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From the applied mathematician perspective

Waves

Maxwell’s equations

Medical imaging: reconstruct the permittivity =
—1 2
Vx(p VXE)—weE=J

e E is the electric field
e 1 > 0 is the magnetic permeability,
e = > 0 is the electric permittivity, w is the

frequency.

Helmholtz equations

Seismic imaging: reconstruct material properties of subsurface
2/, 2
—Au — (w*/c)u = f,

o ¢? = pc%, pis the density,

e cp is the speed of longitudinal waves.
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Helmholtz equatio

Figure 1: Hermann von Helmholtz (1821-1894),
physicist, physician, philosopher, ...

—Au—ku=f
a.k.a. the reduced wave equation or time-harmonic

wave equation.
Waves

Scalar wave equation (c(z) local speed of
propagation

v — 2 (x)Av = F(z, t)

If F(x,t) = f(x)e™*?* (mono-chromatic) we
can assume

v(z, t) = u(z)e

which leads to

—Au —n(z)?wu=f,

where n(z) = ﬁ is the index of refraction,

k2 = n2w? is called wave number.
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Why the high-frequency problem is hard? (Accuracy and pollution)

AIM: After discretisation maximise accuracy and minimise the number of degrees of freedom (#DoF)
FACTS:

If hw is kept constant the error increases with w — pollution error [Babuska, Sauter, SINUM, 1997]
Other discretisations (FEM) or higher dimensions and for quasi-optimality we need

PPt <1

[Melenk, Sauter, SINUM, 2011].
For a bounded error h ~ w™'"'/?P [pu, wu, SINUM, 2015].

Consequences
e High-frequency solution u oscillates at a scale 1/w = h ~ % = large #DoF.
e Pollution effect requires h < %, h ~w™ =P with p the finite element order = even larger
#DoF.
2m

e Trade-off: number of points per wavelength (ppw/) G = 2 = 2X and polynomial degree =

dispersion analysis (measuring the ratio between the numerical and physical wave speeds).
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A hidden story of complexity and accuracy (Finite differences vs. Finite elements)

Waves

Test case: 2 km x 4 km x 12 km, ¢(z,y, z) = co + a X z with ¢cog=1 km/s with a source at 1 km depth and
frequency is 8 Hz. FD grid (h=31.25 m) corresponds to 4 ppwl, adapted tetrahedral FE grid.

Figure 2: (a) FD

#dof (M) Error norm
a(s™) | Amin(m) | Amaz(m) | FD | FE FD FE
0.8 125 1200 13 | 28 | 0.0079 | 0.034
2 125 3125 13 | 16 | 0.044 | 0.034

(b) Analyti

g source p

(¢) FE soluti

G

(d) FE mesh. (e) Comparison between (a-c) along a vertical profile

(f-g) Phase velocity dispersion curves for (f) FE and (g) FD. G: number of ppwl.
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Why the high-frequency forward problem is hard? (Efficiency)

Waves

After discretisation we get a large linear system to solve Au = b.
How bad things can be?

e A is symmetric but non-hermitian for the damped equations and/or when Robin BC are used.
o A is getting larger with w: its size n is increasing like N ~ w(T1/P)4 \where N ~ 1/h.
e A can become arbitrarily ill-conditioned

. conventional iterative methods fail

[Ernst, Gander, Numerical analysis of multiscale problems, 2012], [Gander, Zhang, SIREV, 2019],
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Waves

After discretisation we get a large linear system to solve Au = b.
How bad things can be?

e A is symmetric but non-hermitian for the damped equations and/or when Robin BC are used.
e A is getting larger with w: its size n is increasing like N¢ ~ w(T/P)4 where N ~ 1/h.
e A can become arbitrarily ill-conditioned

. conventional iterative methods fail

[Ernst, Gander, Numerical analysis of multiscale problems, 2012], [Gander, Zhang, SIREV, 2019],

The holy grail ...

e Solution of the discretised PDEs in optimal time for large w
o Solvers should have good parallel properties.

e Solvers should be robust w.r.t heterogeneities.
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Au = b? Landscape of linear solvers for large linear systems

e Direct solvers: MUMPS, SuperLU (Demmel, ...), PastiX, UMFPACK, PARDISO (O. Schenk)
e |terative methods (Krylov): CG (Stiefel-Hestenes), GMRES (Saad), BiCGSTAB (van der Vorst)
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Au = b? Landscape of linear solvers for large linear systems

e Direct solvers: MUMPS, SuperLU (Demmel, ...), PastiX, UMFPACK, PARDISO (O. Schenk)
e |terative methods (Krylov): CG (Stiefel-Hestenes), GMRES (Saad), BiCGSTAB (van der Vorst)

How large is truly large (for heterogeneous Helmholtz, e.g. geophysics) to justify the use of DD?

e Problems (in applications) do not need to be overesolved. (to much precision not necessary
in FWI)

e Use direct methods when this is possible.
[Patrick Amestoy; Romain Brossier; Alfredo Buttari; Jean-Yves L'Excellent; Theo Mary; Ludovic Métivier; Alain Miniussi;

Stephane Operto, Geophysics, 2016] (3d problem from FWI with 50 Million dofs solved with MUMPS)
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What is the best two-level method for Helmholtz?
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The one-level method - Optimized Restrictive Additive Schwarz (ORAS)

Solve the preconditionned Au = b, i.e. M~'Au= M"'b by GMRES

The one-level preconditioner
N
M~'=>"RTD;A7'R; |, where

j=1

R;  Q — Q; is restriction operator
R]T Q; — Q) is prolongation operator
D;  corresponds to the partition of unity.

Definition of the local matrices A;
Aj is the stiffness matrix of the local Robin problem

(-A—K)w;) = f in®y
(%‘FZ]C)(U,J) = 0 ondQ;\oN.

Waves

N
Q=Ul,9;
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The two-level method

One level is not enough (only neighbouring subdomains communicate)

A AT T
Q; Q Q3

Waves 8/28



The two-level method

One level is not enough (only neighbouring subdomains communicate)

AT T T AT
(o} Q, Qs

"Coarse" information: Z or how to add a second level
My =QM~'P+ H|, where

A is the stiffness matrix,

M1 is the one-level ORAS preconditioner,

H = ZE~1Z* is the coarse matrix, where

Z is the matrix whose columns span the coarse space and £ = Z*AZ
P=Q =l additive two-level preconditioner (I is the identity matrix),
P=1-AH,Q=1-HA hybrid two-level preconditioner
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Adding a coarse space: the grid coarse space

The “grid” coarse space is based on a geometrical coarse mesh correction of diameter Heoarse

Definition of Z

Ro the interpolation matrix from the fine to the coarse FEM grid
Zi= R3S coarse space matrix

E =ZTAZ is the stiffness matrix of the problem discretised on the coarse mesh

For scalability and robustness w.r.t to the frequency we need Hcoarse ~ k' 0< o <=1.

Remark: The definition of the coarse space doesn't have to be geometrical = spectral coarse spaces
(based on local eigenvalue problems)
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Existing theory: robustness w.r.t. wave number

The theory of the grid coarse space is based on the problem with absorption in the Dirichlet case (i.e.
replace the —A — k? operators with —A — (k? 4 4£)) [Graham, Spence, Vainikko, Math. Comp., 2017] and

extended to Maxwell in [Bonazzoli, Dolean Graham, Spence, Tournier, Math. Comp., 2019]

Theorem. When |£| ~ k? (max absorption) and § ~ Heoarse (generous overlap), H ~ Heoarse ~
k=, then weighted GMRES will converge with the number of iterations independent of the
wavenumber.

Residual ry,, is minimized in the norm induced by (D = V(Helmholtz) and D = V x (Maxwell))

(V,W)p, = (v, Wn)p,x (Vr, Wn € Vi with coefficient vectors V, W),
(Vi Wh)p.k = (DVh, DWn) 1200y + k> (Va, Wh) £2(a)
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Spectral coarse spaces

Q1: Is the grid coarse space optimal for heterogeneous problems?
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Spectral coarse spaces

Q1: Is the grid coarse space optimal for heterogeneous problems?

Q2: Can we extend the idea of spectral coarse spaces to Helmholtz ? How do we choose the
‘modes’ which go into the space?

A: There are several spectral versions: DtN, H-GenEO (high-frequencies, no theory), A-GenEO
(low-frequencies, theory for general non-symmetric problems)

Aim: theory and limitations for A-GenEO and numerical comparison of spectral coarse spaces (DtN,
H-GenEOQ) with the grid coarse space for a few benchmark problems
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The Dirichlet-to-Neumann coarse space

Definition (DtN eigenproblem)
Find (ur,;,\) € V(I';) x C such that . .

DtNg, (ur,) = Aur, .

N -» n
Definition (DtN operator) LANEN ™
Let DCQ, letT'p =0D\ 0Q. Let vr,, : T'p — C. Then

. A b 4.
DtNp(vr,) = @| —_— -
b\r'p an'T P (4 " . |
where v : D — C is the extension of vp . ' 4 ' . ‘ ] '
To provide the modes in the coarse space we use the Helmholtz - — -—
9 2 - " e & Al
extension v. How many modes do we need 7 ' ‘ - ' 1
. . . . " " A
Choose only eigenfunctions with eigenvalue \ such that sl .‘ r‘ Y &
Re(X) < k; with g = gé?)): k(z) I i" "i i
b “

Notice this criteria depends on the heterogeneity : :

- - Ik ——

[Dolean, Nataf, Scheichl, Spillane, CMAM, 2012] (Laplace) & [Conen, Dolean, Krause and Nataf, 14] (Helmholtz)
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Construction of the coarse space

i il

l!l!l Fi i

1]

Notati L il

otations

oI — degrees of freedom on the boundary of €; i i

o/ — degrees of freedom in the interior of Q; ;;:;i"m!me

o A — local Neumman matrix on €,
o My, — local mass matrix on the boundary of €; mm““!!mﬂfﬂ
The discrete eigenproblem for (ur,, A) is then ] iiili
19— Apai; M i

(A - Ar,1Ar; A[[‘i> ur, = AMr,ur, 'ml

= i
HH i

Construct the matrix W; of size (#dof on subdomain §2;)x (# coarse modes on subdomain €2; ) using
the eigenvectors and partition of unity.

Waves 13/28



The GenEO coarse space

SPD problems with heterogeneous coefficients

>

-
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The GenEO coarse space

SPD problems with heterogeneous coefficients

>

|

[Spillane, Dolean, Hauret, Nataf, Pechstein, Scheichl, Numer.

Math, 2014] & [Haferssas, Jolivet, Nataf, SISC, 2017]

The replica GenEO coarse space for the Helmholtz

problem fails.
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The GenEO coarse space

SPD problems with heterogeneous coefficients

V GenEO (Generalised Eigenproblems in the
Overlap): in each €; solve the discrete

eigenproblem

DZAZD»LU = )\;{(i)u

‘ where D; are diagonal matrices correspond-
ing to a partition of unity Choose only eigen-

[Spillane, Dolean, Hauret, Nataf, Pechstein, Scheichl, Numer. functlons Wlth elgenvalue A SUCh that

Math, 2014] & [Haferssas, Jolivet, Nataf, SISC, 2017] 2 > 2
min

The replica GenEO coarse space for the Helmholtz

problem fails.
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Theory and limitations of A - GenEO

Waves

Designed for a more general BVP
-V - (AX)Vu) —ku=f in Q,
u=20 on 09,

with A an SPD matrix-valued function, amin|€|? < A(X)€ - € < amax|€]?,x € 2,€ €R?, k € L™(Q).
Helmholtz problem with A = I and k = w?n + absorbing BC appears often in geophysics.
The finite element solution u;, € V" satisfies the weak formulation b(up,vs,) = F(vp,)

b(u,v) = /Q (A(x)Vu - Vo — kuv) dx and F(v) = /Q fodx.

After discretisation by FEM we get the symmetric linear system

Bu=f

where B is symmetric but generally indefinite.

(1a)
(1b)

()

®3)
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One-level methods - variational framework

Overlapping partition {Q;}1<;<n of Q, with Q; of diameter H; and H the maximal diameter of the
subdomgins.
Define VJ = {U\QJ cv €V}, VIi={ve VI :supp(v) C Q;}, and for u, v € Vi

bj(u,v) := /gz (A(x)Vu - Vv — kuv) dx and aj(u,v) == / A(x)Vu - Vodx.

J Q;
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One-level methods - variational framework

Overlapping partition {Q;}1<;<n of Q, with Q; of diameter H; and H the maximal diameter of the
subdomains.
Define V7 = {w|

2, v € Vil Vi ={veVI:supp(v) C Q,;}, and for u, v € Vi
bj(u,v) := / (A(x)Vu - Vv — kuv) dx and aj(u,v) := / A(x)Vu - Vodx.
JQ; JQ;

Extension operators: RJT ViV, 1<j<Nand R;F denote its matrix representation with respect to the
nodal basis and set R; = (RJT)T

One-level additive Schwarz preconditioner

My = ZRT(R ;BR])"'R;.
g=1

Waves 16/28



A-GenEO and H-GenEO

POU operators Z; : Vi vi (Z;il RJTE] (vlo,) = v, Yv € V},) and the generalised eigenvalue problems

find p € \7_7'\{0}, AeR: aj(p,v) = Aa;(E;(p),E;(v)), for all v € V7, (4)
find ¢ € V;\{0}, A e R : bi(q,v) = Xa;(E;(q),Z;(v)), for all v € V7, (5)
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A-GenEO and H-GenEO

POU operators = : Vi Vi (Eﬁ\zl R?Ej (vln,) = v, Vv € V},) and the generalised eigenvalue problems

[1]

5 (0), for all v € V7, (4)
(), forall v e V7, (5)

find p € V;\{0}, A€ R : a;(p,v) = Aa; (E;(p),
find g € V;\{0}, Ae R : bi(g,v) = Xa;(E5(q),

(1]

Definition (A-GenEO and 7-GenEO coarse spaces)

mg

For each j, 1 < j < N, let (p}),_’, and (qu)l”;j1 be the eigenfunctions of the eigenproblems (4) and (5)
corresponding to the m; smallest eigenvalues, respectively. Then we define the A-GenEO and
H-GenEQ coarse spaces, respectively, by
V= span{R?Ej(p{) :l=1,...,mj; j=1,...,N} and (6)
ng = span{'RJTEj(qu) :l=1,...,mj; j=1,...,N} (7)
Two-level extensions of Schwarz methods:
Mg A = My§+ RE ABy A Roa and Mg 5, = Mg + RT , By 3 Ro 3 where
Boa = ROYABRS",A and By 3 = ROVHBRS”’H
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Theoretical result A-GenEO

Theorem (Robustness w.r.t. heterogeneities and "mild" indefiniteness)

Let the fine-mesh diameter h be sufficiently small. Then there exist thresholds Hy > 0 and ©g > 0 such that,
for all H < Hy and

. —1
o J
0= max (XN, 1) <o

the following statements hold:
e Local matrices B; and the coarse matrix By A are non-singular.
e If the problem Bu = f is solved by GMRES with left preconditioner J\/];SI a and residual minimisation in the

energy norm ||ullq := ( [ Vu- AV’U,)I/Q, then there exist a constant ¢ € (0,1), which depends on Hy and ©g
but is independent of all other parameters, such that we have the robust GMRES convergence estimate

J4
lIrellz < (1 =) lIrollZ , (®)

for £ =0,1,..., where ry denotes the residual after ¢ iterations of GMRES.

Conclusions: It works if the indefinitness is "mild" (e.g. low frequency Helmholtz in heterogeneous media)
[Bootland, Dolean, Graham, Ma, Scheichl, arXiv, 2021]
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Comparison and implementation of the different coarse spaces

Helmholtz benchmark test cases

e 3 methods: Grid coarse space, DtN, H-Geneo.

e test cases: Marmousi, Cobra cavity and Overthrust)
e low and high frequency

e precision: underesolved (5 ppwl), and with
conventional resolution (10 ppwl).

Open source libraries and DSL

. Discretisation: FreeFEM  https:
//freefem.org

e Solvers:

ffddm FreeFem-sources/examples/ffddm
HPDDM https://github.com/hpddm/hpddm
PETSc https://www.mcs.anl.gov/petsc
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https://freefem.org
https://freefem.org
https://github.com/hpddm/hpddm
https://www.mcs.anl.gov/petsc

Results with 10 points per wavelength

Coarse grid H-GenEO DtN
Problem 4 | frea | 5ppwl | 10 ppwl | 5 ppwl | 10 ppwl | 5 ppwl | 10 ppwl e Grid coarse space vs. one-level
I
Marmousi o [ 4 4 4 4 44 44
high | vV v X 4 v v One-level (min. overlap) One-level (coarse overlap) Coarse grid
fAN 10 20 40 80 160 | 10 20 40 80 160 | 10 20 40 80 160
1 34 49 T2 143 - 30 43 63 97 - 16 18 19 21 -
5 62 94 137 191 268 | 58 87 126 175 246 | 29 29 34 34 36
10 85 136 185 272 371 | 78 124 172 251 346 | 35 41 43 46 45
20 101 152 213 299 419 | 92 142 198 272 389 | 39 47 48 49 49

e H-Geneo coarse space with v = 160 modes

1 7 8 8 13 -
5 10 9 10 10 12
10 20 16 14 13 13
20 45 40 34 25 19
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Cobra cavity

Coarse grid H-GenEO DtN
Problem d | freq | 5ppwl | 10 ppwl | 5 ppwl | 10 ppwl | 5 ppwl | 10 ppwl Results with 10 points per Wavelength
) low v v x x ' v

COBRA Cavity | 2D

high X v X x L4 v .

° . -

coBRA oty | 3D |1 |7 w * x w v Grid coarse space vs. one-level

high X v x X v v

One-level Coarse grid

k\ N 20 40 80 160 | 20 40 80 160
50 27 38 47 52 8 8 8 9
100 80 103 115 147 | 11 23 11 11
150 143 181 235 292 | 16 16 17 17
200 192 268 308 427 | 15 15 16 16

e H-Geneo and DtN coarse space with v = 320 modes

50 23 30 40 44 8 8 11 11
100 63 85 107 133 15 16 18 16
150 119 158 219 279 | 33 23 26 26
200 182 246 311 430 57 64 54 49
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Overthrust

Coarse grid H-GenEO DN
Problem | d | freq | 5ppwl | 10 ppwl | 5ppwl | 10 ppwl | 5 ppwl | 10 ppwl
Overthrust | 3D |12 | 7 4 d 4 4 X
high | /v w x x x x

Waves

vel

S0
089

foua

rmmm

Lo

e Grid coarse space vs. one-level 5 ppwl

One-level (min. overlap) | One-level (coarse overlap) Coarse grid
FAN[10 20 40 80 160 | 10 20 40 80 160 [ 10 20 40 80 160
05 |16 21 28 35 — |14 17 20 19 - |9 10 10 10 -
1|27 36 55 62 78 |24 30 48 50 62 [17 19 23 23 25
2 |32 47 64 81 104 |27 40 53 68 86 |18 22 25 27 28
One-level (min. overlap) | One-level (coarse overlap) Coarse grid
FAN | 320 640 1280 320 640 1280 320 640 1280
5 | 170 209 256 139 173 213 28(7) 30(8) 30(11)

e Grid coarse space vs. one-level 10 ppwl

One-level (min. overlap) | One-level (coarse overlap) Coarse grid
FAN | 320 640 1280 320 640 1280 320 640 1280
2 149 185 226 125 156 189 24(7)  24(9) 23(13)
One-level (min. overlap) | One-level (coarse overlap) | Coarse grid
f\N 2560 2560 2560
5 365 338 30(15)




Conclusions on coarse spaces

No clear advantage of one method over another (depending on the frequency or precision)

Coarse grid H-GenEO DtN
Problem d freq | 5 ppwl | 10 ppwl | 5 ppwl | 10 ppwl | 5 ppwl | 10 ppwl
Marmousi 2D low v v v v 54 VL4
high L4 v X v 7 v
COBRA Cavity | 20 2% | ¥ 44 X x v v
high X 44 X X v/ 7
1
COBRA Cavity | 30 |19 | ¥ 4 X X v v
high X 124 X x 77 7
Overthrust 3D low 44 44 X v v X
high L4 vV X X x X

e Parameters can be tuned in both cases (refinement level for the grid CS and # of modes for the spectral CS)
e In the case of multiple RHS the additional precomputation required by the spectral CS becomes less of a
burden compared to the inner iterations required to solve the coarse problems when using the grid CS.

[Bootland, Dolean, Jolivet, Tournier, arXiv, 2020]
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The grid coarse space: assessment on a geophysical benchmark problem
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Frequency-domain FWI

e Suitable for long-offset acquisitions (few fregs. enough) Forward problem & Helmholtz equation
e Cheap & straightforward implementation of Q

(W?/K)u+ Au=f

ok =1/pc%
e p is the density
e cp is the complex-valued P wavespeed

10 Hz monochromatic wavefield

Depth(km)
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SEG/EAGE Overthrust

Adaptive tetrahedral meshing

Regular mesh set on smallest wavelength vs. h-adapted unstructured mesh
= # elements decreased by a factor of 2.07

Figure 3: Meshing of Overthrust model, (a) regular and (b,c) adaptive tetrahedral meshes
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SEG/EAGE Overthrust

Precision arithmetic and exact vs. incomplete factorizations

Test case: P3 FE, 5 points per wavelength, GMRES tolerance ¢ = 1073

Single precision arithmetic and approximate factorizations f = 5Hz, 74 million dofs, 1060

cores
Cartesian grid
precision | fine local solver | #it | setup | GMRES
double Cholesky 10 92.5s 15.5s
double ICC 10 30.2s 8.9s
single Cholesky 10 50.3s 10.3s
single ICC 10 | 25.8s 6.3s
Table 1: *

Cholesky vs. incomplete Cholesky factorization of local matrices at the fine level
single vs. double precision arithmetic for the whole computation

+ significant memory savings
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SEG/EAGE Overthrust

Precision arithmetic and exact vs. incomplete factorizations

Test case: P3 FE, 5 points per wavelength, GMRES tolerance ¢ = 1073

Regular vs. adapted mesh

Regular mesh
Freq (Hz) | #cores | #elts (M) | #dofs (M) | #it | GMRES
5 265 16 74 7 16s
10 2,120 131 S 15 33s
Adapted mesh
Freq (Hz) | #cores | #elts (M) | #dofs (M) | #it | GMRES
10 2,120 63 286 14 15s
20 16,960 506 2,285 30 37s
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SEG/EAGE Overthrust

Regular vs. adapted mesh

Figure 4: Solution on regular mesh(left) vs. adapted mesh(right) at f = 10Hz
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SEG/EAGE Overthrust

Regular vs. adapted mesh

Figure 4: Solution at f = 20Hz

[Dolean, Jolivet, Operto, Tournier, arXiv, 2020]
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General conclusions
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General conclusions

Time harmonic wave problems display difficulties at different levels...

e Theoretical challenges: behaviour of a few methods is not completely understood. (e.g.
heterogeneities, spectral coarse spaces..).

e Practical challenges: some applications require the exploitation of specific features of these methods,
often not covered by theory (convince a new community to adopt these different methods is not easy!)

e Computational: interplay between precision and parallel performance (not to increase complexity
beyond necessity !)
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