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Numerics on a toy problem
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Metis decomposition
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Figure 1: Schwarz convergence as a solver (left) and as a preconditioner (right) for different overlaps
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Many cores : Strong and Weak scalability

Strong scalability (Amdahl)
"How the solution time varies with the number of processors for a fixed total problem size"

Weak scalability (Gustafson)
"How the solution time varies with the number of processors for a fixed problem size per processor."

The one level method Schwarz is not scalable

Number of subdomains 8 16 32 64
AS 18 35 66 128

The iteration number increases linearly with the number of subdomains in one direction.
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Weak scaling: a mathematical proof

Condition number estimates: preconditioned system

Lemma
If there exist the constants C1 and C2 such that

C1(MASx,x) ≤ (Ax,x) ≤ C2(MASx,x), ∀x ∈ Rn

then λmax(M−1
ASA) ≤ C2, λmin(M−1

ASA) ≥ C1 and thus κ(M−1
ASA) ≤ C2/C1.

If κ(M−1
ASA) independent of N (number of subdomains) ⇒ the solution time will be independent of the number

of processors ⇒ weak scalability.
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Why the algorithm is not scalable?

Lemma (Estimate of the largest eigenvalue)
Let col(j) ∈ {1, . . . ,N c} be the color of the domain j defined such that col(k) = col(l) if
(ARTk xk, R

T
l xl) = 0. Then λmax(M−1

ASA) ≤ Nc.

Proof. Useful result (Toselli, Widlund ’05)

(MASx,x) = min
{xj∈R

nj ;x=
∑N

j=1 R
T
j xj}

N∑
j=1

(Ajxj ,xj), Aj = RjAR
T
j . (1)

Let (xj)1≤j≤N which achieves the minimum in (1). Then we have

(MASx,x) =

N∑
j=1

(ARTj xj , R
T
j xj) =

Nc∑
c=1

A ∑
{i;col(i)=c}

RTi xi,
∑

{i;col(i)=c}
RTi xi


≥

1

N c

A N∑
j=1

RTj xj ,
N∑
j=1

RTj xj

 =
1

N c
(Ax,x).

(2)

Therefore λmax(M−1
ASA) ≤ Nc.
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Why the algorithm is not scalable?

We have that λmax(M−1
ASA) ≤ Nc << N (usual decomposition) BUT λmin(M−1

ASA) depends on N (and
decreases when N increases).
Numerical experiment: subdomain = square with 20× 20 discretisation points with two layers of overlap.

Solution of a Poisson problem −∆u = f

Number of subdomains 2× 2 4× 4 8× 8

Number of iterations 20 36 64
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How to achieve scalability

• Stagnation correspond to a few small eigenvalues from the spectrum of the preconditioned problem.
• They are due to the lack of global exchange of the information in the preconditioner.

A classical remedy : introduction of a coarse problem coupling all the subdomains.
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Adding a coarse space

Suppose we have identified the modes corresponding to the slow convergence of the iterative method used to
solve the linear system:

M−1Ax = M−1b

Examples:
• Constant functions that are in the null space (kernel) of the Laplace operators.
• Rigid body motions in the case of linear elasticity

Let us call Z the rectangular matrix whose columns correspond to these slow modes.
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Adding a coarse space: the Galerkin correction

Consider the minimisation problem (finding the best correction to an approximate solution y by a vector Zβ )

min
β
‖A(y + Zβ)− b‖A−1 .
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Adding a coarse space: the Galerkin correction

Consider the minimisation problem (finding the best correction to an approximate solution y by a vector Zβ )

min
β
‖A(y + Zβ)− b‖A−1 .

This problem is equivalent to
min
β∈Rnc

2(Ay − b, Zβ)2 + (AZβ,Zβ)2
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min
β
‖A(y + Zβ)− b‖A−1 .

This problem is equivalent to
min
β∈Rnc

2(Ay − b, Zβ)2 + (AZβ,Zβ)2

and whose solution is:
β = (ZTAZ)−1ZT (b−Ay) .
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Adding a coarse space: the Galerkin correction

Consider the minimisation problem (finding the best correction to an approximate solution y by a vector Zβ )

min
β
‖A(y + Zβ)− b‖A−1 .

This problem is equivalent to
min
β∈Rnc

2(Ay − b, Zβ)2 + (AZβ,Zβ)2

and whose solution is:
β = (ZTAZ)−1ZT (b−Ay) .

Thus, the correction term is:
Zβ = Z (ZTAZ)−1ZT (b−Ay)︸ ︷︷ ︸

r

.

This kind of correction is called a Galerkin correction.
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A two-level Schwarz preconditioner

Let R0 := ZT and r = b−Ay be the residual associated to the approximate solution y. Then the coarse
correction is:

Zβ = RT0 β = RT0 (R0AR
T
0 )−1R0r .
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A two-level Schwarz preconditioner

Let R0 := ZT and r = b−Ay be the residual associated to the approximate solution y. Then the coarse
correction is:

Zβ = RT0 β = RT0 (R0AR
T
0 )−1R0r .

and we can define

M−1
AS,2 := RT0 (R0AR

T
0 )
−1︸ ︷︷ ︸

coarse problem

R0 +
N∑
i=1

RTi (RiAR
T
i )
−1
Ri︸ ︷︷ ︸

M−1
AS

(3)
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A two-level Schwarz preconditioner

Let R0 := ZT and r = b−Ay be the residual associated to the approximate solution y. Then the coarse
correction is:

Zβ = RT0 β = RT0 (R0AR
T
0 )−1R0r .

and we can define

M−1
AS,2 := RT0 (R0AR

T
0 )
−1︸ ︷︷ ︸

coarse problem

R0 +
N∑
i=1

RTi (RiAR
T
i )
−1
Ri︸ ︷︷ ︸

M−1
AS

(3)

Remark
• The structure of the two level preconditioner M−1

AS,2 is the same that of the one level method.
• There is not a unique way to choose R0 (or Z)!!
• The coarse problem is a small O(nC × nC) square matrix and the extra cost is negligible.
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The Nicolaides coarse space (1987)

We define Z as the matrix whose i-th column is

Zi := RTi DiRi1 for 1 ≤ i ≤ N (4)

where 1 is the vector of dimension N full of ones. The global structure of Z is:

Z =


D1R11 0 · · · 0

0 D2R21
. . .

...
. . .

. . . 0

0 0 0 DNRN1

 . (5)

where
Di : R#Ni 7−→ R#Ni (6)

so that we have:
N∑
i=1

RTi DiRi = Id .
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Theoretical convergence result

Theorem (Widlund, Dryija)
Let M−1

AS,2 be the two-level additive Schwarz method:

κ(M−1
AS,2 A) ≤ C

(
1 +

H

δ

)
where δ is the size of the overlap between the subdomains and H the subdomain size.
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Theorem (Widlund, Dryija)
Let M−1

AS,2 be the two-level additive Schwarz method:

κ(M−1
AS,2 A) ≤ C

(
1 +

H

δ

)
where δ is the size of the overlap between the subdomains and H the subdomain size.

This does indeed work very well

Number of subdomains 8 16 32 64
AS 18 35 66 128

AS + Nicolaides 20 27 28 27
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Theoretical convergence result

Theorem (Widlund, Dryija)
Let M−1

AS,2 be the two-level additive Schwarz method:

κ(M−1
AS,2 A) ≤ C

(
1 +

H

δ

)
where δ is the size of the overlap between the subdomains and H the subdomain size.

This does indeed work very well

Number of subdomains 8 16 32 64
AS 18 35 66 128

AS + Nicolaides 20 27 28 27

Fails for highly heterogeneous problems → We need a larger and adaptive coarse space
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Motivation

Large discretized system of PDEs
strongly heterogeneous coefficients
(high contrast, nonlinear, multiscale)

E.g. Darcy pressure equation, P 1-finite elements:

Au = f

cond(A) ∼ αmax

αmin
h−2

Goal:
iterative solvers
robust in size and heterogeneities

QUATERNARY

MERCIA MUDSTONE
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GRANITE

FAULTED GRANITE

WASTE VAULTS

CROWN SPACE

EDZ

Applications:
flow in heterogeneous stochastic / layered media
structural mechanics, electromagnetics

2-level 12/29



GenEO

Adaptive Coarse space for highly heterogeneous Darcy
and (compressible) elasticity problems

Geneo EVP per subdomain:

Find Vj,k ∈ RNj and µj,k ≥ 0:

Dj RjAR
T
j DjVj,k = µj,k A

Neu
j Vj,k
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GenEO

Adaptive Coarse space for highly heterogeneous Darcy
and (compressible) elasticity problems

Geneo EVP per subdomain:

Find Vj,k ∈ RNj and µj,k ≥ 0:

Dj RjAR
T
j DjVj,k = µj,k A

Neu
j Vj,k

In the two-level AS let τ be a user chosen parameter:

Choose eigenvectors µj,k ≥ τ per subdomain:

Z :=
(
RTj DjVj,k

)j=1,...,N

µj,k≥τ

This automatically includes Nicolaides CS (Zero Energy
Modes).
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GenEO

Adaptive Coarse space for highly heterogeneous Darcy
and (compressible) elasticity problems

Geneo EVP per subdomain:

Find Vj,k ∈ RNj and µj,k ≥ 0:

Dj RjAR
T
j DjVj,k = µj,k A

Neu
j Vj,k

In the two-level AS let τ be a user chosen parameter:

Choose eigenvectors µj,k ≥ τ per subdomain:

Z :=
(
RTj DjVj,k

)j=1,...,N

µj,k≥τ

This automatically includes Nicolaides CS (Zero Energy
Modes).

Theorem (Spillane, D., Hauret, Nataf, Pechstein, Scheichl, 2014)
Under some technical assumptions... If for all j: 0 < µj,mj+1 <∞:

κ(M−1
AS,2A) ≤ (1 + k0)

[
2 + k0 (2k0 + 1)

(
1 + τ

)]
Possible criterion for picking τ : (used in our Numerics)

τ := min
j=1,...,N

Hj

δj
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Numerical results (Darcy)

IsoValue
-78946.3
39474.7
118422
197369
276317
355264
434211
513159
592106
671053
750001
828948
907895
986842
1.06579e+06
1.14474e+06
1.22368e+06
1.30263e+06
1.38158e+06
1.57895e+06

IsoValue
-0.0079688
0.0039844
0.0119532
0.019922
0.0278908
0.0358596
0.0438284
0.0517972
0.059766
0.0677348
0.0757036
0.0836724
0.0916412
0.09961
0.107579
0.115548
0.123516
0.131485
0.139454
0.159376

Channels and inclusions: 1 ≤ α ≤ 1.5 × 106, the solution and partitionings (Metis or not)
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Convergence
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Eigenvalues and eigenvectors (Elasticity)

E

mi is given automatically by the chosen criterion and is optimal

#Z per subd. AS AS+ZNico AS+ZGeneo
max(mi − 1, 1) 273

mi 614 543 36
mi + 1 32

Eigenvector number 1 is -3.07387e-15; exageration coefficient is: 1000000000 Eigenvector number 2 is 8.45471e-16; exageration coefficient is: 1000000000 Eigenvector number 3 is 5.3098e-15; exageration coefficient is: 1000000000
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Logarithmic scale

Eigenvector number 4 is 1.15244e-05; exageration coefficient is: 100000 Eigenvector number 5 is 1.87668e-05; exageration coefficient is: 100000 Eigenvector number 6 is 4.99451e-05; exageration coefficient is: 100000 Eigenvector number 7 is 0.000132778; exageration coefficient is: 100000 Eigenvector number 8 is 0.000141253; exageration coefficient is: 100000 Eigenvector number 9 is 0.000396054; exageration coefficient is: 100000

Eigenvector number 10 is 0.169032; exageration coefficient is: 100000 Eigenvector number 11 is 0.169212; exageration coefficient is: 100000 Eigenvector number 12 is 0.169217; exageration coefficient is: 100000 Eigenvector number 13 is 0.16922; exageration coefficient is: 1000000 Eigenvector number 14 is 0.169515; exageration coefficient is: 100000 Eigenvector number 15 is 0.170536; exageration coefficient is: 10000
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Additive Schwarz revisited - finite dimensional setting

• H := R#N and the a-bilinear form:
a(U,V) := VTAU. (7)

where A is the matrix of the problem we want to solve.
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Additive Schwarz revisited - finite dimensional setting

• H := R#N and the a-bilinear form:
a(U,V) := VTAU. (7)

where A is the matrix of the problem we want to solve.
• HD is a product space and b a bilinear form defined by

HD :=
N∏
i=1

R#Ni and b(U ,V) :=
N∑
i=1

VT
i (RiAR

T
i )Ui, . (8)

• The linear operator RAS is defined as

RAS : HD −→ H, RAS(U) :=
N∑
i=1

RTi Ui. (9)

We have: M−1
AS = RAS B−1R∗AS .
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Fictitious Space Lemma (FSL) - Lax Milgram of domain decomposition

Lemma (Fictitious Space Lemma, Nepomnyaschikh 1991)

Let H and HD be two Hilbert spaces. Let a be a symmetric positive bilinear form on H and b on HD.
Suppose that there exists a linear operator R : HD → H, such that
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Fictitious Space Lemma (FSL) - Lax Milgram of domain decomposition

Lemma (Fictitious Space Lemma, Nepomnyaschikh 1991)

Let H and HD be two Hilbert spaces. Let a be a symmetric positive bilinear form on H and b on HD.
Suppose that there exists a linear operator R : HD → H, such that
• R is surjective.
• there exists a positive constant cR such that

a(RuD,RuD) ≤ cR · b(uD, uD) ∀uD ∈ HD . (10)

• Stable decomposition: there exists a positive constant cT such that for all u ∈ H there exists
uD ∈ HD with RuD = u and

cT · b(uD, uD) ≤ a(RuD,RuD) = a(u, u) . (11)

We introduce the adjoint operator R∗ : H → HD by (RuD, u) = (uD, R∗u)D for all uD ∈ HD and
u ∈ H. Then we have the following spectral estimate

cT · a(u, u) ≤ a
(
RB−1R∗Au, u

)
≤ cR · a(u, u) , ∀u ∈ H (12)

which proves that the eigenvalues of operator RB−1R∗A are bounded from below by cT and from
above by cR.
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Estimate for the one level ASM

Application of the FSL
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Estimate for the one level ASM

Application of the FSL
Let k0 be the maximum number of neighbors of a
subdomain. We can take cR := k0 .

Let k1 be the maximum multiplicity of the intersection
between subdomains and :

τ1 := min
1≤i≤N

min
Ui∈R#Ni\{0}

Ui
TANeui Ui

Ui
T (DiRiARTi Di)Ui

.

We can take cT := τ1
k1
.
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Estimate for the one level ASM

Application of the FSL
Let k0 be the maximum number of neighbors of a
subdomain. We can take cR := k0 .

Let k1 be the maximum multiplicity of the intersection
between subdomains and :

τ1 := min
1≤i≤N

min
Ui∈R#Ni\{0}

Ui
TANeui Ui

Ui
T (DiRiARTi Di)Ui

.

We can take cT := τ1
k1
. Then

τ1

k1
≤ λ(M−1

ASM A) ≤ k0 .

Issue: τ1 can be very small.
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Estimate for the one level ASM

Application of the FSL
Let k0 be the maximum number of neighbors of a
subdomain. We can take cR := k0 .

Let k1 be the maximum multiplicity of the intersection
between subdomains and :

τ1 := min
1≤i≤N

min
Ui∈R#Ni\{0}

Ui
TANeui Ui

Ui
T (DiRiARTi Di)Ui

.

We can take cT := τ1
k1
. Then

τ1

k1
≤ λ(M−1

ASM A) ≤ k0 .

Issue: τ1 can be very small.

Definition (Generalized Eigenvalue
Problem for the lower bound)

For each subdomain 1 ≤ j ≤ N , we introduce
the generalized eigenvalue problem

Find (Vjk, λjk) ∈ R#Nj \ {0} × R such that
ANeuj Vjk = λjk(DjRjAR

T
j Dj)Vjk .

Let τ > 0 be a user-defined threshold, we
define Zτgeneo,ASM ⊂ R#N as the vector
space spanned by the family of vectors
(RTj DjVjk)λjk<τ ,1≤j≤N corresponding to
eigenvalues smaller than τ .
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Analysis of other variants using FSL

ASM theory for a SPD matrix A (summary)
• Algebraic reformulation

M−1
RAS :=

N∑
i=1

RTi DiA
−1
i Ri

• Symmetric variant

M−1
AS :=

N∑
i=1

RTi A
−1
i Ri

• Adaptive Coarse space with prescribed targeted
convergence rate.
Aim: develop a similar theory and computational
framework for Optimised variants of RAS (ORAS)

et Bi be the matrix of the Robin subproblem in each
subdomain 1 ≤ i ≤ N

Optimized multiplicative, additive, and re-
stricted additive Schwarz preconditioning (St
Cyr et al, 2007)

M−1
ORAS :=

N∑
i=1

RTi DiB
−1
i Ri

• Symmetric variants:

M−1
OAS :=

N∑
i=1

RTi B
−1
i Ri (Natural but K.O.)

M−1
SORAS :=

N∑
i=1

RTi DiB
−1
i DiRi (O.K.)
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One level SORAS

Application of FSL
• Let H := R#N and the a-bilinear form:

a(U,V) := VTAU.

where A is the matrix of the problem we want to solve.
• HD is a product space and b a bilinear form

HD :=

N∏
i=1

R#Ni and b(U ,V) :=
N∑
i=1

VT
i BiUi, .

• The linear operator RSORAS is defined as

RSORAS : HD −→ H, RSORAS(U) :=
N∑
i=1

RTi DiUi.

We have: M−1
SORAS = RSORAS B−1R∗SORAS .

2-level 21/29



One level SORAS

Application of FSL
• Let H := R#N and the a-bilinear form:

a(U,V) := VTAU.

where A is the matrix of the problem we want to solve.
• HD is a product space and b a bilinear form

HD :=

N∏
i=1

R#Ni and b(U ,V) :=
N∑
i=1

VT
i BiUi, .

• The linear operator RSORAS is defined as

RSORAS : HD −→ H, RSORAS(U) :=
N∑
i=1

RTi DiUi.

We have: M−1
SORAS = RSORAS B−1R∗SORAS .

Estimate for the one level SORAS
• Let k0 be the maximum number of neighbours of a
subdomain and γ1 be defined as:

γ1 := max
1≤i≤N

max
Ui∈R#Ni\{0}

(
RTi DiUi

)T
A(RTi DiUi)

UT
i BiUi

We can take cR := k0 γ1 .

• Let k1 be the maximum multiplicity of the
intersection between subdomains and τ1 be defined as:

τ1 := min
1≤i≤N

min
Ui∈R#Ni\{0}

Ui
TANeui Ui

Ui
TBiUi

.

We can take cT := τ1
k1
.
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A(RTi DiUi)

UT
i BiUi

We can take cR := k0 γ1 .

• Let k1 be the maximum multiplicity of the
intersection between subdomains and τ1 be defined as:

τ1 := min
1≤i≤N

min
Ui∈R#Ni\{0}

Ui
TANeui Ui

Ui
TBiUi

.

We can take cT := τ1
k1
. Then

τ1

k1
≤ λ(M−1

SORAS A) ≤ k0 γ1 .
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Control of lower and upper bounds

Control of the upper bound

Definition (Generalised Eigenvalue
Problem for the upper bound)

Find (Uik, µik) ∈ R#Ni \ {0} × R such that
DiRiAR

T
i DiUik = µikBiUik .

Let γ > 0 be a user-defined threshold, we
define Zγgeneo ⊂ R#N as the vector space
spanned by the family of vectors
(RTi DiUik)µik>γ ,1≤i≤N corresponding to
eigenvalues larger than γ.
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Control of the upper bound

Definition (Generalised Eigenvalue
Problem for the upper bound)

Find (Uik, µik) ∈ R#Ni \ {0} × R such that
DiRiAR

T
i DiUik = µikBiUik .

Let γ > 0 be a user-defined threshold, we
define Zγgeneo ⊂ R#N as the vector space
spanned by the family of vectors
(RTi DiUik)µik>γ ,1≤i≤N corresponding to
eigenvalues larger than γ.

Control of the lower bound

Definition (Generalised Eigenvalue
Problem for the lower bound)

For each subdomain 1 ≤ j ≤ N , we introduce
the generalised eigenvalue problem

Find (Vjk, λjk) ∈ R#Nj \ {0} × R such that
ANeuj Vjk = λjkBjVjk .

Let τ > 0 be a user-defined threshold, we
define Zτgeneo ⊂ R#N as the vector space
spanned by the family of vectors
(RTj DjVjk)λjk<τ ,1≤j≤N corresponding to
eigenvalues smaller than τ .
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Estimates for the two-level preconditioner

Let P0 denote the a-orthogonal projection on the
SORAS-GENEO-2 coarse space

ZGenEO-2 := Zτgeneo
⊕

Zγgeneo ,

the two-level SORAS-GENEO-2 preconditioner is:

M−1
SORAS,2 := P0A

−1+(I−P0)M−1
SORAS (I−PT0 )

where P0A−1 = RT0 (R0 ART0 )−1R0, (J. Mandel,
1992).
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Estimates for the two-level preconditioner

Let P0 denote the a-orthogonal projection on the
SORAS-GENEO-2 coarse space

ZGenEO-2 := Zτgeneo
⊕

Zγgeneo ,

the two-level SORAS-GENEO-2 preconditioner is:

M−1
SORAS,2 := P0A

−1+(I−P0)M−1
SORAS (I−PT0 )

where P0A−1 = RT0 (R0 ART0 )−1R0, (J. Mandel,
1992).

Theorem (Haferssas, Jolivet and Nataf)
Let γ and τ be user-defined targets. Then, the
eigenvalues of the two-level SORAS-GenEO-2
preconditioned system satisfy the following
estimate

1

1 + k1
τ

≤ λ(M−1
SORAS,2 A) ≤ max(1, k0 γ)
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Nearly incompressible elasticity

Material properties: Young modulus E and Poisson ratio ν or alternatively by its Lamé coefficients λ and µ:

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
.

For ν close to 1/2, the variational problem consists in finding (uh, ph) ∈ Vh := Pd2 ∩H1
0 (Ω)× P1 such that for

all (vh, qh) ∈ Vh 
∫
Ω 2µε(uh) : ε(vh)dx −

∫
Ω phdiv (vh)dx =

∫
Ω fvhdx

−
∫
Ω div (uh)qhdx −

∫
Ω

1
λ
phqh = 0

=⇒ AU =

[
H BT

B −C

] [
u

p

]
=

[
f
0

]
= F.

A is symmetric but no longer positive.
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Numerical tests (with FreeFem++)

Figure 2: 2D Elasticity: Sandwich of steel (E1, ν1) = (210 · 109, 0.3) and rubber (E2, ν2) = (0.1 · 109, 0.4999).

Metis partitioning

Table 1: 2D Elasticity. GMRES iteration counts

AS SORAS AS+CS(ZEM) SORAS +CS(ZEM) AS-GenEO SORAS -GenEO-2
Nb DOFs Nb subdom iteration iteration iteration dim iteration dim iteration dim iteration dim

35841 8 150 184 117 24 79 24 110 184 13 145
70590 16 276 337 170 48 144 48 153 400 17 303

141375 32 497 ++1000 261 96 200 96 171 800 22 561
279561 64 ++1000 ++1000 333 192 335 192 496 1600 24 855
561531 128 ++1000 ++1000 329 384 400 384 ++1000 2304 29 1220

1077141 256 ++1000 ++1000 369 768 ++1000 768 ++1000 3840 36 19712-level 25/29



Strong scalability in two and three dimensions (with FreeFem++ and HPDDM)

Stokes problem with automatic mesh partition. Driven cavity problem

N

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

N

. . . .

. ·. . . .
. . . .
. . . .

. . . .

. ·. . . .
. . . .
. . . .

Peak performance: 50 millions d.o.f’s in 3D in 57 sec.
IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors. Hours provided by an IDRIS-GENCI project.
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Weak scalability for heterogeneous elasticity (with FreeFem++ and HPDDM)

Rubber Steel sandwich with automatic mesh partition

N

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

200 millions unknowns in 3D wall-clock time: 200. sec.
IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors. Hours provided by an IDRIS-GENCI project.
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Outline

Coarse Space correction

Coarse grids for heterogeneous problems

Conclusion
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Conclusion

Summary
Using generalised eigenvalue problems and projection preconditioning we are able to achieve a targeted
convergence rate for
• Additive Schwarz method (AS)
• Optimised Schwarz method (OAS, SORAS)
• BNN methods (see Lecture Notes)
• Available in HPDDM C++/MPI library
• Available in the public release of FreeFem++ (ffddm)

Further and ongoing work
• Non symmetric, undefinite problems
• Time-harmonic wave propagation problems.
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