.05 (0.06) 0.02 (0.03) 0.02 (0.03)

C. Rodrigo Monolithic multigrid solvers for flow problems in porous media



LFA results. Fixed-stress split smoother

Two-grid analysis convergence factors predicted by LFA for different values of
parameter K , by using different numbers of smoothing steps, and considering

two different uniform triangular grids (right and equilateral)
 

Right Equilateral
ν \ K 1 10−3 10−6 1 10−3 10−6

MA,T1

1 0.45 0.45 0.45 0.35 0.35 0.35
2 0.28 0.28 0.28 0.13 0.13 0.13
3 0.20 0.20 0.20 0.08 0.08 0.08
4 0.16 0.16 0.16 0.05 0.05 0.05

MA,T2

1 0.28 0.28 0.28 0.17 0.17 0.17
2 0.16 0.16 0.16 0.05 0.05 0.05
3 0.12 0.12 0.12 0.03 0.03 0.03
4 0.08 0.08 0.08 0.02 0.02 0.02

MA,D2

1 0.28 0.28 0.28 0.17 0.17 0.17
2 0.16 0.16 0.16 0.05 0.05 0.05
3 0.12 0.12 0.12 0.03 0.03 0.03
4 0.08 0.08 0.08 0.02 0.02 0.02

C. Rodrigo Monolithic multigrid solvers for flow problems in porous media



Numerical experiment. Poroelastic footing problem

 

Ω 

𝜎 = 104 

𝛤𝑁 

𝛤D 
𝛤D 

𝛤D 

u = 0, on ΓD

σxy = 0, σyy = −σ0, on ΓN

p = 0, on ΓN

(∇ p) · n = 0, on ΓD

where

σ0 =

{
σ = 104, on the “central” part of ΓN

0, on the rest of ΓN
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Numerical example. Poroelastic footing problem

 

Ω 

𝜎 = 104 

𝛤𝑁 

𝛤D 
𝛤D 

𝛤D 

 

 
 

Constant permeability

τK/µf 6 levels 7 levels 8 levels 9 levels 10 levels

10−2 11 11 11 11 11
10−4 11 11 11 11 11
10−6 11 11 11 11 11
10−8 10 11 11 11 11
10−10 12 11 10 10 11
10−12 12 12 12 12 12
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Numerical example. Poroelastic footing problem

Two-layered porous medium
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Numerical experiment. Poroelasticity on a cylindrical shell

POROELASTICITY ON A CYLINDRICAL SHELL

Poroelasticity equations

−∇(λ+ µ)∇ · u−∇ · µ∇u+∇ p=ρg

∂

∂t
(∇ · u)−∇ ·

(
K

µf
(∇p − ρf g)

)
= f (x, t)

 

Outer boundary:
u = 0

K

µf
(∇p − ρf g) · n = 0

Inner boundary:
σ · n = (cos θ, sin θ)

p = 1Geometry and boundary
conditions:

 

ሺ݌ߘሻ ൉ ܖ ൌ 0 

ݑ ൌ 0 

Material parameters:

Property Value Unit

Young’s modulus 3× 104 N/m2

Poisson’s ratio 0.2 -
Permeability: K 10−7 m2

Fluid viscosity: µf 10−3 Pas
K/µf 10−4 m2/Pas
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Numerical experiment. Poroelasticity on a cylindrical shell

 

ሺ݌ߘሻ ൉ ܖ ൌ 0 

ݑ ൌ 0 
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538 F.J. Gaspar, C. Rodrigo / Comput. Methods Appl. Mech. Engrg. 326 (2017) 526–540

Fig. 9. (a) Coarsest grid in the hierarchy of semi-structured meshes, and (b) grid obtained after four regular refinement levels.

Fig. 10. History of the convergence of the fixed-stress split smoother based multigrid method for the cylindrical shell poroelastic problem for
different numbers of refinement levels.

triangles. A regular refinement process is applied to this triangulation, giving rise to a hierarchy of semi-structured
meshes. Due to the curvature of the boundary, the refinement procedure is performed in the way that the more we
refine the more the grid approximates the real boundary of the domain. More concretely, the refinement of a triangle
of the coarsest grid which has two vertices on the boundary is performed in the following way: the new boundary
point is taken as the intersection of the perpendicular bisector of the edge with the corresponding boundary arc. For
instance, the grid obtained after four refinement levels is depicted in Fig. 9(b) as an example, where it can be seen
how well the refined grid approximates the real boundary of the domain.

Once obtained the hierarchy of meshes, we apply the proposed geometric multigrid method based on the fixed-
stress split smoother to solve the poroelastic problem on the cylindrical shell. In Fig. 10 we show the history of the
convergence for different target grids obtained by applying different numbers of refinement levels, and by using an
F-cycle with two pre- and one post-smoothing steps. We can observe that we obtain a convergence independent of
the space discretization parameter and that few iterations are enough to obtain the desired convergence.

Remark. Given the thinly-layered nature of many geologic formations, the use of meshes with thin elements with very
large aspect ratios can be appealing in reservoir simulations. Under such challenging test-conditions the convergence
of multigrid methods based on point-wise smoothers, as those considered here, is expected to deteriorate as the grid
becomes more anisotropic, and then appropriate block-wise smoothers or semi-coarsening strategies may be required.
For example, in the experiment with smoothly random heterogeneous materials, if a thin rectangular domain with an
aspect ratio of 10:1 is considered as our domain, triangulated with two right triangles as the coarsest grid, we can
observe a deterioration of the convergence of the proposed multigrid method based on the fixed-stress split method
from 0.1 to a convergence rate of 0.9. To overcome this difficulty, we have implemented a line-wise version of the
fixed-stress split method which simultaneously updates all the unknowns located at the line where the strong coupling

History of the convergence of the
multigrid based on the fixed-stress

split smoother for different
numbers of refinement levels
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Coupled flow and porous media problems

Free flow
interface⇐⇒ Flow in the porous medium

(a) filtration process (b) blood flow simulation

(c) flooding simulation (d) waste water treatment
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Coupled flow and porous media problems

Free flow
interface⇐⇒ Flow in the porous medium

(a) filtration process (b) blood flow simulation

(c) flooding simulation (d) waste water treatment
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Coupled flow and porous media problems

Free flow
interface⇐⇒ Flow in the porous medium

DIFFERENT APPROACHES to solve the coupled problem:

Domain Decomposition Methods:
Decoupling the global problem so that mainly independent
subproblems are to be solved.

Monolithic Methods:
Simultaneous solution of the coupled multi-physics system.
Preconditioners and Multigrid methods.
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Basic equations

Γ

ΩΩf

Ωd

nnf

nd
τ

Figure: Geometry of the coupled Darcy/Stokes problem.

Porous medium description

K−1ud +∇pd = 0 in Ωd ,

∇ · ud = f d in Ωd .

ud = (ud , vd ) and pd .

The hydraulic conductivity tensor
K = K I, K > 0.

Free flow description:

−∇ · σf = f f in Ωf ,

∇ · uf = 0 in Ωf .

uf = (uf , v f ) and pf .

σf = −pf I + 2νD(uf ),
D(uf ) = (∇uf + (∇uf )T )/2.
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Interface conditions

We fix the normal vector to the interface to be n = nf = −nd and we denote τ
as the tangential unit vector at the interface Γ.

Mass conservation:
uf · n = ud · n on Γ .

Balance of normal stresses:

−n · σf · n = pd on Γ.

Beavers-Joseph-Saffman condition: (α is a parameter)

αuf · τ + τ · σf · n = 0 on Γ ,

No-slip condition:
uf · τ = 0 on Γ .
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Staggered grids

The computational domain is partitioned into square blocks of size h × h, so
that the grid is conforming at the interface Γ

• • • •

• • • •

• • • •

• • • •

• • • •

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
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◦ ◦ ◦ ◦ ◦

× × × ×

× × × ×

× × × ×

× × × × ×: pd/f

◦: ud/f

•: vd/f

Γ

Figure: Staggered grid
location of unknowns for the
coupled model, and
corresponding control
volumes.
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Figure: Control volumes for ud/f (left), vd/f (middle), pd/f (right).
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Discretization at the interface

A special discretization at and near the points on the interface
(combining the approximation of the governing equations and the considered

interface conditions)

• • •

• • •

• • •

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

× × ×

× × ×

Γ
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Figure: Staggered grid location of
the unknowns for the interface
conditions.

− (σxy )e−(σxy )w
h

− (σyy )n−(σyy )s
h/2

= (f f2 )i,j+ 1
2

(σyy )n

(σyy )s = −pd
s

(σxy )e and (σxy )w

Beavers-Joseph-Saffman condition:

αuf
e − ν

(
uf
i+ 1

2
,j+1
−ufe

h/2
+

v f
i+1,j+ 1

2

−v f
i,j+ 1

2
h

)
= 0

Peiyao Luo, Carmen Rodrigo, Francisco J. Gaspar, Cornelis W. Oosterlee, Uzawa smoother in multigrid for the coupled Porous Medium

and Stokes Flow System, SIAM Journal on Scientific Computing, 2017.
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Saddle point system

(
A BT

B 0

)(
u
p

)
=

(
g
f

)

BT : discrete gradient. B: minus discrete divergence.

A: discrete −ν∆ for the Stokes equation.
discrete K−1I for the Darcy equation. 

Coupled system



Ad 0 (Bd)T 0
0 Af R (B f )T

Bd R 0 0
0 B f 0 0







ud

uf

pd

pf


 =




0
f f

f d

0


 ,

A =

(
Ad 0
0 Af

)
, B =

(
Bd R
0 B f

)
, BT =

(
(Bd)T 0
R (B f )T

)
,

where R contains the relations given by the interface discretization
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Multigrid for the coupled problem

Multigrid components:

Choice of coarse grids and operators:

Standard coarsening
Γ is present on the complete grid hierarchy
Direct discretization of the continuous operators on coarse grids

Inter-grid transfer operators:

take into account the staggered arrangement of the unknowns

I uh,2h =
1

8

1 2 1
∗

1 2 1


h

, I vh,2h =
1

8

1 1
2 ∗ 2
1 1


h

, I ph,2h =
1

4

1 1
∗

1 1


h

Prolongation operators: the adjoints of the restrictions.
Inter-grid operators must be accordingly altered at boundary points
and at the interface points

Type of cycle: comparison of V− and W−cycles

Smoother???
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Uzawa smoother

(
A BT

B 0

)
=

(
MA

B −ω−1 I

)
−
(

MA − A −BT

−ω−1 I

)
,

ω: some positive parameter.

MA: Symmetric Gauss-Seidel for velocities

MA = (DA + LA)D−1
A (DA + UA)

The decoupled iteration can be described as:

(
MA

B −ω−1 I

)(
û
p̂

)
=

(
MA − A −BT

−ω−1 I

)(
u
p

)
+

(
g
f

)

apply smoother MA to relax the system Au = g − BTp ;
i.e., û = u + M−1

A

(
g − Au− BTp

)
;

update the pressure: p̂ = p + ω(Bû− f ) .

Optimal Parameter ωopt?
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Comparison between LFA and asymptotic results

Darcy: ωopt =
h2

5K
Stokes: ωopt = ν

Darcy Stokes

ν1 + ν2 K = 1 K = 10−6 ν = 1 ν = 10−6

2 0.600 0.600 0.304 0.304

3 0.360 0.360 0.143 0.143

4 0.216 0.216 0.081 0.081

Table: Two-grid convergence factors, ρ predicted by LFA.

K 1 10−6

ν 1 10−6 1 10−6

ν1 + ν2

2 0.59 0.59 0.59 0.59

3 0.36 0.36 0.36 0.36

4 0.21 0.21 0.21 0.21

Table: Asymptotic convergence factors, ρh, for the coupled problem.
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Multiblock multigrid algorithm

• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •

◦ ◦ ◦ ◦ ◦
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× × × ×
× × × ×
× × × ×
× × × ×
× × × ×
× × × ×
× × × ×
× × × ×

• • • •
• • • •
• • • •
• • • •

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
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× × × ×
× × × ×
× × × ×• • • •
• • • •

• • • •
• • • •
• • • •
• • • •

• • • •
• • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

× × × ×
× × × ×
× × × ×
× × × ×

× × × ×

×: pd/f◦: ud/f•: vd/f

Γ

Ωd

Ωf

Multiblock two-grid algorithm:
(with only pre-smoothing)

1 Relax velocity unknowns.

2 Stokes to Darcy: v f → vd (•).

3 Update pressure unknowns.

4 Darcy to Stokes: pd → pf (×).

5 Compute the residual.

6 Darcy to Stokes: rd → r f (•).

7 Restrict the residual.

8 Solve exactly the defect equation on
the coarsest grid.

9 Stokes to Darcy: e f → ed .

10 Interpolation and correction.
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Beavers-Joseph-Saffman interface condition

Analytical solution

ud(x , y) =

(
ud(x , y)
vd(x , y)

)
=

(
−Key cos x
−Key sin x

)
,

pd(x , y) = ey sin x ,

uf (x , y) =

(
uf (x , y)
v f (x , y)

)
=

(
λ′(y) cos x
λ(y) sin x

)
,

pf (x , y) = 0,

where λ(y) = −K − g y

2ν
+ (− α

4ν2
+

K

2
)y2.

Ω = (0, 1)× (−1, 1), Ωd = (0, 1)× (−1, 0), Ωf = (0, 1)× (0, 1).

Interface Γ = (0, 1)× {0}.
Free flow: Dirichlet conditions for uf and v f at the outer boundaries.

Porous medium: fixed pd at the bottom, Dirichlet conditions for ud

and vd at the lateral walls.
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Beavers-Joseph-Saffman interface condition

64× 128 128× 256 256× 512

ud 1.42× 10−5 3.63× 10−6 9.19× 10−7

vd 4.09× 10−5 1.19× 10−5 3.38× 10−6

pd 9.11× 10−6 2.32× 10−6 5.84× 10−7

uf 1.21× 10−5 3.06× 10−6 7.71× 10−7

v f 2.97× 10−5 7.66× 10−6 1.95× 10−6

pf 4.74× 10−3 2.38× 10−3 1.19× 10−3

Table: Maximum norm errors of variables ud/f , vd/f , pd/f for different
grid-sizes, by considering fixed values ν = 1 and K = 1, and prescribing the
Beavers-Joseph-Saffman condition at the interface with α = 1.
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Beavers-Joseph-Saffman interface condition

K = 1, ν = 1 K = 10−4, ν = 10−6

(a) (b)

Figure: History of the convergence of the W (2, 2)−multigrid method for
different values of the physical parameters.
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Realistic problem: cross-flow membrane filtration model

x

y

Γ

Block1

Block2 Block3 Block4

ud = 0 ud = 0

0 0.015pd = 00.00375 0.01125

uf = 0.1
vf = 0

vf = 0uf = 0

uf = 0
vf = 0

Exit
σxx = 0
σxy = 0

0.0025

0.0075

Ωf

Ωd

uf = vf = 0 uf = vf = 0

Figure: Geometry of the coupled problem.

4 blocks, K = 0.1 or K = 10−6, ν = 10−6.

Beavers-Joseph-Saffman interface condition.

Communications on each level.

Excellent multigrid convergence factor 0.2 for W (2, 2)-cycle for the
coupled system.
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Realistic problem: cross-flow membrane filtration model
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Figure: Velocity vectors over the cross-flow filtration domain with different
values of permeability.
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Heterogeneity test

To simulate heterogeneity in the porous medium, a Gaussian model
characterized by parameters λg and σ2

g is considered, i.e.,

C (dg ) = σ2
g exp

(
−d2

g

λg

)
,

where dg is the distance between two points, λg defines the correlation
length and σ2

g represents the variance.

Figure: Example of random field of hydraulic conductivity K in log-scale, with
parameters λg = 0.3 and σ2

g = 1.
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Heterogeneity test
Two different values for parameter λg : λg = 0.1 denotes a more
heterogeneous porous medium than λg = 0.3.
50 realizations of the random field are generated and we record the
multigrid convergence factors of the W (2, 2)-cycle.

h−1 λg = 0.3 λg = 0.1
25600 0.19 0.20
12800 0.19 0.21
6400 0.20 0.29

Table: Mean value of the multigrid convergence factors after 50 realizations.

Figure: L2-norm of the velocity vectors over the cross-flow filtration domain
with randomly distribution of hydraulic conductivity K (λg = 0.3).
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Coupled Stokes and Deformable Porous Medium System

Γ

ΩΩp

Ωf

nnp

nf τ

Deformable Porous Media

−∇ · σp = fp in Ωp

∂

∂t
(∇ · up) +∇ · qp = f p in Ωp

qp = −K∇pp in Ωp

up = (up, vp) and pp

σp = σE − ppI

σE (up) = 2µD(up) + λtr(D(up))I

Stokes Flow

ρ
∂uf

∂t
−∇ · σf = f f in Ωf

∇ · uf = 0 in Ωf

uf = (uf , v f ) and pf

σf = −pf I + 2νD(uf )

D(uf ) = (∇uf + (∇uf )T )/2
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Interface conditions

Mass conservation:

(uf − ∂up

∂t
) · n = qp · n ,

Balance of normal stresses in the fluid phase:

n · σf n = −pp

Conservation of momentum:

n · σf n− n · σpn = 0

and
τ · σf n− τ · σpn = 0

Beavers-Joseph-Saffman interface condition:

−τ · σf n = β(uf − ∂up

∂t
) · τ

No-slip condition:

uf · τ =
∂up

∂t
· τ
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Saddle point structure

At each time step:

(
A BT

B −C

)(
u
p

)
=

(
g
f

)

BT and B ≡ discrete gradient and the negative discrete divergence

For the poroelastic system:
A is −µ∆−∇(λ+ µ)∇· and C corresponds to −τ∇ · (K∇p)

For the Stokes system:

A represents
ρ

τ
I − ν∆ and C is a zero block

 



Af RT (B f )T (R ′)T

R Ap 0 (Bp)T

B f 0 0 0
R ′ Bp 0 −C p







uf

up

pf

pp


 =




f f

fp

0
f p




A =

(
Af RT

R Ap

)
,B =

(
B f 0
R ′ Bp

)
,−C =

(
0 0
0 −C p

)
,

wheere R and R ′ contain the coupling at and near the interface.
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Monolithic multigrid

Uzawa smoother

Optimal relaxation parameter

Poroelasticity system:

ωp =
h2(λ+ 2µ)

5Kτ(λ+ 2µ) + h2

Stokes system:

ωf = ν +
ρh2

8τ

Relaxation parameters do not only depend on the model coefficients but
also on the grid size and on time step τ , thus ωp and ωf are different on
each grid of the hierarchy in the multigrid method
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Analytical test. No-slip condition

Analytical solution

uf = up = (y2 − y)et

v f = vp = 0

pf = pp = xet

Ω = (0, 1)× (0, 2), Ωf = (0, 1)× (0, 1), Ωp = (0, 1)× (1, 2)

Interface Γ = (0, 1)× {1}
Dirichlet boundary conditions for displacements and pressure at the
lateral boundaries of Ωp.

Stress conditions at the top of Ωp, where the fluid pressure is fixed

In Ωf , stress conditions at both inlet and outlet, while a symmetric
boundary condition is imposed at the bottom.

Interface conditions with the simplified no-slip interface condition
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Analytical test. No-slip condition

64× 128× 4 128× 256× 8 256× 512× 16

uf 2.01× 10−4 9.73× 10−5 4.76× 10−5

v f 1.20× 10−4 4.47× 10−5 2.31× 10−5

pf 3.16× 10−3 1.63× 10−3 7.95× 10−4

up 6.77× 10−3 3.46× 10−3 1.75× 10−3

vp 6.38× 10−4 3.26× 10−4 1.65× 10−4

pp 3.87× 10−3 1.68× 10−3 7.75× 10−4

Table: Maximum norm errors of variables uf /p, v f /p and pf /p for different grid
sizes with parameters K = 1, λ = 1, µ = 1, ν = 1 and ρ = 1.
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Analytical test. No-slip condition

K = 10−4, ν = 10−3 K = 10−6, ν = 10−6

(a) (b)

Figure: History of the convergence of the W (2, 2)−multigrid method for
different values of the physical parameters
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Multi-block realistic test

σf
xx 6= 0

σf
xy = 0

σf
xx = σf

xy = 0

uf = v f = 0

up = vp = 0 up = vp = 0

σp
xy = σp

yy = 0

∂uf

∂y = ∂v f

∂y = ∂pf

∂y = 0 x10.80.2

y

0.5

0.4

0

Ωp

Ωf

Γ

Block2Block1 Block3

Block4

uf = v f = 0 uf = v f = 0

Fluid inflow in Ωf : σf
xx = −20000

Small exit at the right vertical boundary (stress-free boundary)

K = 10−4, λ = 106, µ = 2.5× 105, ν = 0.0035 and ρ = 1.

C. Rodrigo Monolithic multigrid solvers for flow problems in porous media



Drained conditions on the exterior of Ωp

Drained conditions (pp = 0) for pressure on the exterior of Ωp
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Impermeable conditions on the exterior of Ωp

Impermeable conditions on the exterior of Ωp

K = 0.01 K = 10−4
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Flow in fractured porous media

Introduction

Fractured Porous Media

blogs.agu.org Outcrop in the Sotra island (Flemisch et al. 2018)

Fracture networks appear in many
porous media applications:

• Oil and gas extraction

• CO2 and nuclear wast storage

• Biology (blood flow, brain, lung
etc.)

Fractures play an important role in
fluid flow structure due to:

• High heterogeneity

• Large aspect ratios

• Complex network structure
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Outcrop in the Sotra island (Flemisch et al. 2018)

 APPLICATIONS
 

Petroleum extraction
Long-term CO2 and nuclear waste storage
Geothermal energy production
Biomedical applications, e.g., where capillaries can be
treated as fractures in the matrix

 

Development of numerical schemes to discretize fracture models

Design of efficient solvers for the corresponding flow models
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Models for flow in fractured media

Fractures can be incorporated to flow models in essentially two ways:

At small scales: DUAL-POROSITY MODELS

Specific locations of micro-fractures are difficult to determine
The fractures’ network and the bulk or porous matrix are two
interacting continua related by a transfer function

 

At large scales: DISCRETE FRACTURE MODELS (DFM)

Localized networks of faults and macro-fractures
Fractures can behave either as preferential flow paths or as
geological barriers
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The mixed-dimensional model

Fine meshing of the fracture domain to guarantee accurate
approximations.

The thickness of the fractures is very small compared to their length and
also compared to the typical size of the domain of interest.

 
A reduced model (or mixed-dimensional model) can be considered in which the

fractures are treated as (n − 1) dimensional interfaces in an n dimensional
medium

Different models can be considered within the fractures and in the porous
matrix.

Here: single-phase Darcy-Darcy and Darcy-Fochheimer couplings between
the fractures and the porous matrix.
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The mixed-dimensional model

For simplicity, we assume the existence of a single fracture Ωf that
separates Ω into two connected subdomains: Ω1,Ω2.

Transmission problem Interface problem

V. Martin, J. Jaffré, J.E. Roberts (2005) Modeling fractures and barriers as interfaces for
flow in porous media, SIAM J. Sci. Comp. 26, pp. 1667-1691.
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The mixed-dimensional model problem. Darcy-Darcy

Consider linear Darcy flow in the subdomains

ui = −Ki∇pi , div ui = qi , in Ωi , for i = 1, 2,

with pi = 0 on ∂Ωi , for i = 1, 2. We assume Ki is diagonal.

Consider linear Darcy flow in the fracture too

uγ = −Kf ,τ d ∇τpγ , divτ uγ = qγ + (u1 · n1 + u2 · n2), on γ,

with pγ = 0 on ∂γ.

Impose the interface condition

αγ pi = αγ pγ + (ξ ui · ni − (1− ξ) ui+1 · ni+1), in γ, for i = 1, 2,

where αγ =
2Kf ,n

d
, ξ ∈

(
1
2
, 1
]
, and i + 1 = 1 if i = 2.
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The weak formulation

We consider the following function spaces

M =L2(Ω1)× L2(Ω2)× L2(γ),

W ={u = (u1, u2, uγ) ∈ H(div,Ω1)× H(div,Ω2)× H(divτ , γ) :

ui · ni ∈ L2(γ), i = 1, 2}.

Define the forms a : W ×W→ R and b : W ×M → R by

a(u, v) =
2∑

i=1

(
K−1

i ui , vi

)
Ωi

+
(

(d Kf ,τ )−1 uγ , vγ
)
γ

+
2∑

i=1

(
α−1
γ (ξ ui · ni − (1− ξ) ui+1 · ni+1), vi · ni

)
γ
,

b(u, r) =
2∑

i=1

(div ui , ri )Ωi
+ (divτ uγ , rγ)γ −

(
2∑

i=1

ui · ni , rγ

)
γ

.

Define the linear form Lq : M → R by:

Lq(r) =
2∑

i=1

(qi , ri )Ωi
+ (qγ , rγ)γ .
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The weak formulation

The variational problem may be written in standard mixed form as:

Find u = (u1, u2, uγ) ∈W, p = (p1, p2, pγ) ∈ M s.t. :{
a(u, v)− b(v, p) = 0 ∀ v ∈W,

b(u, r) = Lq(r) ∀ r ∈ M.

V. Martin, J. Jaffré, J.E. Roberts (2005) Modeling fractures and barriers as interfaces for
flow in porous media, SIAM J. Sci. Comp. 26, pp. 1667-1691.
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The mixed finite element method

Let Th,i be a rectangular partition of Ωi , i = 1, 2 and suppose that the
meshes Th,i match at the interface γ, i.e. they induce a unique partition
on γ denoted by Th,γ .

Then, Th = ∪Th,i , i = 1, 2, γ, consists of both n dimensional elements in
Ωi and (n − 1)-dimensional elements on γ.

Let Wh,i ×Mh,i be the Raviart-Thomas mixed finite element spaces of
lowest order associated with Th,i , i = 1, 2, γ.

Let us define
Wh = Wh,1 ⊕Wh,2 ⊕Wh,γ ,

Mh = Mh,1 ⊕Mh,2 ⊕Mh,γ .
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A quadrature rule

For v, q ∈ R2, let us introduce the quadrature rule:

(v, q)TM = (v1, q1)T×M + (v2, q2)M×T

where the trapezoidal rule in one direction is tensored with the midpoint
rule in the other.

Define the form

ah(u, v) =
2∑

i=1

(
K−1

i ui , vi

)
Ωi ,TM

+
(

(d Kf ,τ )−1 uγ , vγ
)
γ,T

+
2∑

i=1

(
α−1
γ (ξ ui · ni − (1− ξ) ui+1 · ni+1), vi · ni

)
γ

T. F. Russell and M. F. Wheeler, Finite element and finite difference methods for continuous

flows in porous media, in The Mathematics of Reservoir Simulation, R. E. Ewing, ed., vol. 1

of Frontiers in Applied Mathematics, SIAM, Philadelphia, 1983, pp. 35-106.
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The mixed finite element approximation

The mixed finite element approximation for the interface problem may be
written as:

Find uh = (uh,1, uh,2, uh,γ) ∈Wh, ph = (ph,1, ph,2, ph,γ) ∈ Mh s.t. :{
ah(uh, vh)− b(vh, ph) = 0 ∀ vh ∈Wh,

b(uh, rh) = Lq(rh) ∀ rh ∈ Mh.

This method is closely related to the two-point flux approximation
(TPFA) method.
R. Eymard, T. Galloüet, C. Guichard, R. Herbin, and R. Masson (2014) TP or not TP, that

is the question, Comput. Geosci., 18 pp. 285-296.
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The algebraic linear system

The corresponding algebraic linear system is a saddle-point problem of the form:



A1 CT 0 BT
1 0 FT

1

CT A2 0 0 BT
2 FT

2

0 0 Aγ 0 0 BT
γ

B1 0 0 0 0 0

0 B2 0 0 0 0

F1 F2 Bγ 0 0 0





U1

U2

Uγ

P1

P2

Pγ


=



0

0

0

∗
∗
∗


where Ai , i = 1, 2, γ, are diagonal matrices.
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The monolithic multigrid method

We need a hierarchy of grids of various sizes.

Perform direct discretization of the problem on each grid.

Perform W(2,2)-cycles.

The coarsest grid should be built taking into account the location of the
fractures.

14 A. ARRARÁS, F. J. GASPAR, L. PORTERO AND C. RODRIGO

•

• •

• •

•

×

×

×

Fig. 3. Coarsest grid corresponding to the fracture network shown in Figure 2.

Suppose that Ak uk = fk is the system to solve, where the matrix Ak corresponds409

to a discretization of a partial differential equation on a grid Gk, fk is the right-hand410

side and uk is the unknown vector. In order to apply a standard two-grid cycle for411

solving this problem, we perform the following steps:412

413

1. Apply ν1 iterations of a classical iterative method, called smoother, on Gk414

(pre-smoothing step).415

2. Compute the residual of the current fine grid approximation.416

3. Restrict the residual to the coarse grid Gk−1 by using a restriction operator417

Rk−1
k .418

4. Solve the residual equation on the coarse grid.419

5. Interpolate the obtained correction to the fine grid Gk by using a prolongation420

operator P kk−1.421

6. Add the interpolated correction to the current fine grid approximation.422

7. Apply ν2 iterations of a classical iterative method on Gk (post-smoothing423

step).424

425

Since we do not need to solve the problem on the coarse grid exactly, we can apply426

the same algorithm in a recursive way by using a hierarchy of coarser meshes, giving427

rise to the well-known multigrid cycle. It is clear that many details have to be fixed428

for the design of an efficient multigrid method, since all the components have to be429

properly chosen. In particular, we need to specify the hierarchy of grids, the coarse-430

grid operators, the type of cycle, the inter-grid transfer operators and the smoothing431

procedure. Next, we explain our choices in this work.432

3.1. Hierarchy of meshes, coarse-grid operators and cycle type. The433

implementation of a geometric multigrid method requires to define the problem on434

grids of various sizes, namely a hierarchy of grids. Here, such a hierarchy is constructed435

in the following way. First, we consider a coarse grid which is built taking into436

account the location of the fractures. This mesh is generated by assuming that every437

fracture coincides with an edge of some element in the porous medium grid. As438

explained in Section 2, we suppose that the grids in the subdomains match at the439

interfaces. Thus, in the case of considering m subdomains, we define G0 =
⋃m
i=1 T hi440

as the coarsest possible grid fulfilling this criterion. As an example, if we consider the441

fracture configuration shown in Figure 2, the coarsest grid G0 is given in Figure 3.442

This manuscript is for review purposes only.

Coarsest grid corresponding to the fracture network for benchmark problem
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The monolithic multigrid method

We need a hierarchy of grids of various sizes.

Perform direct discretization of the problem on each grid.

Perform W(2,2)-cycles.

The coarsest grid should be built taking into account the location of the
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⇒
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×

×

×

×

×

×

×

×

tt tee × pressure in the porous matrix

+ velocity in the porous matrix

◦ pressure in the fracture

• velocity in the fracture

Fig. 4. Grid refinement procedure and location of the unknowns for both porous matrix and
fracture (in bold line).

Then, the hierarchy of computational grids is created by applying a regular refine-443

ment process to each cell in that initial mesh. This means that we obtain a sequence444

of successively finer grids G0, G1, . . . , GM . In particular, since we are considering a445

quadrilateral partition of the porous medium, Gk+1 is obtained from Gk by dividing446

each cell into four new elements for the next finer grid, as shown in Figure 4, and this447

process continues until a fine enough target grid GM is obtained.448

Once the mesh hierarchy is generated, we consider a direct discretization of our449

problem on each grid. As for the type of cycle, we use W-cycles, since we have seen450

that this choice gives very good results for solving difficult coupled problems like the451

Darcy–Stokes system [37] and the Biot–Stokes system [38].452

3.2. Inter-grid transfer operators. Now, we define the restriction and inter-453

polation operators involved in the multigrid method for solving the mixed-dimensional454

problem. We consider different transfer operators for the unknowns belonging to the455

matrix and for those located at the fractures. In particular, we choose two-dimensional456

and one-dimensional transfer operators, respectively. This means that we implement457

mixed-dimensional transfer operators in our multigrid algorithm in order to handle458

the problem at once. In matrix form, the chosen restriction operator Rk−1
k from459

grid Gk to Gk−1 is a block diagonal matrix since it does neither mix velocities and460

pressures nor unknowns in the porous matrix and in the fractures.461

Due to the use of quadrature rules in this work, the mixed finite element method462

turns into a finite difference scheme on a staggered grid. As a consequence, we con-463

sider the standard restriction operators used for this type of meshes. Regarding the464

unknowns of the porous medium, we take into account the staggered arrangement465

of their location. Thus, the inter-grid transfer operators that act in the porous me-466

dia unknowns are defined as follows: a six-point restriction is considered at velocity467

grid points, and a four-point restriction is applied at pressure grid points, as can be468

seen in Figure 5. The prolongation operator P kk−1, is chosen to be the adjoint of the469

restriction.470

Regarding the inter-grid transfer operators for the unknowns at the fractures, we471

again take into account their one-dimensional staggered arrangement, yielding the472

restriction transfer operators shown in Figure 6. Finally, the prolongation operators473

This manuscript is for review purposes only.

Grid refinement procedure and location of the unknowns
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The monolithic multigrid method

The KEY is to consider MIXED-DIMENSIONAL MULTIGRID COMPONENTS

MIXED-DIMENSIONAL INTER-GRID TRANSFER OPERATORS 

Inter-grid transfer operators in the porous matrix:
16 A. ARRARÁS, F. J. GASPAR, L. PORTERO AND C. RODRIGO
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are chosen to be the corresponding adjoints.474

3.3. Smoother. The performance of a multigrid method is essentially influenced475

by the smoothing algorithm. Here, in orderto deal with the difficulties generated476

by a saddle point problem, we consider a relaxation iteration among the class of477

multiplicative Schwarz smoothers. Basically, this type of iterations can be described478

as an overlapping block Gauss-Seidel method, where a small linear system of equations479

for each grid point has to be solved at each smoothing step. A particular case of such480

relaxation schemes is the so-called Vanka smoother, introduced in [51] for solving the481

staggered finite difference discretization of the Navier–Stokes equations.482

Due to the mixed-dimensional character of our problem, we propose a smoother483

Sh which is written as the composition of three relaxation procedures acting on the484

two-dimensional cells of the porous matrix, S2
h, the one-dimensional elements in the485

fractures, S1
h, and the zero-dimensional intersection points, S0

h, i.e.: Sh = S0
hS

1
hS

2
h.486

Next, we describe these partial relaxation procedures:487

488

1. Relaxation for the porous matrix. The smoother considered for the unknowns489

located outside the fractured part of the domain is based on simultaneously490

updating all the unknowns appearing in the discrete divergence operator in491

the pressure equation. This way of building the blocks is very common in492

the Vanka-type smoothers used for Stokes and Navier-Stokes problems. This493

approach implies that four unknowns corresponding to velocities and one494

pressure unknown, see Figure 7 (a), are relaxed simultaneously, making nec-495

essary to solve a 5 × 5 system for each cell. Then, we iterate over all the496

elements in lexicographic order, and for each of them the corresponding box497

is solved.498

499

2. Relaxation for the fractures. The relaxation step applied to the unknowns500

located at the fractures is again based on simultaneously updating all the501
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The monolithic multigrid method

The KEY is to consider MIXED-DIMENSIONAL MULTIGRID COMPONENTS

MIXED-DIMENSIONAL SMOOTHER 
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!

× pressure in the porous matrix

+ velocity in the porous matrix

◦ pressure in the fracture

• velocity in the fracture

(a) (b)

Fig. 7. Unknowns updated together by the vanka-type smoothers applied (a) outside the fractures
and (b) within the fractures.

unknowns appearing in the discrete divergence operator in the pressure equa-502

tion. This means that, in this case, for each element in the fracture we update503

five unknowns, three of them corresponding to the fracture and two of them504

to the matrix. In particular, each pressure unknown in the fracture is up-505

dated together with the two fracture velocities within the same element and506

the two porous matrix velocities located at the edges of the corresponding507

two-dimensional elements that match with that particular fracture element.508

This can be seen in Figure 7 (b). Notice that there are three unknowns lo-509

cated at the same point, the pressure in the fracture and the two velocities510

corresponding to the elements adjacent to the fracture.511

512

3. Relaxation for the intersections. At the intersection points of the fractures we513

apply a block Gauss–Seidel smoother coupling the fracture velocity unknowns514

located at each intersection, so that we need to solve a 2× 2, 3× 3 or 4× 4515

system of equations on each of these grid points.516

517

The previously defined partial relaxation procedures can be formally written as

Snh =

NB,n∏

B=1

(
I − V TB,n(AB,n)−1VB,nA

)
, for n = 0, 1, 2,

where A is the system matrix in (2.14), NB,n is the number of n-dimensional elements518

in the partition, VB,n represents the projection operator from the unknown vector to519

the vector of unknowns involved in the block to solve, and matrix AB,n is defined as520

AB,n = VB,nAV
T
B,n.521

3.4. Implementation. The proposed monolithic mixed-dimensional multigrid522

method is implemented in a blockwise manner. Given an arbitrary fracture network523

composed of vertical and horizontal fractures, the first step is to construct a uniform524

rectangular coarse grid so that the fracture network is contained in the set of edges525

of the grid. After that, a regular refinement process is applied on each block in the526

coarse grid until a target mesh with an appropriate fine grid scale to solve the prob-527

lem is obtained. Then, for each step of the multigrid method, the two-dimensional528

components are performed in the porous matrix grid points whereas within the frac-529

This manuscript is for review purposes only.

Use mixed-dimensional Vanka smoothers for the unknowns on the matrix
and within the fractures.

Consider block Gauss-Seidel smoother for the intersections (if any).
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Example 1: one fracture with constant permeability

Dirichlet boundary conditions for the fracture, width d = 10−2.

Permeability tensor in the fracture K = Kf Id.

ESCO 2018

Geometric multigrid methods for Darcy–Forchheimer flow in fractured porous media

Numerical experiments (β = 0)

Example 1: one fracture with constant permeability

Dirichlet boundary conditions for the fracture, width d = 10−2.

Permeability tensor in the fracture K = Kf Id.
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Example 1: one fracture with constant permeability

Pressure distribution for Kf = 102 (left) and Kf = 10−2 (right)
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Pressure distribution for Kf = 102 (left) and Kf = 10−2 (right)
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Example 1: one fracture with constant permeability

Number of iterations to reduce the initial residual in a factor of 10−10 for
different grid sizes and different values of Kf

as stand-alone solver (MG)
as preconditioner (Prec) of the Flexible GMRES method (a single
W (2, 2)−multigrid cycle per iteration)

32× 16 64× 32 128× 64 256× 128 512× 256
Kf MG

/Prec

MG

/Prec

MG

/Prec

MG

/Prec

MG

/Prec

10−6 8
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Example 1: one fracture with constant permeability

Number of iterations to reduce the initial residual in a factor of 10−10 for
different grid sizes and different values of Kf

as stand-alone solver (MG)
as preconditioner (Prec) of the Flexible GMRES method (a single
W (2, 2)−multigrid cycle per iteration)

32× 16 64× 32 128× 64 256× 128 512× 256
Kf MG/Prec MG/Prec MG/Prec MG/Prec MG/Prec

10−6 8/8 8/8 9/9 9/9 9/9
10−4 8/8 8/8 9/9 9/9 9/9
10−2 8/8 8/8 9/9 9/9 9/9

102 10/9 9/9 9/9 10/9 10/10
104 8/9 9/9 9/10 9/10 10/10
106 8/9 9/9 9/10 9/10 10/10
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Example 1: one fracture with constant permeability

Heterogeneous porous medium
 

The permeability in the porous matrix is represented by a lognormal
random field. We consider the following Matérn covariance function,

CΦ(r) = σ2
c

21−νc

Γ(νc)

(
2
√
νc

r

λc

)νc
Kν

(
2
√
νc

r

λc

)
,

characterized by the set of parameters Φ = (νc , λc , σ
2
c )

0

0.5

1

0 0.5 1 1.5 2

-3

-2

-1

0

1

2

0

0.5

1

0 0.5 1 1.5 2

-4

-2

0

2

4

6

Φ1 = (0.5, 0.3, 1) Φ2 = (0.5, 0.1, 3)

Average number of 9 iterations for the parameter set Φ1,
and around 13 iterations for Φ2
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Example 2: one fracture with variable permeability

Neumann boundary conditions for the fracture, width d = 10−2.

Permeability tensor in the fracture:

K =

{
Kf 1Id, if 0 < y < 1

4
or 3

4
< y < 1,

Kf 2Id, if 1
4
< y < 3

4
.
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Numerical experiments (β = 0)
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Kf 2Id, if 1
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Example 2: one fracture with variable permeability

Pressure distribution for Kf 1 = 102 and Kf 2 = 2× 10−3 (left)

Convergence of the multigrid method - residual vs. iterations (right)
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Example

s

3

-4

: four fractures

Fracture network and settings:

Setting 1 (S1)
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Example 3: four non-connected fractures

Fracture network and settings (left) pressure distribution (right)

!

!

!!

"

#⋅$ % &!

&!

'

'!&!

#⋅$ % &!

( % &!

( % '!

)*+ % '&,-!

)*- % '&,-!

)*. % '&,-!

)*/ % '&-!

Iterations to reduce the initial residual in a factor of 10−10

40 × 40 80 × 80 160 × 160 320 × 320 640 × 640 1280 × 1280

9 9 10 10 11 11

L. Portero ESCO 2018

Setting 2 (S2)
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Example 4: four connected fractures

Fracture network and settings (left) pressure distribution (right)
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Iterations to reduce the initial residual in a factor of 10−10

40× 40 80× 80 160× 160 320× 320 640× 640 1280× 1280
S1 9 9 10 10 11 11

S2 11 11 11 12 13 13
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Examples 3-4: four fractures

Fracture network and settings:

Setting 1 (S1)
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Setting 2 (S2)
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Example 4: four connected fractures
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Iterations to reduce the initial residual in a factor of 10−10

40× 40 80× 80 160× 160 320× 320 640× 640 1280× 1280
S1 9 9 10 10 11 11
S2 11 11 11 12 13 13
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Example 5: benchmark problem

Fracture network, width d = 10−4.
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Tatomir (Adv. Water Resour., 2018).
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B. Flemisch, I. Berre, W. Boon, A. Fumagalli, N. Schwenck, A. Scotti, I. Stefansson, A.

Tatomir (2018) Benchmarks for single-phase flow in fractured porous media, Adv. Water

Resour. 111 pp. 239-258.
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Example 5: benchmark problem

Pressure distribution for Kf = 104 (left)

Convergence of the multigrid method - residual vs. iterations (right)

ESCO 2018

Geometric multigrid methods for Darcy–Forchheimer flow in fractured porous media

Numerical experiments (β = 0)

Example 5: benchmark problem

Pressure distribution for Kf = 104 (left)

Convergence of the multigrid method - residual vs. iterations (right)

0 5 10 15 20

iterations

10
-10

10
-5

10
0

10
5

10
10

re
s
id
u
a
l

64 64

128 128

256 256

512 512

L. Portero ESCO 2018

ESCO 2018

Geometric multigrid methods for Darcy–Forchheimer flow in fractured porous media

Numerical experiments (β = 0)

Example 5: benchmark problem

Pressure distribution for Kf = 104 (left)

Convergence of the multigrid method - residual vs. iterations (right)

0 5 10 15 20

iterations

10
-10

10
-5

10
0

10
5

10
10

re
s
id
u
a
l

64 64

128 128

256 256

512 512

L. Portero ESCO 2018

C. Rodrigo Monolithic multigrid solvers for flow problems in porous media



Example 5: benchmark problem

Pressure distribution for Kf = 10−4 (left)

Convergence of the multigrid method - residual vs. iterations (right)
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Example 6: Local Fourier analysis test

Local Fourier analysis (LFA) is the main quantitative analysis to predict the
convergence rates of multigrid algorithms

Comparison between the predicted LFA two-grid convergence factor for
Darcy problem and the asymptotic convergence factors experimentally
obtained from the numerical experiments performed in the fractured
porous media.

LFA
One fracture Four fractures

Benchmark
Test 1 Test 2 Test 3 Test 4

0.04 0.039 0.077 0.045 0.08 0.085
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The mixed-dimensional model problem. Darcy-Forchheimer

Consider linear Darcy flow in the subdomains

ui = −Ki∇pi , div ui = qi , in Ωi , for i = 1, 2,

with pi = 0 on ∂Ωi , for i = 1, 2. We assume Ki is diagonal.

Consider nonlinear Darcy–Forchheimer flow in the fracture

(1 +
β

d
|uγ |) uγ = −Kf ,τ d ∇τpγ , divτ uγ = qγ+(u1 ·n1 +u2 ·n2), in γ,

with pγ = 0 on ∂γ.

Impose the interface condition

αγ pi = αγ pγ + (ξ ui · ni − (1− ξ) ui+1 · ni+1), in γ, for i = 1, 2,

where αγ =
2Kf ,n

d
, ξ ∈

(
1
2
, 1
]
, and i + 1 = 1 if i = 2.

N. Frih, J. E. Roberts, A. Saada (2008) Modeling fractures as interfaces: a model for
Forchheimer fractures, Comput. Geosci., 12 pp. 91-104.
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The weak formulation

We consider the following function spaces:

M =L2(Ω1)× L2(Ω2)× L3/2(γ),

W ={u = (u1, u2, uγ) ∈ H(div,Ω1)× H(div,Ω2)× L3(γ) :

divτuγ − (u1 · n1 + u2 · n2) ∈ L3(γ), ui · ni ∈ L2(γ), i = 1, 2}.

Define the forms a : W ×W→ R and b : W ×M → R by

a(u, v) =
2∑

i=1

(
K−1

i ui , vi

)
Ωi

+

(
1

d

(
1 +

β

d
|uγ |

)
K−1

f ,τ uγ , vγ

)
γ

+
2∑

i=1

(
α−1
γ (ξ ui · ni − (1− ξ) ui+1 · ni+1), vi · ni

)
γ
,

b(u, r) =
2∑

i=1

(div ui , ri )Ωi
+ (divτ uγ , rγ)γ −

(
2∑

i=1

ui · ni , rγ

)
γ

.

Define the linear form Lq : M → R by:

Lq(r) =
2∑

i=1

(qi , ri )Ωi
+ (qγ , rγ)γ .
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The weak formulation

The variational problem may be written in standard mixed form as:

Find u = (u1, u2, uγ) ∈W, p = (p1, p2, pγ) ∈ M s.t. :{
a(u, v)− b(v, p) = 0 ∀ v ∈W,

b(u, r) = Lq(r) ∀ r ∈ M.

P. Knabner and J. E. Roberts (2014) Mathematical analysis of a discrete fracture model

coupling Darcy flow in the matrix with Darcy-Forchheimer flow in the fracture, ESAIM

Math. Model. Numer. Anal., 48 pp. 1451-1472.
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Mixed finite element discretization. The algebraic
nonlinear system

We consider again the mixed finite element discretization as before.

The corresponding algebraic nonlinear system is again a saddle-point
problem of the form:



A1 CT 0 BT
1 0 FT

1

CT A2 0 0 BT
2 FT

2

0 0 Aγ(Uγ) 0 0 BT
γ

B1 0 0 0 0 0

0 B2 0 0 0 0

F1 F2 Bγ 0 0 0





U1

U2

Uγ

P1

P2

Pγ


=



0

0

0

∗
∗
∗


where Ai , i = 1, 2, and Aγ(Uγ) are diagonal matrices.
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The monolithic FAS multigrid method

Let Ak uk = fk denote a nonlinear system of equations

Full Approximation Scheme (FAS)

Pre-smoothing: Compute ūm
k by applying ν1 smoothing steps on G k :

ūm
k = Sν1

k um
k .

Restrict the residual and the current approximation to the coarse grid:
rk−1 = Rk−1

k (fk − Ak ū
m
k ), and um

k−1 = R̃k−1
k ūm

k .

Solve the coarse-grid problem Ak−1(emk−1) = Ak−1 u
m
k−1 + rk−1.

Interpolate the error approximation to the fine grid and correct the current
fine grid approximation: ûm

k = ūm
k + Rk

k−1(emk−1 − um
k−1).

Post-smoothing: Compute um+1
k by applying ν2 smoothing steps:

um+1
k = Sν2

k ûm
k .

If Ah is a linear operator, FAS scheme is identical to the standard linear
multigrid method.
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Example 7: one fracture with constant permeability

Dirichlet boundary conditions for the fracture.

Permeability tensor in the fracture K = Kf Id.

Forchheimer coefficient β = 10.

N. Frih, J. E. Roberts, A. Saada (2008) Modeling fractures as interfaces: a model for

Forchheimer fractures, Comput. Geosci., 12 pp. 91-104.
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Example 7: one fracture with constant permeability

Pressure distribution for Kf = 10−6 (left)

Convergence of the multigrid method - residual vs. iterations (right)
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Example 7: one fracture with constant permeability

We fix the Forchheimer coefficient β = 10 in order to study the
robustness of the mixed-dimensional multigrid method with respect to
different values of the permeability of the fracture Kf .

Kf h−1 = 32 h−1 = 64 h−1 = 128 h−1 = 256

10−6 8 8 8 9
10−4 9 9 9 9
10−2 9 9 9 10

1 10 10 11 11

Number of W (2, 2)-iterations of FAS to reduce the initial residual
in a factor of 10−10
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Example 7: one fracture with constant permeability

We fix the permeability of the fracture as Kf = 10−6, and study the
robustness of the mixed-dimensional multigrid method with respect to the
Forchheimer coefficient β.

β h−1 = 32 h−1 = 64 h−1 = 128 h−1 = 256

0 8 8 8 9
10 8 8 8 9
50 8 9 9 10

100 9 9 10 10
200 10 10 10 10

Number of W (2, 2)-iterations of FAS to reduce the initial residual
in a factor of 10−10
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Example 8: two intersecting fractures

Permeability in the porous matrix K = 10−6(1 + xy) Id (heterogeneous
permeability)

Permeability tensor in the fracture K = Kf Id.

!

!

!!

"!

#⋅$ % &!

&

'!

'!&!

#⋅$ % &!

( % &!

( % '!

(a) Fracture network
and settings

(b) pressure solution for
Kf = 10−3 and β = 100
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Example 8: two intersecting fractures

We illustrate the robustness of the proposed algorithm with respect to the
permeability in the fracture. The Forchheimer coefficient is fixed to
β = 100.

Kf h−1 = 32 h−1 = 64 h−1 = 128 h−1 = 256

10−6 9 9 9 9
10−4 9 9 9 9
10−2 9 9 9 9

1 9 9 9 9

Number of W (2, 2)-iterations of FAS to reduce the initial residual
in a factor of 10−10
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Example 8: two intersecting fractures

We test the robustness of our solver for different values of the Forchheimer
parameter. We set the permeability in the fracture to a value Kf = 10−3.

β h−1 = 32 h−1 = 64 h−1 = 128 h−1 = 256

0 9 9 9 9
10 9 9 9 9
50 9 9 9 9

100 9 9 9 9
200 9 9 9 9

Number of W (2, 2)-iterations of FAS to reduce the initial residual
in a factor of 10−10
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Conclusions

MONOLITHIC MULTIGRID METHODS FOR SOLVING:

Flow problems in deformable porous media (Biot’s model) (key:
appropriate smoothers)

F.J. Gaspar, C. Rodrigo, On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics,

Computer Methods in applied mechanics and engineering 326, 526-540, 2017.

Coupled flow and porous media problems (key: monolithic approach of
both systems + interface conditions)

P. Luo, C. Rodrigo, F.J. Gaspar, C.W. Oosterlee, Uzawa smoother in multigrid for the coupled porous medium and Stokes flow

system,, SIAM Journal on Scientific Computing 39 (5) S633-S661, 2017.

P. Luo, C. Rodrigo, F.J. Gaspar, C.W. Oosterlee, Monolithic multigrid method for the coupled Stokes flow and deformable porous

medium system, Journal of Computational Physics 353, 148-168, 2018.

Flow problems in fractured porous media (key: mixed-dimensional
multigrid components)

A. Arrarás, F.J. Gaspar, L. Portero, C. Rodrigo, Mixed-dimensional geometric multigrid methods for single-phase flow in fractured

porous media. SIAM Journal on Scientific Computing 41 (5) B1082-B1114, 2019.

A. Arrarás, F.J. Gaspar, L. Portero, C. Rodrigo, Geometric multigrid methods for Darcy-Forchheimer flow in fractured porous

media. Computers & Mathematics with Applications 78, 3139-3151, 2019.

Thank you for your attention!!

C. Rodrigo Monolithic multigrid solvers for flow problems in porous media



Conclusions

MONOLITHIC MULTIGRID METHODS FOR SOLVING:

Flow problems in deformable porous media (Biot’s model) (key:
appropriate smoothers)

F.J. Gaspar, C. Rodrigo, On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics,

Computer Methods in applied mechanics and engineering 326, 526-540, 2017.

Coupled flow and porous media problems (key: monolithic approach of
both systems + interface conditions)

P. Luo, C. Rodrigo, F.J. Gaspar, C.W. Oosterlee, Uzawa smoother in multigrid for the coupled porous medium and Stokes flow

system,, SIAM Journal on Scientific Computing 39 (5) S633-S661, 2017.

P. Luo, C. Rodrigo, F.J. Gaspar, C.W. Oosterlee, Monolithic multigrid method for the coupled Stokes flow and deformable porous

medium system, Journal of Computational Physics 353, 148-168, 2018.

Flow problems in fractured porous media (key: mixed-dimensional
multigrid components)

A. Arrarás, F.J. Gaspar, L. Portero, C. Rodrigo, Mixed-dimensional geometric multigrid methods for single-phase flow in fractured

porous media. SIAM Journal on Scientific Computing 41 (5) B1082-B1114, 2019.

A. Arrarás, F.J. Gaspar, L. Portero, C. Rodrigo, Geometric multigrid methods for Darcy-Forchheimer flow in fractured porous

media. Computers & Mathematics with Applications 78, 3139-3151, 2019.

Thank you for your attention!!
C. Rodrigo Monolithic multigrid solvers for flow problems in porous media


	

