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Numerics on a toy problem

Figure 1: Schwarz convergence as a solver (left) and as a preconditioner (right) for different overlaps
2-level 1/29



Coarse Space correction
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Many cores : Strong and Weak scalability

2-level

Strong scalability (Amdahl)
"How the solution time varies with the number of processors for a fixed total problem size"

Weak scalability (Gustafson)
"How the solution time varies with the number of processors for a fixed problem size per processor."

The one level method Schwarz is not scalable

Number of subdomains 8 16 | 32 64
AS 18 | 35 | 66 | 128

The iteration number increases linearly with the number of subdomains in one direction.
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Weak scaling: a mathematical proof

Condition number estimates: preconditioned system

Lemma
If there exist the constants C| and Cs such that

C1(Masx,x) < (Ax,x) < C2(Masx,x), Vx € R”
then Amaz(M1gA) < Co, Amin(M35A) > C1 and thus k(M &A) < Ca/Ch.

If n(M;SIA) independent of N (number of subdomains) = the solution time will be independent of the number

of processors = weak scalability.
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Why the algorithm is not scalable?

Lemma (Estimate of the largest eigenvalue)
Let col(j) € {1,..., N} be the color of the domain j defined such that col(k) = col(l) if

(ARTxy, RT'x;) = 0. Then Amax(M15A) < Ne.

Proof. Useful result (Toselli, Widlund '05)
N
(Masx, x) = min D (Ajxj,x;), Aj = R;AR]. 1)

nj. oSN RT
{xjeR™ x=3070 1 Ry x;} 5

Let (xj)1<j<n which achieves the minimum in (1). Then we have

N N€
(Masx,x) = (ARJTX]', RTXJ) = Z (A Z RTx,, Z RLT)Q)

{i;col(i)=c} {i;col(i)=c}
1 o 1
> e AZR_?Xj,ZR_?x]' = —(Ax,x).

Therefore Amax(M;éA) < MNe.

()
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Why the algorithm is not scalable?

We have that A\ax (M;;A) < N << N (usual decomposition) BUT /\mm(]\J;éA) depends on N (and
decreases when N increases).
Numerical experiment: subdomain = square with 20 x 20 discretisation points with two layers of overlap.

Solution of a Poisson problem —Au = f

Number of subdomains | 2x2 | 4 x4 | 8 X8
Number of iterations 20 36 64
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How to achieve scalability

e Stagnation correspond to a few small eigenvalues from the spectrum of the preconditioned problem.
e They are due to the lack of global exchange of the information in the preconditioner.

Residual norm (ogscale)
Residual nom (ogscale)

o 10
Horation Horation

A classical remedy : introduction of a coarse problem coupling all the subdomains.
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Adding a coarse space

Suppose we have identified the modes corresponding to the slow convergence of the iterative method used to

solve the linear system:
M 'Ax=M"'b

Examples:
e Constant functions that are in the null space (kernel) of the Laplace operators.

e Rigid body motions in the case of linear elasticity

Let us call Z the rectangular matrix whose columns correspond to these slow modes.
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Adding a coarse space: the Galerkin correction

Consider the minimisation problem (finding the best correction to an approximate solution y by a vector Zf3 )

min || A(y + Z6) — bl 41
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Adding a coarse space: the Galerkin correction

Consider the minimisation problem (finding the best correction to an approximate solution y by a vector Zf3 )
min [[A(y + Z8) = bl 1-1 -
This problem is equivalent to

in 2(Ay — b, Z AZB,Z
pmin 2(Ay = b, Z()s o+ (AZ6, ZF)>
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Adding a coarse space: the Galerkin correction

Consider the minimisation problem (finding the best correction to an approximate solution y by a vector Zf3 )

min | Ay + Z8) — bll -1

This problem is equivalent to

Jmin 2(Ay — b, Z8)s + (AZB, ZB)>
€R"c

and whose solution is:
B=(2zTAz)"1ZT (b - Ay).
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Adding a coarse space: the Galerkin correction

Consider the minimisation problem (finding the best correction to an approximate solution y by a vector Zf3 )
min | Ay + Z8) — blls-1
This problem is equivalent to
ﬂmﬂi{n 2(Ay — b, ZpB)2+ (AZB, Zp)2
ER"c
and whose solution is:
B=(2TA42)"1ZT (b — Ay).
Thus, the correction term is:
ZB=2Z(ZTAZ)"1ZT (b — Ay) .
~—

r
This kind of correction is called a Galerkin correction.
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A two-level Schwarz preconditioner

Let Ro := Z7 and r = b — Ay be the residual associated to the approximate solution y. Then the coarse
correction is:
ZB8 = REB = REY (RoART) ' Ror.
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A two-level Schwarz preconditioner

Let Ro := Z7 and r = b — Ay be the residual associated to the approximate solution y. Then the coarse
correction is:

ZB8 = REB = REY (RoART) ' Ror.
and we can define

N
— -1 =il
Mys, =R} (RoARJ)™" Ro+ Y RI(R:AR]) R; (3)
2 N e’ .

=1
coarse problem

r—1
Mys

2-level 9/29



A two-level Schwarz preconditioner

Let Ry := ZT and r = b — Ay be the residual associated to the approximate solution y. Then the coarse

correction is:
ZB = RYB = RY (RoART) ' Ror.

and we can define
N

o . o—1 o o—1
Mg, =Ry (RoARG)  Ro+y R (RiAR]) R 3)
coarse problem =l

A1
ML

Remark
e The structure of the two level preconditioner M;éz is the same that of the one level method.

e There is not a unique way to choose Rg (or Z)!!
e The coarse problem is a small O(nc X ne) square matrix and the extra cost is negligible.
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The Nicolaides coarse space (1987)

2-level

We define Z as the matrix whose i-th column is

’Zi =Rl D;R;1 for 1§i§N‘ (4)

where 1 is the vector of dimension N full of ones. The global structure of Z is:

DiR11 0 s 0
P 0 D2R21 (5)
: . . 0
0 0 0 DnyRn1
where
D; : R#Ni  R#N: (6)
so that we have:
N
> RIDiR; =1Id.
i=1
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Theoretical convergence result

Theorem (Widlund, Dryija)
Let M;; o be the two-level additive Schwarz method:

H
K(Myg,A) <C (1 + g)

where § is the size of the overlap between the subdomains and H the subdomain size.
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Theoretical convergence result

Theorem (Widlund, Dryija)
Let M;; o be the two-level additive Schwarz method:

H
K(Mzg,A) < C (1 + F)

where § is the size of the overlap between the subdomains and H the subdomain size.

This does indeed work very well

Number of subdomains 8 16 | 32 64
AS 18 | 35 | 66 | 128
AS + Nicolaides 20 | 27 | 28 27
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Theoretical convergence result

Theorem (Widlund, Dryija)
Let M;é 5 be the two-level additive Schwarz method:

H
K(Myd,A) < C (1 + F)

where § is the size of the overlap between the subdomains and H the subdomain size.

This does indeed work very well

Number of subdomains 3 16 | 32 64
AS 18 | 35 | 66 | 128
AS + Nicolaides 20 | 27 28 27

Fails for highly heterogeneous problems — We need a larger and adaptive coarse space
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Coarse grids for heterogeneous problems
Spectral coarse spaces
Theoretical background

Scalability tests
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Motivation

Applications:

flow in heterogeneous  stochastic / layered media
Large discretized system of PDEs structural mechanics, electromagnetics

strongly heterogeneous coefficients

(high contrast, nonlinear, multiscale)
E.g. Darcy pressure equation, P-finite elements:
Au=f

cond(A) ~ Qmax p —2

Omin
Goal:
iterative solvers
robust in size and heterogeneities
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Adaptive Coarse space for highly heterogeneous Darcy
and (compressible) elasticity problems
Geneo EVP per subdomain:

Find V; , € RVi and 11 5, > 0:

D; R;ARTD;V, i = pjp ANV,
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Adaptive Coarse space for highly heterogeneous Darcy In the two-level AS let 7 be a user chosen parameter:
and (compressible) elasticity problems
Geneo EVP per subdomain:

Choose eigenvectors ., ;. > T per subdomain:

Z = (RFD;V; ;) =N
Find 1/, . € RVi and 11, . > 0: 3 DsVik)i 37
D; R;ARTD;V; ) = pjr AV"V; This automatically includes Nicolaides CS (Zero Energy
Modes).
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Adaptive Coarse space for highly heterogeneous Darcy In the two-level AS let 7 be a user chosen parameter:
and (compressible) elasticity problems
Geneo EVP per subdomain:

Choose eigenvectors i, ;. > 7 per subdomain:

Z = (R]TDj\',,/‘)fjg;N

Find V, . € RYi and 11, > 0:

Dj RJAR;I"D]'\'/ ko= HMjk Aé'veu\ 5,k This automatically includes Nicolaides CS (Zero Energy
Modes).

Theorem (Spillane, D., Hauret, Nataf, Pechstein, Scheichl, 2014)

Under some technical assumptions... If for all j: 0 < Hjmj g < 00:

R(MzdA4) < (1+ko)[2+ ko (2o +1) (1+7)]
Possible criterion for picking : (used in our Numerics)

H;
6;
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Numerical results (Darcy)

fii
Channels and inclusions: 1 < o < 1.5 x 10, the solution and partitionings (Metis or not)
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Convergence
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Eigenvalues and eigenvectors (Elasticity)

10
R
;
| .o
10 .
| % Lt
m; is given automatically by the chosen criterion and is optimal ;m,
510—:
o
H
#7 per subd. | AS [AStZ N c0lASH 2 Gonco 30
max(my; — 1,1) 273 i
m; 614 543 36 B 1072
m; + 1 32 U
el e
107 5
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Additive Schwarz revisited - finite dimensional setting

o H := R#N and the a-bilinear form:
a(U,V) :=VTAU. (7)

where A is the matrix of the problem we want to solve.
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Additive Schwarz revisited - finite dimensional setting

o H :=R#N and the a-bilinear form:

a(U, V) :=VTAU. (7)
where A is the matrix of the problem we want to solve.
e Hp is a product space and b a bilinear form defined by

N N
Hp = [[R#Ni and b1, V) := > VI (R, ART)U;, . (8)
g=il =1
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Additive Schwarz revisited - finite dimensional setting

o H := R#N and the a-bilinear form:
a(U,V) :=VTAU. (7)
where A is the matrix of the problem we want to solve.
e Hp is a product space and b a bilinear form defined by
N N
Hp = [[®R#*M: and b, V) := > VI (R;ART)U;, (8)
i=1 i=1
e The linear operator R 4 is defined as

N
Ras:Hp — H, RasU) = R} U,. (9)

=1
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Additive Schwarz revisited - finite dimensional setting

o H := R#N and the a-bilinear form:

a(U, V) :=VTAU.
where A is the matrix of the problem we want to solve.
e Hp is a product space and b a bilinear form defined by

N

N
Hp = [[R#N and b, V) := > VI (R;ART)U;, .

i=1 i=1
e The linear operator R 45 is defined as

N
Ras:Hp — H, RasU) = R]U,.

v=1l

We have: M & =Ras B~' R¥g.

2-level
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Fictitious Space Lemma (FSL) - Lax Milgram of domain decomposition

Lemma (Fictitious Space Lemma, Nepomnyaschikh 1991)

Let H and Hp be two Hilbert spaces. Let a be a symmetric positive bilinear form on H and b on Hp.
Suppose that there exists a linear operator R : Hp — H, such that
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Fictitious Space Lemma (FSL) - Lax Milgram of domain decomposition

Lemma (Fictitious Space Lemma, Nepomnyaschikh 1991)

Let H and Hp be two Hilbert spaces. Let a be a symmetric positive bilinear form on H and b on Hp.
Suppose that there exists a linear operator R : Hp — H, such that
e R is surjective.
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Fictitious Space Lemma (FSL) - Lax Milgram of domain decomposition

Lemma (Fictitious Space Lemma, Nepomnyaschikh 1991)

Let H and Hp be two Hilbert spaces. Let a be a symmetric positive bilinear form on H and b on Hp.
Suppose that there exists a linear operator R : Hp — H, such that

® R is surjective.

e there exists a positive constant cg such that

a(RuD,RuD)gcR-b(uD,uD) Yup € Hp . (10)
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Fictitious Space Lemma (FSL) - Lax Milgram of domain decomposition

2-level

Lemma (Fictitious Space Lemma, Nepomnyaschikh 1991)

Let H and Hp be two Hilbert spaces. Let a be a symmetric positive bilinear form on H and b on Hp.
Suppose that there exists a linear operator R : Hp — H, such that

e R is surjective.

e there exists a positive constant cg such that

a(Rup,Rup) < cr -b(up,up) Yup € Hp . (10)

e Stable decomposition: there exists a positive constant cp such that for all w € H there exists
up € Hp with Rup = u and

cr -b(up,up) < a(Rup,Rup) = a(u,u) . (11)
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Fictitious Space Lemma (FSL) - Lax Milgram of domain decomposition

2-level

Lemma (Fictitious Space Lemma, Nepomnyaschikh 1991)

Let H and Hp be two Hilbert spaces. Let a be a symmetric positive bilinear form on H and b on Hp,.
Suppose that there exists a linear operator R : Hp — H, such that

® R is surjective.

e there exists a positive constant cg such that

a(RuD,RuD)gcR-b(uD,uD) Yup € Hp . (10)

e Stable decomposition: there exists a positive constant cp such that for all w € H there exists
up € Hp with Rup = u and

cr -blup,up) < a(Rup,Rup) = a(u,u). (11)

We introduce the adjoint operator R* : H — Hp by (Rup, u) = (up, R*u)p for allup € Hp and
w € H. Then we have the following spectral estimate
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Fictitious Space Lemma (FSL) - Lax Milgram of domain decomposition

2-level

Lemma (Fictitious Space Lemma, Nepomnyaschikh 1991)

Let H and Hp be two Hilbert spaces. Let a be a symmetric positive bilinear form on H and b on Hp.
Suppose that there exists a linear operator R : Hp — H, such that

e R is surjective.

e there exists a positive constant cg such that

a(RuDJ'\’,uD) SCR~b(uD,uD) Yup € Hp . (10)

e Stable decomposition: there exists a positive constant ct such that for all u € H there exists
up € Hp with Rup = u and

cr -b(up,up) < a(Rup,Rup) = a(u,u) . (11)

We introduce the adjoint operator R* : H — Hp by (Rup, u) = (up, R*u)p for allup € Hp and
u € H. Then we have the following spectral estimate

cr - a(u,u) < a (RB_lR*Au, u) <cgr-a(u,u), Yu€e H (12)

which proves that the eigenvalues of operator RB~!R* A are bounded from below by cz and from
above by cg.
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Estimate for the one level ASM

Application of the FSL
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Estimate for the one level ASM

Application of the FSL
Let ko be the maximum number of neighbors of a
subdomain. We can take cg := ko .

Let k1 be the maximum multiplicity of the intersection
between subdomains and :

U,;TANevy;
71 := min min t

1<i<N U,;GR#/\C‘,\{O} U,LT(D,LRZAR,LTDZ)UZ ’

We can take cp := ;—1 .
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Estimate for the one level ASM

Application of the FSL

Let ko be the maximum number of neighbors of a
subdomain. We can take cgr := ko .

Let k1 be the maximum multiplicity of the intersection
between subdomains and :

) . U;TANevwU;
71 := min min T T .
1<i<N ULER#"\G‘\{O} U, (D,LRZAR,L DZ)I_JZ

We can take cp := ;—1 Then

;—1 <AML, A) < ko

Issue: 71 can be very small.
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Estimate for the one level ASM

Application of the FSL

Let ko be the maximum number of neighbors of a
subdomain. We can take cgr := ko .

Let k1 be the maximum multiplicity of the intersection
between subdomains and :

. . U, T ANevy,
T1 ‘= min min

1<i<N y, er#Ni\ {0} UiT(DiRiAR;Di)UZ‘ V

We can take cp := ]% Then

;—1 <AML, A) < ko

Issue: 71 can be very small.

2-level

Definition (Generalized Eigenvalue
Problem for the lower bound)

For each subdomain 1 < j < N, we introduce
the generalized eigenvalue problem

Find (Vjk, Ajx) € R#Ni \ {0} x R such that
AjVeuvjk = ,\jk(D]-RjARjTDj)ij .

Let 7 > 0 be a user-defined threshold, we
define Z;—eneo,ASJW C R#N as the vector
space spanned by the family of vectors
(RJ'TDjij)/\jk«- 1<j<nN corresponding to
eigenvalues smaller than 7.

19/29



Analysis of other variants using FSL

et B; be the matrix of the Robin subproblem in each

ASM theory for a SPD matrix A (summary) subdomain 1 =7 = NV

e Algebraic reformulation Optimized multiplicative, additive, and re-
N stricted additive Schwarz preconditioning (St
Myhs =Y RIDiA7'R; Cyr et al, 2007)
=1
° mmetric variant —1 i T 1
y MGpas =Y RIDiB'R;
N i=1
1. T A—1p.
Myg:=> RTA7'R;
i=1 e Symmetric variants:

e Adaptive Coarse space with prescribed targeted
convergence rate.
Aim: develop a similar theory and computational

- X N
framework for Optimised variants of RAS (ORAS) M§ORAS _ Z R?DiBleiRi (0.K)

=1

WIS e 7= ZRT 7' R; (Natural but K.O.)
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One level SORAS

Application of FSL
o Let H := R#N and the a-bilinear form:

a(U, V) :=VTAU.

where A is the matrix of the problem we want to solve.
e Hp is a product space and b a bilinear form

N N
Hp = [[R#Ni and b, V) := > VIB;U;, .
i=1 =1
e The linear operator Rsoras is defined as

N
Rsoras : Hp — H, RsorasU) == »_ R{ D;U;.
1=1

o -1 Rx
We have: Mg5p g = Rsoras B~ Ropas-
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One level SORAS

Application of FSL
o Let H := R#N and the a-bilinear form:

a(U, V) :=VTAU.
where A is the matrix of the problem we want to solve.

e Hp is a product space and b a bilinear form

N N
Hp = [[R#Ni and b, V) := > VIB;U;, .
i=1 i=1

e The linear operator Rsoras is defined as

N
Rsoras : Hp — H, RsorasU) == »_ R{ D;U;.
1=1

o -1 Rx
We have: Mg5p g = Rsoras B~ Ropas-

2-level

Estimate for the one level SORAS
e Let kp be the maximum number of neighbours of a
subdomain and 7; be defined as:

(RTD;U;)" A(RT D, U;)
Ul'B;U;

Y1 = max Ina;;
ISISNUY'ER#A‘I'\{O}

We can take cgr := ko1 -
e Let k1 be the maximum multiplicity of the
intersection between subdomains and 71 be defined as:
. . U,; T ANevU;
T1 := min min —_—
1<i<N U,VE]R#Nz\{()} U;* B;U;

We can take cp := % .
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One level SORAS

Application of FSL
o Let H := R#N and the a-bilinear form:

a(U, V) := VT AU.
where A is the matrix of the problem we want to solve.

e Hp is a product space and b a bilinear form

N N
Hp = [[R#Ni and b, V) := > VIB,U;, .

=1 =il

e The linear operator Rsoras is defined as

N
Rsoras : Hp — H, RsorasU) := Y  R{ D;U,.
1=1

P -1Rx
We have: Mg5pag = Rsoras B~ Ropas-

2-level

Estimate for the one level SORAS
e Let kp be the maximum number of neighbours of a
subdomain and 7; be defined as:

(RTD;U;)" A(RT D;U;)
Ul'B;U;

Y1 ‘= max ma)/(
1<i<N U, eR#Ni\ {0}

We can take cgr := ko1 .
e Let k1 be the maximum multiplicity of the
intersection between subdomains and 71 be defined as:

U,; T ANevU;
U,;TB;U;

71 := min min
1<i<N y; eR#Ni\ {0}

We can take cp := ;—i . Then

T1 1
kr SAMgopasA) < ko -
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Control of lower and upper bounds

Control of the upper bound

Definition (Generalised Eigenvalue
Problem for the upper bound)

Find (Ujp, iik) € R#Ni \ {0} x R such that
D;iR;ART DUy = pinB; Ugye

Let v > 0 be a user-defined threshold, we
define Zeneo C R#N  as the vector space
spanned by the family of vectors
(RZTDZ-UZ-;C)““)A/ 11<i<N corresponding to
eigenvalues larger than .
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Control of lower and upper bounds

Control of the lower bound

Control of the upper bound

Definition (Generalised Eigenvalue
Problem for the upper bound)

Find (Ujp, iik) € R#Ni \ {0} x R such that
DiR;ART DU, = 113, B; Uy,
Let v > 0 be a user-defined threshold, we
define ZJeneo C R#N as the vector space
spanned by the family of vectors
(RZTDZ-UZ-;C)““)A/ 11<i<N corresponding to
eigenvalues larger than .

2-level

Definition (Generalised Eigenvalue
Problem for the lower bound)

For each subdomain 1 < j < N, we introduce
the generalised eigenvalue problem

Find (Vjk, A\jx) € R#Ni \ {0} x R such that
ANV = Xje B Vi, -

Let 7 > 0 be a user-defined threshold, we
define Z7,,.., C R#N as the vector space
spanned by the family of vectors
(RJTD]-ij))\].k<T 1<j<N corresponding to
eigenvalues smaller than 7.
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Estimates for the two-level preconditioner

Let Py denote the a-orthogonal projection on the
SORAS-GENEO-2 coarse space

T
ZGenEO—2 i deneo @ denso ’

the two-level SORAS-GENEO-2 preconditioner is:

= Py AT H(I-Po) Mg pag I—PF)

J

—1 .
MgoRras2

where PyA~! = RT(Ry ART) 1Ry, (J. Mandel,
1992).
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Estimates for the two-level preconditioner

Let Py denote the a-orthogonal projection on the
SORAS-GENEO-2 coarse space

Theorem (Haferssas, Jolivet and Nataf)

ZGenE0-2 = Zgeneo @ Zgeneo s Let v and T be user-defined targets. Then, the
the two-level SORAS-GENEO-2 preconditioner is: eigenvalues of the two-level SORAS-GenEO-2
) preconditioned system satisfy the following
estimate

Ms_clmAs,z i= P AT +(I-Po) M35 pas (I-FF)

=i
J il 4 B S AMgoras,2A) < max(l, ko)

T

where PgA~! = RT'(Rg ART) "Ry, (J. Mandel,
1992).
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Nearly incompressible elasticity

Material properties: Young modulus E and Poisson ratio v or alternatively by its Lamé coefficients A and u:

Ev E
A=——""—/—and p= ———.
1+v)(1-2v) 2(1+v)
For v close to 1/2, the variational problem consists in finding (wp,pn) € Vi := ]P"Qi n H(])(Q) x Py such that for
all (vp,qn) € Vn

Jo2ne(un) s g(vn)dz = [qprdiv(vn)de = [o fonde

— Jo div (up)gndz — Jo xPran =0
H BT [u f
— =[5 %|[}] =[] -=

A is symmetric but no longer positive.
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Numerical tests (with FreeFem++)

Figure 2: 2D Elasticity: Sandwich of steel (E1,v1) = (210 - 10%,0.3) and rubber (FE2,v2) = (0.1 - 10%,0.4999).

Metis partitioning

PR P A a
S A A e AT
AARA

rorererreeet
AT
A A A

Table 1: 2D Elasticity. GMRES iteration counts

AS SORAS AS+4CS(ZEM) || SORAS +CS(ZEM) AS-GenEO SORAS -GenEO-2

Nb DOFs | Nb subdom || iteration || iteration || iteration | dim || iteration dim iteration | dim || iteration dim
35841 8 150 184 117 24 79 24 110 184 13 145

70590 16 276 337 170 48 144 48 153 400 17 303

141375 32 497 +-+1000 261 96 200 96 171 800 22 561

279561 64 <++1000 || ++1000 333 192 335 192 496 1600 24 855

561531 128 ++1000 || ++1000 329 384 400 384 ++1000 | 2304 29 1220
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Strong scalability in two and three dimensions (with FreeFem++ and HPDDM)

Stokes problem with automatic mesh partition. Driven cavity problem

N Factorization Deflation Solution # of it. Total  # of d.o.f.

1024 79.2s 229.0's 76.3s 45 387.5s
2048 29.55 76.55 34.8s 42 143.9s .
3D 096 11.1s 45.8s 19.85s 42 80.9s 00-03-10
8192 4.7s 26.1s 14.9s 41 56.8 s
1024 5.2s 37.9s 51.5s 51 95.65
2048 245 19.3s 22.1s 42 4455 .
22 4096 1.1s 10.4s 10.2s 35 99.6s 100-13-10
8192 0.5s 4.6s 6.9s 38 12.7s

Peak performance: 50 millions d.o.f's in 3D in 57 sec.
IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors. Hours provided by an IDRIS-GENCI project.
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Weak scalability for heterogeneous elasticity (with FreeFem++ and HPDDM)

Rubber Steel sandwich with automatic mesh partition
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(a) Timings of various simulations
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Conclusion
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Conclusion

Summary
Using generalised eigenvalue problems and projection preconditioning we are able to achieve a targeted

convergence rate for

e Additive Schwarz method (AS)

e Optimised Schwarz method (OAS, SORAS)

e BNN methods (see Lecture Notes)

e Available in HPDDM C++/MPI library

e Available in the public release of FreeFem++ (ffddm)
Further and ongoing work

e Non symmetric, undefinite problems

e Time-harmonic wave propagation problems.
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