Two-level domain decomposition methods

Victorita Dolean in collaboration with: F. Nataf, P. Jolivet, P.-H. Tournier 2-3 June 2021

Coarse Space correction

Coarse grids for heterogeneous problems

Spectral coarse spaces

Theoretical background

Scalability tests

Conclusion

Numerics on a toy problem

Figure 1: Schwarz convergence as a solver (left) and as a preconditioner (right) for different overlaps

Coarse Space correction

Coarse grids for heterogeneous problems

Conclusion

Strong scalability (Amdahl)

"How the solution time varies with the number of processors for a fixed *total* problem size"

Weak scalability (Gustafson) "How the solution time varies with the number of processors for a fixed problem size *per processor*."

The one level method Schwarz is not scalable

Number of subdomains	8	16	32	64
AS	18	35	66	128

The iteration number increases linearly with the number of subdomains in one direction.

Condition number estimates: preconditioned system

Lemma If there exist the constants C_1 and C_2 such that $C_1(M_{AS}\mathbf{x}, \mathbf{x}) \leq (A\mathbf{x}, \mathbf{x}) \leq C_2(M_{AS}\mathbf{x}, \mathbf{x}), \forall \mathbf{x} \in \mathbb{R}^n$ then $\lambda_{max}(M_{AS}^{-1}A) \leq C_2, \lambda_{min}(M_{AS}^{-1}A) \geq C_1$ and thus $\kappa(M_{AS}^{-1}A) \leq C_2/C_1$.

If $\kappa(M_{AS}^{-1}A)$ independent of N (number of subdomains) \Rightarrow the solution time will be independent of the number of processors \Rightarrow weak scalability.

Lemma (Estimate of the largest eigenvalue) Let $col(j) \in \{1, \ldots, N^c\}$ be the color of the domain j defined such that col(k) = col(l) if $(AR_k^T \mathbf{x}_k, R_l^T \mathbf{x}_l) = 0$. Then $\lambda_{max}(M_{AS}^{-1}A) \leq \mathcal{N}_c$.

Proof. Useful result (Toselli, Widlund '05)

$$(M_{AS}\mathbf{x}, \mathbf{x}) = \min_{\{\mathbf{x}_j \in \mathbb{R}^{n_j} : \mathbf{x} = \sum_{j=1}^N R_j^T \mathbf{x}_j\}} \sum_{j=1}^N (A_j \mathbf{x}_j, \mathbf{x}_j), A_j = R_j A R_j^T.$$
(1)

Let $(\mathbf{x}_j)_{1 \leq j \leq N}$ which achieves the minimum in (1). Then we have

$$(M_{AS}\mathbf{x}, \mathbf{x}) = \sum_{j=1}^{N} (AR_{j}^{T}\mathbf{x}_{j}, R_{j}^{T}\mathbf{x}_{j}) = \sum_{c=1}^{N^{c}} \left(A \sum_{\{i; col(i)=c\}} R_{i}^{T}\mathbf{x}_{i}, \sum_{\{i; col(i)=c\}} R_{i}^{T}\mathbf{x}_{i} \right)$$
$$\geq \frac{1}{\mathcal{N}^{c}} \left(A \sum_{j=1}^{N} R_{j}^{T}\mathbf{x}_{j}, \sum_{j=1}^{N} R_{j}^{T}\mathbf{x}_{j} \right) = \frac{1}{\mathcal{N}^{c}} (A\mathbf{x}, \mathbf{x}).$$
(2)

3.7

Therefore $\lambda_{max}(M_{AS}^{-1}A) \leq \mathcal{N}_c$.

Why the algorithm is not scalable?

We have that $\lambda_{max}(M_{AS}^{-1}A) \leq N_c \ll N$ (usual decomposition) BUT $\lambda_{min}(M_{AS}^{-1}A)$ depends on N (and decreases when N increases).

Numerical experiment: subdomain = square with 20×20 discretisation points with two layers of overlap.

Solution of a Poisson problem $-\Delta u = f$

Number of subdomains	2×2	4×4	8×8
Number of iterations	20	36	64

- Stagnation correspond to a few small eigenvalues from the spectrum of the preconditioned problem.
- They are due to the lack of global exchange of the information in the preconditioner.

A classical remedy : introduction of a coarse problem coupling all the subdomains.

Suppose we have identified the modes corresponding to the slow convergence of the iterative method used to solve the linear system:

 $M^{-1}A\mathbf{x} = M^{-1}\mathbf{b}$

Examples:

- Constant functions that are in the null space (kernel) of the Laplace operators.
- Rigid body motions in the case of linear elasticity

Let us call Z the rectangular matrix whose columns correspond to these slow modes.

Consider the minimisation problem (finding the best correction to an approximate solution ${f y}$ by a vector Zeta)

$$\min_{\beta} \|A(\mathbf{y} + Z\beta) - \mathbf{b}\|_{A^{-1}}.$$

Consider the minimisation problem (finding the best correction to an approximate solution y by a vector $Z\beta$)

$$\min_{\beta} \|A(\mathbf{y} + Z\beta) - \mathbf{b}\|_{A^{-1}}.$$

This problem is equivalent to

$$\min_{\beta \in \mathbb{R}^{n_c}} 2(A\mathbf{y} - \mathbf{b}, Z\beta)_2 + (AZ\beta, Z\beta)_2$$

Consider the minimisation problem (finding the best correction to an approximate solution y by a vector $Z\beta$)

 $\min_{\beta} \|A(\mathbf{y} + Z\beta) - \mathbf{b}\|_{A^{-1}}.$

This problem is equivalent to

$$\min_{\beta \in \mathbb{R}^{n_c}} 2(A\mathbf{y} - \mathbf{b}, Z\beta)_2 + (AZ\beta, Z\beta)_2$$

and whose solution is:

 $\beta = (Z^T A Z)^{-1} Z^T (\mathbf{b} - A \mathbf{y}).$

Consider the minimisation problem (finding the best correction to an approximate solution ${f y}$ by a vector Zeta)

$$\min_{\beta} \|A(\mathbf{y} + Z\beta) - \mathbf{b}\|_{A^{-1}}.$$

This problem is equivalent to

$$\min_{\beta \in \mathbb{R}^{n_c}} 2(A\mathbf{y} - \mathbf{b}, Z\beta)_2 + (AZ\beta, Z\beta)_2$$

and whose solution is:

$$\beta = (Z^T A Z)^{-1} Z^T (\mathbf{b} - A \mathbf{y}).$$

Thus, the correction term is:

$$Z\beta = Z (Z^T A Z)^{-1} Z^T \underbrace{(\mathbf{b} - A \mathbf{y})}_{\mathbf{r}}.$$

This kind of correction is called a Galerkin correction.

Let $R_0 := Z^T$ and $\mathbf{r} = \mathbf{b} - A\mathbf{y}$ be the residual associated to the approximate solution \mathbf{y} . Then the coarse correction is:

$$Z\beta = R_0^T\beta = R_0^T (R_0 A R_0^T)^{-1} R_0 \mathbf{r}$$
.

Let $R_0 := Z^T$ and $\mathbf{r} = \mathbf{b} - A\mathbf{y}$ be the residual associated to the approximate solution \mathbf{y} . Then the coarse correction is:

$$Z\beta = R_0^T\beta = R_0^T (R_0 A R_0^T)^{-1} R_0 \mathbf{r}$$

and we can define

$$M_{AS,2}^{-1} := R_0^T \underbrace{(R_0 A R_0^T)^{-1}}_{\text{coarse problem}} R_0 + \underbrace{\sum_{i=1}^N R_i^T (R_i A R_i^T)^{-1} R_i}_{M_{AS}^{-1}}$$
(3)

A two-level Schwarz preconditioner

Let $R_0 := Z^T$ and $\mathbf{r} = \mathbf{b} - A\mathbf{y}$ be the residual associated to the approximate solution \mathbf{y} . Then the coarse correction is:

$$Z\beta = R_0^T\beta = R_0^T (R_0 A R_0^T)^{-1} R_0 \mathbf{r}$$

and we can define

$$M_{AS,2}^{-1} := R_0^T \underbrace{(R_0 A R_0^T)^{-1}}_{\text{coarse problem}} R_0 + \underbrace{\sum_{i=1}^N R_i^T (R_i A R_i^T)^{-1} R_i}_{M_{AS}^{-1}}$$
(3)

Remark

- The structure of the two level preconditioner $M_{AS,2}^{-1}$ is the same that of the one level method.
- There is not a unique way to choose R_0 (or Z)!!
- The coarse problem is a small $O(n_C \times n_C)$ square matrix and the extra cost is negligible.

The Nicolaides coarse space (1987)

We define ${\cal Z}$ as the matrix whose i-th column is

$$Z_i := R_i^T D_i R_i \mathbf{1} \quad \text{for} \quad 1 \le i \le N$$
(4)

where ${\bf 1}$ is the vector of dimension ${\cal N}$ full of ones. The global structure of Z is:

$$Z = \begin{bmatrix} D_1 R_1 \mathbf{1} & 0 & \cdots & 0 \\ 0 & D_2 R_2 \mathbf{1} & \ddots & \\ \vdots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & D_N R_N \mathbf{1} \end{bmatrix}.$$
 (5)

where

$$D_i: \mathbb{R}^{\#\mathcal{N}_i} \longmapsto \mathbb{R}^{\#\mathcal{N}_i} \tag{6}$$

so that we have:

$$\sum_{i=1}^{N} R_i^T D_i R_i = Id.$$

Theorem (Widlund, Dryija) Let $M_{AS,2}^{-1}$ be the two-level additive Schwarz method:

 $\kappa(M_{AS,2}^{-1}A) \le C\left(1 + \frac{H}{\delta}\right)$

where δ is the size of the overlap between the subdomains and H the subdomain size.

Theorem (Widlund, Dryija) Let $M_{AS,2}^{-1}$ be the two-level additive Schwarz method:

$$\kappa(M_{AS,2}^{-1}A) \le C\left(1 + \frac{H}{\delta}\right)$$

where δ is the size of the overlap between the subdomains and H the subdomain size.

Т	his c	loes	ind	leed	wor	k v	ery	well

Number of subdomains	8	16	32	64
AS	18	35	66	128
AS + Nicolaides	20	27	28	27

Theorem (Widlund, Dryija) Let $M_{AS,2}^{-1}$ be the two-level additive Schwarz method:

$$\kappa(M_{AS,2}^{-1}A) \le C\left(1 + \frac{H}{\delta}\right)$$

where δ is the size of the overlap between the subdomains and H the subdomain size.

This does indeed work very well

Number of subdomains	8	16	32	64
AS	18	35	66	128
AS + Nicolaides	20	27	28	27

Fails for highly heterogeneous problems \rightarrow We need a larger and adaptive coarse space

Coarse Space correction

Coarse grids for heterogeneous problems Spectral coarse spaces

Theoretical background

Scalability tests

Conclusion

Motivation

Large discretized system of PDEs strongly heterogeneous coefficients (high contrast, nonlinear, multiscale)

E.g. Darcy pressure equation, P^1 -finite elements:

$$\mathbf{A}\mathbf{u}=\mathbf{f}$$
cond $(\mathbf{A})\sim rac{lpha_{ ext{max}}}{lpha_{ ext{min}}}\,h^{-2}$

Goal:

iterative solvers robust in size and heterogeneities

Applications:

flow in heterogeneous stochastic / layered media structural mechanics, electromagnetics

Adaptive Coarse space for highly heterogeneous Darcy and (compressible) elasticity problems Geneo EVP per subdomain:

Find $V_{j,k} \in \mathbb{R}^{\mathcal{N}_j}$ and $\mu_{j,k} \ge 0$: $D_j R_j A R_j^T D_j V_{j,k} = \mu_{j,k} A_j^{Neu} V_{j,k}$ Adaptive Coarse space for highly heterogeneous Darcy and (compressible) elasticity problems Geneo EVP per subdomain:

Find $V_{j,k} \in \mathbb{R}^{N_j}$ and $\mu_{j,k} \ge 0$: $D_j R_j A R_j^T D_j V_{j,k} = \mu_{j,k} A_j^{Neu} V_{j,k}$ In the two-level AS let τ be a user chosen parameter:

Choose eigenvectors $\mu_{j,k} \geq \tau$ per subdomain:

$$Z := \left(R_j^T D_j V_{j,k} \right)_{\substack{\mu_{j,k} \ge \tau}}^{j=1,\ldots,N}$$

This automatically includes Nicolaides CS (Zero Energy Modes).

GenEO

Adaptive Coarse space for highly heterogeneous Darcy and (compressible) elasticity problems Geneo EVP per subdomain:

Find $V_{j,k} \in \mathbb{R}^{N_j}$ and $\mu_{j,k} \ge 0$: $D_j R_j A R_j^T D_j V_{j,k} = \mu_{j,k} A_j^{Neu} V_{j,k}$ In the two-level AS let τ be a user chosen parameter:

Choose eigenvectors $\mu_{j,k} \geq au$ per subdomain:

$$Z := \left(R_j^T D_j V_{j,k} \right)_{\substack{\mu_{j,k} \ge \tau}}^{j=1,\dots,N}$$

This automatically includes Nicolaides CS (Zero Energy Modes).

Theorem (Spillane, D., Hauret, Nataf, Pechstein, Scheichl, 2014) Under some technical assumptions... If for all $j: 0 < \mu_{j,m_{j+1}} < \infty$:

$$\kappa(M_{AS,2}^{-1}A) \leq (1+k_0) \Big[2+k_0 (2k_0+1) (1+\tau) \Big]$$

Possible criterion for picking τ :

(used in our Numerics)

$$\tau := \min_{j=1,\dots,N} \frac{H_j}{\delta_j}$$

Numerical results (Darcy)

Channels and inclusions: $1 \le lpha \le 1.5 imes 10^6$, the solution and partitionings (Metis or not)

Convergence

Eigenvalues and eigenvectors (Elasticity)

 \boldsymbol{m}_i is given automatically by the chosen criterion and is optimal

#Z per subd.	AS	AS+Z _{Nico}	AS+Z _{Geneo}
$\max(m_i - 1, 1)$			273
m_i	614	543	36
$m_i + 1$			32

$$a(\mathbf{U}, \mathbf{V}) := \mathbf{V}^T A \mathbf{U}.$$
(7)

where A is the matrix of the problem we want to solve.

$$a(\mathbf{U}, \mathbf{V}) := \mathbf{V}^T A \mathbf{U}.$$
(7)

where \boldsymbol{A} is the matrix of the problem we want to solve.

• H_D is a product space and b a bilinear form defined by

$$H_D := \prod_{i=1}^N \mathbb{R}^{\#\mathcal{N}_i} \text{ and } b(\mathcal{U}, \mathcal{V}) := \sum_{i=1}^N \mathbf{V}_i^T (R_i A R_i^T) \mathbf{U}_i,$$
(8)

$$a(\mathbf{U}, \mathbf{V}) := \mathbf{V}^T A \mathbf{U}.$$
(7)

where A is the matrix of the problem we want to solve.

 $\bullet \ H_D$ is a product space and b a bilinear form defined by

$$H_D := \prod_{i=1}^N \mathbb{R}^{\#\mathcal{N}_i} \text{ and } b(\mathcal{U}, \mathcal{V}) := \sum_{i=1}^N \mathbf{V}_i^T (R_i A R_i^T) \mathbf{U}_i,$$
(8)

• The linear operator \mathcal{R}_{AS} is defined as

$$\mathcal{R}_{AS}: H_D \longrightarrow H, \, \mathcal{R}_{AS}(\mathcal{U}) := \sum_{i=1}^{N} R_i^T \mathbf{U}_i.$$
(9)

$$a(\mathbf{U}, \mathbf{V}) := \mathbf{V}^T A \mathbf{U}.$$
 (7)

where A is the matrix of the problem we want to solve. • H_D is a product space and b a bilinear form defined by

$$H_D := \prod_{i=1}^N \mathbb{R}^{\#\mathcal{N}_i} \text{ and } b(\mathcal{U}, \mathcal{V}) := \sum_{i=1}^N \mathbf{V}_i^T (R_i A R_i^T) \mathbf{U}_i,$$
(8)

• The linear operator \mathcal{R}_{AS} is defined as

$$\mathcal{R}_{AS}: H_D \longrightarrow H, \, \mathcal{R}_{AS}(\mathcal{U}) := \sum_{i=1}^N R_i^T \mathbf{U}_i.$$
 (9)

We have: $M_{AS}^{-1} = \mathcal{R}_{AS} B^{-1} \mathcal{R}_{AS}^*$.

Let H and H_D be two Hilbert spaces. Let a be a symmetric positive bilinear form on H and b on H_D . Suppose that there exists a linear operator \mathcal{R} : $H_D \to H$, such that

Let H and H_D be two Hilbert spaces. Let a be a symmetric positive bilinear form on H and b on H_D . Suppose that there exists a linear operator $\mathcal{R} : H_D \to H$, such that • \mathcal{R} is surjective.

Let H and H_D be two Hilbert spaces. Let a be a symmetric positive bilinear form on H and b on H_D . Suppose that there exists a linear operator $\mathcal{R} : H_D \to H$, such that

- \mathcal{R} is surjective.
- there exists a positive constant c_R such that

 $a(\mathcal{R}u_D, \mathcal{R}u_D) \le c_{\mathbf{R}} \cdot b(u_D, u_D) \quad \forall u_D \in H_D.$ (10)

Let H and H_D be two Hilbert spaces. Let a be a symmetric positive bilinear form on H and b on H_D . Suppose that there exists a linear operator $\mathcal{R} : H_D \to H$, such that

- \mathcal{R} is surjective.
- there exists a positive constant c_R such that

$$a(\mathcal{R}u_D, \mathcal{R}u_D) \le c_{\mathbf{R}} \cdot b(u_D, u_D) \quad \forall u_D \in H_D.$$
(10)

• Stable decomposition: there exists a positive constant c_T such that for all $u \in H$ there exists $u_D \in H_D$ with $\mathcal{R}u_D = u$ and

$$c_{\mathbf{T}} \cdot b(u_D, u_D) \le a(\mathcal{R}u_D, \mathcal{R}u_D) = a(u, u).$$
(11)

Let H and H_D be two Hilbert spaces. Let a be a symmetric positive bilinear form on H and b on H_D . Suppose that there exists a linear operator $\mathcal{R} : H_D \to H$, such that

- \mathcal{R} is surjective.
- there exists a positive constant c_R such that

$$a(\mathcal{R}u_D, \mathcal{R}u_D) \le c_{\mathbf{R}} \cdot b(u_D, u_D) \quad \forall u_D \in H_D.$$
(10)

• Stable decomposition: there exists a positive constant c_T such that for all $u \in H$ there exists $u_D \in H_D$ with $\mathcal{R}u_D = u$ and

$$c_{\mathbf{T}} \cdot b(u_D, u_D) \le a(\mathcal{R}u_D, \mathcal{R}u_D) = a(u, u).$$
(11)

We introduce the adjoint operator \mathcal{R}^* : $H \to H_D$ by $(\mathcal{R}u_D, u) = (u_D, \mathcal{R}^*u)_D$ for all $u_D \in H_D$ and $u \in H$. Then we have the following spectral estimate

Let H and H_D be two Hilbert spaces. Let a be a symmetric positive bilinear form on H and b on H_D . Suppose that there exists a linear operator $\mathcal{R} : H_D \to H$, such that

- \mathcal{R} is surjective.
- there exists a positive constant c_R such that

$$a(\mathcal{R}u_D, \mathcal{R}u_D) \le c_{\mathbf{R}} \cdot b(u_D, u_D) \quad \forall u_D \in H_D.$$
(10)

• Stable decomposition: there exists a positive constant c_T such that for all $u \in H$ there exists $u_D \in H_D$ with $\mathcal{R}u_D = u$ and

$$\boldsymbol{c_T} \cdot \boldsymbol{b}(u_D, u_D) \le \boldsymbol{a}(\mathcal{R}u_D, \mathcal{R}u_D) = \boldsymbol{a}(u, u) \,. \tag{11}$$

We introduce the adjoint operator \mathcal{R}^* : $H \to H_D$ by $(\mathcal{R}u_D, u) = (u_D, \mathcal{R}^*u)_D$ for all $u_D \in H_D$ and $u \in H$. Then we have the following spectral estimate

$$\boldsymbol{c_T} \cdot \boldsymbol{a}(u, u) \le \boldsymbol{a} \left(\mathcal{R} B^{-1} \mathcal{R}^* A u, u \right) \le \boldsymbol{c_R} \cdot \boldsymbol{a}(u, u), \quad \forall u \in H$$
(12)

which proves that the eigenvalues of operator $\mathcal{R}B^{-1}\mathcal{R}^*A$ are bounded from below by c_T and from above by c_R .

Let k_0 be the maximum number of neighbors of a subdomain. We can take $c_{I\!\!R}:=k_0$. Let k_1 be the maximum multiplicity of the intersection between subdomains and :

 $\tau_1 := \min_{1 \le i \le N} \min_{U_i \in \mathbb{R}^{\#N_i \setminus \{0\}}} \frac{\mathbf{U}_i^T A_i^{Neu} \mathbf{U}_i}{\mathbf{U}_i^T (D_i R_i A R_i^T D_i) \mathbf{U}_i} \,.$

We can take $c_T:=rac{ au_1}{k_1}$.

Let k_0 be the maximum number of neighbors of a subdomain. We can take $c_{\boldsymbol{R}}:=k_0$. Let k_1 be the maximum multiplicity of the intersection between subdomains and :

 $\tau_1 := \min_{1 \le i \le N} \min_{U_i \in \mathbb{R}^{\#\mathcal{N}_i \setminus \{0\}}} \frac{\mathbf{U}_i^T A_i^{Neu} \mathbf{U}_i}{\mathbf{U}_i^T (D_i R_i A R_i^T D_i) \mathbf{U}_i} \,.$

We can take $c_T := \frac{\tau_1}{k_1}$. Then

 $\frac{\tau_1}{k_1} \le \lambda(M_{ASM}^{-1} A) \le k_0 \ .$

Issue: τ_1 can be very small.

Let k_0 be the maximum number of neighbors of a subdomain. We can take $c_R:=k_0$.

Let k_1 be the maximum multiplicity of the intersection between subdomains and \colon

 $\tau_1 := \min_{1 \le i \le N} \min_{U_i \in \mathbb{R}^{\#\mathcal{N}_i \setminus \{0\}}} \frac{\mathbf{U}_i^T A_i^{Neu} \mathbf{U}_i}{\mathbf{U}_i^T (D_i R_i A R_i^T D_i) \mathbf{U}_i} \,.$

We can take $c_T := \frac{\tau_1}{k_1}$. Then

$$\frac{\tau_1}{k_1} \le \lambda(M_{ASM}^{-1} A) \le k_0 .$$

Issue: τ_1 can be very small.

Definition (Generalized Eigenvalue Problem for the lower bound)

For each subdomain $1 \leq j \leq N$, we introduce the generalized eigenvalue problem

Find $(\mathbf{V}_{jk}, \lambda_{jk}) \in \mathbb{R}^{\#\mathcal{N}_j} \setminus \{0\} \times \mathbb{R}$ such that $A_j^{Neu} \mathbf{V}_{jk} = \lambda_{jk} (D_j R_j A R_j^T D_j) \mathbf{V}_{jk}$.

Let $\tau > 0$ be a user-defined threshold, we define $Z^{\tau}_{geneo,ASM} \subset \mathbb{R}^{\#\mathcal{N}}$ as the vector space spanned by the family of vectors $(R^{\tau}_{j}D_{j}\mathbf{V}_{jk})_{\lambda_{jk}<\tau,1\leq j\leq N}$ corresponding to eigenvalues smaller than τ .

ASM theory for a SPD matrix A (summary)

• Algebraic reformulation

$$M_{RAS}^{-1} := \sum_{i=1}^{N} R_i^T D_i A_i^{-1} R_i$$

• Symmetric variant

$$M_{AS}^{-1} := \sum_{i=1}^{N} R_i^T A_i^{-1} R_i$$

• Adaptive Coarse space with prescribed targeted convergence rate.

Aim: develop a similar theory and computational framework for Optimised variants of RAS (ORAS)

et B_i be the matrix of the Robin subproblem in each subdomain $1 \leq i \leq N$

Optimized multiplicative, additive, and restricted additive Schwarz preconditioning (St Cyr et al, 2007)

$$M_{ORAS}^{-1} := \sum_{i=1}^{N} R_i^T D_i B_i^{-1} R_i$$

• Symmetric variants:

$$M_{OAS}^{-1} := \sum_{i=1}^{N} R_i^T B_i^{-1} R_i \text{ (Natural but K.O.)}$$
$$M_{SORAS}^{-1} := \sum_{i=1}^{N} R_i^T D_i B_i^{-1} D_i R_i \text{ (O.K.)}$$

ASM theory for a SPD matrix A (summary)

• Algebraic reformulation

$$M_{RAS}^{-1} := \sum_{i=1}^{N} R_i^T D_i A_i^{-1} R_i$$

• Symmetric variant

$$M_{AS}^{-1} := \sum_{i=1}^{N} R_i^T A_i^{-1} R_i$$

• Adaptive Coarse space with prescribed targeted convergence rate.

Aim: develop a similar theory and computational framework for Optimised variants of RAS (ORAS)

Let B_i be the matrix of the Robin subproblem in each subdomain $1 \leq i \leq N$

Optimized multiplicative, additive, and restricted additive Schwarz preconditioning (St Cyr et al, 2007)

$$M_{ORAS}^{-1} := \sum_{i=1}^{N} R_i^T D_i B_i^{-1} R_i$$

• Symmetric variants:

$$M_{OAS}^{-1} := \sum_{i=1}^{N} R_i^T B_i^{-1} R_i \text{ (Natural but K.O.)}$$
$$M_{SORAS}^{-1} := \sum_{i=1}^{N} R_i^T D_i B_i^{-1} D_i R_i \text{ (O.K.)}$$

One level SORAS

Application of FSL

• Let $H := \mathbb{R}^{\#\mathcal{N}}$ and the *a*-bilinear form:

$$a(\mathbf{U}, \mathbf{V}) := \mathbf{V}^T A \mathbf{U}.$$

where \boldsymbol{A} is the matrix of the problem we want to solve.

• H_D is a product space and b a bilinear form

$$H_D := \prod_{i=1}^N \mathbb{R}^{\#\mathcal{N}_i} \text{ and } b(\mathcal{U}, \mathcal{V}) := \sum_{i=1}^N \mathbf{V}_i^T B_i \mathbf{U}_i, \ .$$

• The linear operator \mathcal{R}_{SORAS} is defined as

$$\mathcal{R}_{SORAS} : H_D \longrightarrow H, \, \mathcal{R}_{SORAS}(\mathcal{U}) := \sum_{i=1}^N R_i^T D_i \mathbf{U}_i.$$

We have: $M_{SORAS}^{-1} = \mathcal{R}_{SORAS} B^{-1} \mathcal{R}_{SORAS}^*$.

One level SORAS

Application of FSL

• Let $H := \mathbb{R}^{\#\mathcal{N}}$ and the *a*-bilinear form:

$$a(\mathbf{U}, \mathbf{V}) := \mathbf{V}^T A \mathbf{U}.$$

where \boldsymbol{A} is the matrix of the problem we want to solve.

• H_D is a product space and b a bilinear form

$$H_D := \prod_{i=1}^N \mathbb{R}^{\#\mathcal{N}_i}$$
 and $b(\mathcal{U}, \mathcal{V}) := \sum_{i=1}^N \mathbf{V}_i^T B_i \mathbf{U}_i$,.

• The linear operator \mathcal{R}_{SORAS} is defined as

 $\mathcal{R}_{SORAS} : H_D \longrightarrow H, \, \mathcal{R}_{SORAS}(\mathcal{U}) := \sum_{i=1}^{N} R_i^T D_i \mathbf{U}_i.$ We have: $M_{SORAS}^{-1} = \mathcal{R}_{SORAS} B^{-1} \mathcal{R}_{SORAS}^*.$

Estimate for the one level SORAS

• Let k_0 be the maximum number of neighbours of a subdomain and γ_1 be defined as:

$$\gamma_1 := \max_{1 \le i \le N} \max_{\mathbf{U}_i \in \mathbb{R}^{\#\mathcal{N}_i} \setminus \{0\}} \frac{\left(R_i^T D_i \mathbf{U}_i\right)^T A(R_i^T D_i \mathbf{U}_i)}{\mathbf{U}_i^T B_i \mathbf{U}_i}$$

We can take $c_R := k_0 \gamma_1$. • Let k_1 be the maximum multiplicity of the intersection between subdomains and τ_1 be defined as:

$$\tau_1 := \min_{1 \le i \le N} \min_{U_i \in \mathbb{R}^{\#\mathcal{N}_i \setminus \{0\}}} \frac{\mathbf{U}_i^T A_i^{Neu} \mathbf{U}_i}{\mathbf{U}_i^T B_i \mathbf{U}_i}$$

We can take $c_T:=rac{ au_1}{k_1}$.

Application of FSL • Let $H := \mathbb{R}^{\#\mathcal{N}}$ and the *a*-bilinear form:

$$a(\mathbf{U}, \mathbf{V}) := \mathbf{V}^T A \mathbf{U}.$$

where A is the matrix of the problem we want to solve.

• H_D is a product space and b a bilinear form

$$H_D := \prod_{i=1}^N \mathbb{R}^{\#\mathcal{N}_i}$$
 and $b(\mathcal{U}, \mathcal{V}) := \sum_{i=1}^N \mathbf{V}_i^T B_i \mathbf{U}_i$,

• The linear operator \mathcal{R}_{SORAS} is defined as

 $\mathcal{R}_{SORAS} : H_D \longrightarrow H, \, \mathcal{R}_{SORAS}(\mathcal{U}) := \sum_{i=1}^{N} R_i^T D_i \mathbf{U}_i.$ We have: $M_{SORAS}^{-1} = \mathcal{R}_{SORAS} B^{-1} \mathcal{R}_{SORAS}^*.$

Estimate for the one level SORAS

• Let k_0 be the maximum number of neighbours of a subdomain and γ_1 be defined as:

$$\gamma_{1} := \max_{1 \leq i \leq N} \max_{\mathbf{U}_{i} \in \mathbb{R}^{\#\mathcal{N}_{i}} \setminus \{0\}} \frac{\left(R_{i}^{T} D_{i} \mathbf{U}_{i}\right)^{T} A(R_{i}^{T} D_{i} \mathbf{U}_{i})}{\mathbf{U}_{i}^{T} B_{i} \mathbf{U}_{i}}$$

We can take $c_R := k_0 \gamma_1$.

 \bullet Let k_1 be the maximum multiplicity of the intersection between subdomains and τ_1 be defined as:

$$\tau_1 := \min_{1 \le i \le N} \min_{U_i \in \mathbb{R}^{\#\mathcal{N}_i \setminus \{0\}}} \frac{\mathbf{U}_i^T A_i^{Neu} \mathbf{U}_i}{\mathbf{U}_i^T B_i \mathbf{U}_i}$$

We can take $c_T:=rac{ au_1}{k_1}$. Then

$$\frac{\tau_1}{k_1} \le \lambda(M_{SORAS}^{-1} A) \le k_0 \gamma_1 \,.$$

Control of lower and upper bounds

Control of the upper bound

Definition (Generalised Eigenvalue Problem for the upper bound)

Find $(\mathbf{U}_{ik}, \mu_{ik}) \in \mathbb{R}^{\#\mathcal{N}_i} \setminus \{0\} \times \mathbb{R}$ such that $D_i R_i A R_i^T D_i \mathbf{U}_{ik} = \mu_{ik} B_i \mathbf{U}_{ik}$.

Let $\gamma > 0$ be a user-defined threshold, we define $Z_{geneo}^{\gamma} \subset \mathbb{R}^{\#N}$ as the vector space spanned by the family of vectors $(R_i^T D_i \mathbf{U}_{ik})_{\mu_{ik} > \gamma, 1 \leq i \leq N}$ corresponding to eigenvalues larger than γ .

Control of the upper bound

Definition (Generalised Eigenvalue Problem for the upper bound)

Find $(\mathbf{U}_{ik}, \mu_{ik}) \in \mathbb{R}^{\#\mathcal{N}_i} \setminus \{0\} \times \mathbb{R}$ such that $D_i R_i A R_i^T D_i \mathbf{U}_{ik} = \mu_{ik} B_i \mathbf{U}_{ik}$.

Let $\gamma > 0$ be a user-defined threshold, we define $Z_{geneo}^{\gamma} \subset \mathbb{R}^{\#\mathcal{N}}$ as the vector space spanned by the family of vectors $(R_i^T D_i \mathbf{U}_{ik})_{\mu_{ik} > \gamma, 1 \leq i \leq N}$ corresponding to eigenvalues larger than γ .

Control of the lower bound

Definition (Generalised Eigenvalue Problem for the lower bound)

For each subdomain $1 \leq j \leq N,$ we introduce the generalised eigenvalue problem

Find $(\mathbf{V}_{jk}, \lambda_{jk}) \in \mathbb{R}^{\#\mathcal{N}_j} \setminus \{0\} \times \mathbb{R}$ such that $A_j^{Neu} \mathbf{V}_{jk} = \lambda_{jk} B_j \mathbf{V}_{jk}$.

Let $\tau > 0$ be a user-defined threshold, we define $Z^{\tau}_{geneo} \subset \mathbb{R}^{\#\mathcal{N}}$ as the vector space spanned by the family of vectors $(R^{T}_{j}D_{j}\mathbf{V}_{jk})_{\lambda_{jk}<\tau,1\leq j\leq N}$ corresponding to eigenvalues smaller than τ .

Let P_0 denote the a-orthogonal projection on the SORAS-GENEO-2 coarse space

$$Z_{\mathsf{GenEO-2}} := Z_{geneo}^{\tau} \bigoplus Z_{geneo}^{\gamma} ,$$

the two-level SORAS-GENEO-2 preconditioner is:

$$M_{SORAS,2}^{-1} := P_0 A^{-1} + (I - P_0) M_{SORAS}^{-1} (I - P_0^T)$$

where $P_0 A^{-1} = R_0^T (R_0 A R_0^T)^{-1} R_0$, (J. Mandel, 1992).

Let ${\cal P}_0$ denote the $a\mbox{-}{\rm orthogonal}$ projection on the SORAS-GENEO-2 coarse space

$$Z_{\mathsf{GenEO-2}} := Z_{geneo}^{\tau} \bigoplus Z_{geneo}^{\gamma} ,$$

the two-level SORAS-GENEO-2 preconditioner is:

$$M_{SORAS,2}^{-1} := P_0 A^{-1} + (I - P_0) M_{SORAS}^{-1} (I - P_0^T)$$

where $P_0 A^{-1} = R_0^T (R_0 A R_0^T)^{-1} R_0$, (J. Mandel, 1992).

Theorem (Haferssas, Jolivet and Nataf) Let γ and τ be user-defined targets. Then, the eigenvalues of the two-level SORAS-GenEO-2 preconditioned system satisfy the following estimate

$$\frac{1}{1+\frac{k_1}{\tau}} \le \lambda(M_{SORAS,2}^{-1}A) \le \max(1,k_0\gamma)$$

Material properties: Young modulus E and Poisson ratio ν or alternatively by its Lamé coefficients λ and μ :

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)} \quad \text{and} \quad \mu = \frac{E}{2(1+\nu)}$$

For ν close to 1/2, the variational problem consists in finding $(u_h, p_h) \in \mathcal{V}_h := \mathbb{P}_2^d \cap H_0^1(\Omega) \times \mathbb{P}_1$ such that for all $(v_h, q_h) \in \mathcal{V}_h$

$$\begin{cases} \int_{\Omega} 2\mu \underline{\underline{\varepsilon}}(\boldsymbol{u}_{h}) : \underline{\underline{\varepsilon}}(\boldsymbol{v}_{h}) dx & -\int_{\Omega} p_{h} \operatorname{div}(\boldsymbol{v}_{h}) dx = \int_{\Omega} \boldsymbol{f} \boldsymbol{v}_{h} dx \\ -\int_{\Omega} \operatorname{div}(\boldsymbol{u}_{h}) q_{h} dx & -\int_{\Omega} \frac{1}{\lambda} p_{h} q_{h} = 0 \\ \Longrightarrow A \mathbf{U} = \begin{bmatrix} H & B^{T} \\ B & -C \end{bmatrix} \begin{bmatrix} \boldsymbol{u} \\ p \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ 0 \end{bmatrix} = \mathbf{F}. \end{cases}$$

 \boldsymbol{A} is symmetric but no longer positive.

Numerical tests (with FreeFem++)

Figure 2: 2D Elasticity: Sandwich of steel $(E_1, \nu_1) = (210 \cdot 10^9, 0.3)$ and rubber $(E_2, \nu_2) = (0.1 \cdot 10^9, 0.4999)$.

Metis partitioning

Table 1: 2D Elasticity. GMRES iteration counts

		AS	SORAS	AS+CS(2	ZEM)	SORAS -	+CS(ZEM)	AS-Ger	EO	SORAS -	GenEO-2
Nb DOFs	Nb subdom	iteration	iteration	iteration	dim	iteration	dim	iteration	dim	iteration	dim
35841	8	150	184	117	24	79	24	110	184	13	145
70590	16	276	337	170	48	144	48	153	400	17	303
141375	32	497	++1000	261	96	200	96	171	800	22	561
279561	64	++1000	++1000	333	192	335	192	496	1600	24	855
561531	128	++1000	++1000	329	384	400	384	++1000	2304	29	1220
1077141	256	++1000	++1000	369	768	++1000	768	++1000	3840	36	1971

Stokes problem with automatic mesh partition. Driven cavity problem

	N	Factorization	Deflation	Solution	# of it.	Total	# of d.o.f.
3D	1024	$79.2\mathrm{s}$	$229.0\mathrm{s}$	$76.3\mathrm{s}$	45	$387.5\mathrm{s}$	
	2048	$29.5\mathrm{s}$	$76.5\mathrm{s}$	$34.8\mathrm{s}$	42	$143.9\mathrm{s}$	50.62 106
	4096	$11.1\mathrm{s}$	$45.8\mathrm{s}$	$19.8\mathrm{s}$	42	$80.9\mathrm{s}$	$50.03 \cdot 10^{\circ}$
	8192	$4.7\mathrm{s}$	$26.1\mathrm{s}$	$14.9\mathrm{s}$	41	$56.8\mathrm{s}$	
	1024	$5.2\mathrm{s}$	$37.9\mathrm{s}$	$51.5\mathrm{s}$	51	$95.6\mathrm{s}$	
2D	2048	$2.4\mathrm{s}$	$19.3\mathrm{s}$	$22.1\mathrm{s}$	42	$44.5\mathrm{s}$	100 12 106
	4096	$1.1\mathrm{s}$	$10.4\mathrm{s}$	$10.2\mathrm{s}$	35	$22.6\mathrm{s}$	$100.13 \cdot 10$
	8192	$0.5\mathrm{s}$	$4.6\mathrm{s}$	$6.9\mathrm{s}$	38	$12.7\mathrm{s}$	

Peak performance: 50 millions d.o.f's in 3D in 57 sec.

IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors. Hours provided by an IDRIS-GENCI project.

Weak scalability for heterogeneous elasticity (with FreeFem++ and HPDDM)

Rubber Steel sandwich with automatic mesh partition

(a) Timings of various simulations

Coarse Space correction

Coarse grids for heterogeneous problems

Conclusion

Summarv

Using generalised eigenvalue problems and projection preconditioning we are able to achieve a targeted convergence rate for

- Additive Schwarz method (AS)
- Optimised Schwarz method (OAS, SORAS)
- BNN methods (see Lecture Notes)
- Available in HPDDM C++/MPI library
- Available in the public release of FreeFem++ (ffddm)

- Further and ongoing workNon symmetric, undefinite problems
- Time-harmonic wave propagation problems.

- [1] V. Dolean, P. Jolivet and F Nataf, "An Introduction to Domain Decomposition Methods: algorithms, theory and parallel implementation", SIAM, 2015.
- [2] N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, R. Scheichl, "Abstract Robust Coarse Spaces for Systems of PDEs via Generalized Eigenproblems in the Overlaps", <u>Numerische</u> Mathematik, 2014.
- [3] P. Jolivet and F Nataf, "HPDDM: high-performance unified framework for domain decomposition methods", https://github.com/hpddm/hpddm, MPI-C++ library, 2014.
- [4] P. Jolivet, V. Dolean, F. Hecht, F. Nataf, C. Prud'homme, N. Spillane, "High Performance domain decomposition methods on massively parallel architectures with FreeFem++", J. of Numerical Mathematics, vol. 20, 2012.