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From the applied mathematician perspective

Maxwell’s equations
Medical imaging: reconstruct the permittivity ε

∇× (µ−1∇×E)− ω2εE = J

• E is the electric field

• µ > 0 is the magnetic permeability,

• ε > 0 is the electric permittivity, ω is the

frequency.

Helmholtz equations
Seismic imaging: reconstruct material properties of subsurface

−∆u− (ω2/c2)u = f,

• c2 = ρc2P , ρ is the density,

• cP is the speed of longitudinal waves.
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Helmholtz equation

Figure 1: Hermann von Helmholtz (1821-1894),
physicist, physician, philosopher, ...

−∆u− k2u = f

a.k.a. the reduced wave equation or time-harmonic

wave equation.

Scalar wave equation (c(x) local speed of
propagation

∂ttv − c2(x)∆v = F (x, t)

If F (x, t) = f(x)e−iωt (mono-chromatic) we
can assume

v(x, t) = u(x)e−iωt

which leads to

−∆u− n(x)2ω2u = f,

where n(x) = 1
c(x)

is the index of refraction,
k2 = n2ω2 is called wave number.
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Why the high-frequency problem is hard? (Accuracy and pollution)

AIM: After discretisation maximise accuracy and minimise the number of degrees of freedom (#DoF)
FACTS:
If hω is kept constant the error increases with ω → pollution error [Babuska, Sauter, SINUM, 1997]

Other discretisations (FEM) or higher dimensions and for quasi-optimality we need

hpωp+1 . 1

[Melenk, Sauter, SINUM, 2011].
For a bounded error h ∼ ω−1−1/2p [Du, Wu, SINUM, 2015].

Consequences
• High-frequency solution u oscillates at a scale 1/ω ⇒ h ∼ 1

ω
⇒ large #DoF.

• Pollution effect requires h� 1
ω
, h ∼ ω−1−1/p, with p the finite element order ⇒ even larger

#DoF.
• Trade-off: number of points per wavelength (ppwl) G = λ

h
= 2π

ωh
and polynomial degree ⇒

dispersion analysis (measuring the ratio between the numerical and physical wave speeds).
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A hidden story of complexity and accuracy (Finite differences vs. Finite elements)

Test case: 2 km × 4 km × 12 km, c(x, y, z) = c0 + α× z with c0=1 km/s with a source at 1 km depth and
frequency is 8 Hz. FD grid (h=31.25 m) corresponds to 4 ppwl, adapted tetrahedral FE grid.

#dof (M) Error norm
α(s−1) λmin(m) λmax(m) FD FE FD FE
0.8 125 1200 13 28 0.0079 0.034
2 125 3125 13 16 0.044 0.034
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Figure 2: (a) FD solution. (b) Analytical solution. (c) FE solution. (d) FE mesh. (e) Comparison between (a-c) along a vertical profile
cross-cutting source position. (f-g) Phase velocity dispersion curves for (f) FE and (g) FD. G: number of ppwl.
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Why the high-frequency forward problem is hard? (Efficiency)

After discretisation we get a large linear system to solve Au = b.

How bad things can be?

• A is symmetric but non-hermitian for the damped equations and/or when Robin BC are used.
• A is getting larger with ω: its size n is increasing like Nd ∼ ω(1+1/p)d where N ∼ 1/h.
• A can become arbitrarily ill-conditioned
... conventional iterative methods fail
[Ernst, Gander, Numerical analysis of multiscale problems, 2012], [Gander, Zhang, SIREV, 2019],
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• A is symmetric but non-hermitian for the damped equations and/or when Robin BC are used.
• A is getting larger with ω: its size n is increasing like Nd ∼ ω(1+1/p)d where N ∼ 1/h.
• A can become arbitrarily ill-conditioned
... conventional iterative methods fail
[Ernst, Gander, Numerical analysis of multiscale problems, 2012], [Gander, Zhang, SIREV, 2019],

The holy grail ...
• Solution of the discretised PDEs in optimal time for large ω
• Solvers should have good parallel properties.
• Solvers should be robust w.r.t heterogeneities.
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Au = b? Landscape of linear solvers for large linear systems

• Direct solvers: MUMPS, SuperLU (Demmel, . . . ), PastiX, UMFPACK, PARDISO (O. Schenk)
• Iterative methods (Krylov): CG (Stiefel-Hestenes), GMRES (Saad), BiCGSTAB (van der Vorst)
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• Iterative methods (Krylov): CG (Stiefel-Hestenes), GMRES (Saad), BiCGSTAB (van der Vorst)

How large is truly large (for heterogeneous Helmholtz, e.g. geophysics) to justify the use of DD?

• Problems (in applications) do not need to be overesolved. (to much precision not necessary
in FWI)
• Use direct methods when this is possible.
[Patrick Amestoy; Romain Brossier; Alfredo Buttari; Jean-Yves L’Excellent; Theo Mary; Ludovic Métivier; Alain Miniussi;

Stephane Operto, Geophysics, 2016] (3d problem from FWI with 50 Million dofs solved with MUMPS)
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The one-level method - Optimized Restrictive Additive Schwarz (ORAS)

Solve the preconditionned Au = b, i.e. M−1Au = M−1b by GMRES

The one-level preconditioner

M−1 =
N∑
j=1

RTj DjA
−1
j Rj , where

Rj Ω→ Ωj is restriction operator
RTj Ωj → Ω is prolongation operator
Dj corresponds to the partition of unity.

Definition of the local matrices Aj
Aj is the stiffness matrix of the local Robin problem

(−∆− k2)(uj) = f in Ωj(
∂
∂nj

+ ik
)

(uj) = 0 on ∂Ωj \ ∂Ω.

Ω = ∪Nj=1Ωj
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The two-level method

One level is not enough (only neighbouring subdomains communicate)
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The two-level method

One level is not enough (only neighbouring subdomains communicate)

"Coarse" information: Z or how to add a second level
M2 = QM−1P +H , where

A is the stiffness matrix,
M−1 is the one-level ORAS preconditioner,
H = ZE−1Z∗ is the coarse matrix, where
Z is the matrix whose columns span the coarse space and E = Z∗AZ

P = Q = I additive two-level preconditioner (I is the identity matrix),
P = I - AH,Q = I - HA hybrid two-level preconditioner
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Adding a coarse space: the grid coarse space

The “grid” coarse space is based on a geometrical coarse mesh correction of diameter Hcoarse

Definition of Z

R0 the interpolation matrix from the fine to the coarse FEM grid
Z = RT0 coarse space matrix
E = ZTAZ is the stiffness matrix of the problem discretised on the coarse mesh

For scalability and robustness w.r.t to the frequency we need Hcoarse ∼ k−α
′
, 0 < α′ <= 1.

Remark: The definition of the coarse space doesn’t have to be geometrical ⇒ spectral coarse spaces
(based on local eigenvalue problems)
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Existing theory: robustness w.r.t. wave number

The theory of the grid coarse space is based on the problem with absorption in the Dirichlet case (i.e.
replace the −∆− k2 operators with −∆− (k2 + iξ)) [Graham, Spence, Vainikko, Math. Comp., 2017] and
extended to Maxwell in [Bonazzoli, Dolean Graham, Spence, Tournier, Math. Comp., 2019]

Theorem. When |ξ| ∼ k2 (max absorption) and δ ∼ Hcoarse (generous overlap), H ∼ Hcoarse ∼
k−1, then weighted GMRES will converge with the number of iterations independent of the
wavenumber.
Residual rm is minimized in the norm induced by (D = ∇(Helmholtz) and D = ∇× (Maxwell))

〈V,W〉Dk = (vh,wh)D,k (vh,wh ∈ Vh with coefficient vectors V,W),

(vh,wh)D,k = (Dvh,Dwh)L2(Ω) + k2(vh,wh)L2(Ω)
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Spectral coarse spaces

Q1: Is the grid coarse space optimal for heterogeneous problems?
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Spectral coarse spaces

Q1: Is the grid coarse space optimal for heterogeneous problems?

Q2: Can we extend the idea of spectral coarse spaces to Helmholtz ? How do we choose the
‘modes’ which go into the space?

A: There are several spectral versions: DtN, H-GenEO (high-frequencies, no theory), ∆-GenEO
(low-frequencies, theory for general non-symmetric problems)

Aim: theory and limitations for ∆-GenEO and numerical comparison of spectral coarse spaces (DtN,
H-GenEO) with the grid coarse space for a few benchmark problems
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The Dirichlet-to-Neumann coarse space

Definition (DtN eigenproblem)
Find (uΓi

, λ) ∈ V (Γi)× C such that

DtNΩi
(uΓi

) = λuΓi

Definition (DtN operator)
Let D ⊂ Ω, let ΓD = ∂D \ ∂Ω. Let vΓD

: ΓD → C. Then

DtND(vΓD
) =

∂v

∂n
|ΓD

where v : D → C is the extension of vΓD
.

To provide the modes in the coarse space we use the Helmholtz
extension v. How many modes do we need ?

Choose only eigenfunctions with eigenvalue λ such that

Re(λ) < ki with ki = max
x∈Ωi

k(x)

Notice this criteria depends on the heterogeneity

[Dolean, Nataf, Scheichl, Spillane, CMAM, 2012] (Laplace) & [Conen, Dolean, Krause and Nataf, 14] (Helmholtz)
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Construction of the coarse space

Notations
• Γi — degrees of freedom on the boundary of Ωi

• I — degrees of freedom in the interior of Ωi

• Ã(i) — local Neumman matrix on Ωi

• MΓi — local mass matrix on the boundary of Ωi

The discrete eigenproblem for (uΓi , λ) is then(
Ã(i) −AΓiIA

−1
II AIΓi

)
uΓi = λMΓiuΓi

Construct the matrix Wi of size (#dof on subdomain Ωi)× (# coarse modes on subdomain Ωi ) using
the eigenvectors and partition of unity.
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The GenEO coarse space

SPD problems with heterogeneous coefficients
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The GenEO coarse space

SPD problems with heterogeneous coefficients

[Spillane, Dolean, Hauret, Nataf, Pechstein, Scheichl, Numer.

Math, 2014] & [Haferssas, Jolivet, Nataf, SISC, 2017]

The replica GenEO coarse space for the Helmholtz

problem fails.
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The GenEO coarse space

SPD problems with heterogeneous coefficients

[Spillane, Dolean, Hauret, Nataf, Pechstein, Scheichl, Numer.

Math, 2014] & [Haferssas, Jolivet, Nataf, SISC, 2017]

The replica GenEO coarse space for the Helmholtz

problem fails.

GenEO (Generalised Eigenproblems in the
Overlap): in each Ωi solve the discrete
eigenproblem

DiAiDiu = λÃ(i)u

where Di are diagonal matrices correspond-
ing to a partition of unity Choose only eigen-
functions with eigenvalue λ such that

λ > λmin
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Theory and limitations of ∆ - GenEO

Designed for a more general BVP

−∇ · (A(x)∇u)− κu = f in Ω, (1a)

u = 0 on ∂Ω, (1b)

with A an SPD matrix-valued function, amin|ξ|2 ≤ A(x)ξ · ξ ≤ amax|ξ|2,x ∈ Ω, ξ ∈ Rd, κ ∈ L∞(Ω).
Helmholtz problem with A = I and κ = ω2n + absorbing BC appears often in geophysics.
The finite element solution uh ∈ V h satisfies the weak formulation b(uh, vh) = F (vh)

b(u, v) =

∫
Ω

(A(x)∇u · ∇v − κuv) dx and F (v) =

∫
Ω
fv dx. (2)

After discretisation by FEM we get the symmetric linear system

Bu = f (3)

where B is symmetric but generally indefinite.
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One-level methods - variational framework

Overlapping partition {Ωj}1≤j≤N of Ω, with Ωj of diameter Hj and H the maximal diameter of the
subdomains.
Define Ṽ j = {v|Ωj

: v ∈ Vh}, V j = {v ∈ Ṽ j : supp(v) ⊂ Ωj}, and for u, v ∈ Ṽ j

bj(u, v) :=

∫
Ωj

(A(x)∇u · ∇v − κuv) dx and aj(u, v) :=

∫
Ωj

A(x)∇u · ∇vdx.
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Overlapping partition {Ωj}1≤j≤N of Ω, with Ωj of diameter Hj and H the maximal diameter of the
subdomains.
Define Ṽ j = {v|Ωj

: v ∈ Vh}, V j = {v ∈ Ṽ j : supp(v) ⊂ Ωj}, and for u, v ∈ Ṽ j

bj(u, v) :=

∫
Ωj

(A(x)∇u · ∇v − κuv) dx and aj(u, v) :=

∫
Ωj

A(x)∇u · ∇vdx.

Extension operators: RTj : V j → Vh, 1 ≤ j ≤ N and RTj denote its matrix representation with respect to the
nodal basis and set Rj = (RTj )T .

One-level additive Schwarz preconditioner

M−1
AS =

N∑
j=1

RTj (RjBR
T
j )−1Rj .
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∆-GenEO and H-GenEO

POU operators Ξj : Ṽ j → V j (
∑N
j=1R

T
j Ξj(v|Ωj

) = v, ∀v ∈ Vh) and the generalised eigenvalue problems

find p ∈ Ṽj\{0}, λ ∈ R : aj(p, v) = λaj(Ξj(p),Ξj(v)), for all v ∈ Ṽ j , (4)

find q ∈ Ṽj\{0}, λ ∈ R : bj(q, v) = λaj(Ξj(q),Ξj(v)), for all v ∈ Ṽ j , (5)
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T
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) = v, ∀v ∈ Vh) and the generalised eigenvalue problems

find p ∈ Ṽj\{0}, λ ∈ R : aj(p, v) = λaj(Ξj(p),Ξj(v)), for all v ∈ Ṽ j , (4)

find q ∈ Ṽj\{0}, λ ∈ R : bj(q, v) = λaj(Ξj(q),Ξj(v)), for all v ∈ Ṽ j , (5)

Definition (∆-GenEO and H-GenEO coarse spaces)

For each j, 1 ≤ j ≤ N , let (pjl )
mj

l=1 and (qjl )
mj

l=1 be the eigenfunctions of the eigenproblems (4) and (5)
corresponding to the mj smallest eigenvalues, respectively. Then we define the ∆-GenEO and
H-GenEO coarse spaces, respectively, by

V 0
∆ := span{RTj Ξj(p

j
l ) : l = 1, . . . ,mj ; j = 1, . . . , N} and (6)

V 0
H := span{RTj Ξj(q

j
l ) : l = 1, . . . ,mj ; j = 1, . . . , N}. (7)

Two-level extensions of Schwarz methods:
M−1

AS,∆ = M−1
AS +RT0,∆B

−1
0,∆R0,∆ and M−1

AS,H = M−1
AS +RT0,HB

−1
0,HR0,H where

B0,∆ := R0,∆BR
T
0,∆ and B0,H := R0,HBR

T
0,H
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Theoretical result ∆-GenEO

Theorem (Robustness w.r.t. heterogeneities and "mild" indefiniteness)

Let the fine-mesh diameter h be sufficiently small. Then there exist thresholds H0 > 0 and Θ0 > 0 such that,
for all H ≤ H0 and

Θ := max
1≤j≤N

(
λjmj+1

)−1
≤ Θ0

the following statements hold:
• Local matrices Bj and the coarse matrix B0,∆ are non-singular.
• If the problem Bu = f is solved by GMRES with left preconditioner M−1

AS,∆ and residual minimisation in the

energy norm ‖u‖a :=
( ∫

Ω∇u ·A∇u
)1/2, then there exist a constant c ∈ (0, 1), which depends on H0 and Θ0

but is independent of all other parameters, such that we have the robust GMRES convergence estimate

‖r`‖2a ≤
(
1− c2

)` ‖r0‖2a , (8)

for ` = 0, 1, . . . , where r` denotes the residual after ` iterations of GMRES.

Conclusions: It works if the indefinitness is "mild" (e.g. low frequency Helmholtz in heterogeneous media)
[Bootland, Dolean, Graham, Ma, Scheichl, arXiv, 2021]
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Comparison and implementation of the different coarse spaces

Helmholtz benchmark test cases

• 3 methods: Grid coarse space, DtN, H-Geneo.
• test cases: Marmousi, Cobra cavity and Overthrust)
• low and high frequency
• precision: underesolved (5 ppwl), and with
conventional resolution (10 ppwl).

Open source libraries and DSL

• Discretisation: FreeFEM https:
//freefem.org

• Solvers:

ffddm FreeFem-sources/examples/ffddm

HPDDM https://github.com/hpddm/hpddm

PETSc https://www.mcs.anl.gov/petsc
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Marmousi

Results with 10 points per wavelength

• Grid coarse space vs. one-level

• H-Geneo coarse space with ν = 160 modes
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Cobra cavity

Results with 10 points per wavelength

• Grid coarse space vs. one-level

• H-Geneo and DtN coarse space with ν = 320 modes
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Overthrust

• Grid coarse space vs. one-level 5 ppwl

• Grid coarse space vs. one-level 10 ppwl

Waves 22/28



Conclusions on coarse spaces

No clear advantage of one method over another (depending on the frequency or precision)

• Parameters can be tuned in both cases (refinement level for the grid CS and # of modes for the spectral CS)
• In the case of multiple RHS the additional precomputation required by the spectral CS becomes less of a
burden compared to the inner iterations required to solve the coarse problems when using the grid CS.

[Bootland, Dolean, Jolivet, Tournier, arXiv, 2020]
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A forward-modeling engine for FD FWI applied on sparse ultra-long offset OBN data

Frequency-domain FWI

• Suitable for long-offset acquisitions (few freqs. enough)
• Cheap & straightforward implementation of Q

Visco-acoustic VTI FWI on Valhall

Forward problem & Helmholtz equation

(ω2/κ)u+ ∆u = f

• κ = 1/ρc2P
• ρ is the density
• cP is the complex-valued P wavespeed

10 Hz monochromatic wavefield
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SEG/EAGE Overthrust
Adaptive tetrahedral meshing

Regular mesh set on smallest wavelength vs. h-adapted unstructured mesh
⇒ # elements decreased by a factor of 2.07

a)

c)

a) b)

Figure 3: Meshing of Overthrust model, (a) regular and (b,c) adaptive tetrahedral meshes
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SEG/EAGE Overthrust
Precision arithmetic and exact vs. incomplete factorizations

Test case: P3 FE, 5 points per wavelength, GMRES tolerance ε = 10−3

Single precision arithmetic and approximate factorizations f = 5Hz, 74 million dofs, 1060
cores

Cartesian grid
precision fine local solver #it setup GMRES
double Cholesky 10 92.5s 15.5s
double ICC 10 30.2s 8.9s
single Cholesky 10 50.3s 10.3s
single ICC 10 25.8s 6.3s

Table 1: *

Cholesky vs. incomplete Cholesky factorization of local matrices at the fine level
single vs. double precision arithmetic for the whole computation

+ significant memory savings
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SEG/EAGE Overthrust
Precision arithmetic and exact vs. incomplete factorizations

Test case: P3 FE, 5 points per wavelength, GMRES tolerance ε = 10−3

Regular vs. adapted mesh

Regular mesh
Freq (Hz) #cores #elts (M) #dofs (M) #it GMRES

5 265 16 74 7 16s
10 2,120 131 575 15 33s

Adapted mesh
Freq (Hz) #cores #elts (M) #dofs (M) #it GMRES

10 2,120 63 286 14 15s
20 16,960 506 2,285 30 37s
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SEG/EAGE Overthrust
Regular vs. adapted mesh

Figure 4: Solution on regular mesh(left) vs. adapted mesh(right) at f = 10Hz

Waves 27/28



SEG/EAGE Overthrust
Regular vs. adapted mesh

Figure 4: Solution at f = 20Hz

[Dolean, Jolivet, Operto, Tournier, arXiv, 2020]
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General conclusions

Time harmonic wave problems display difficulties at different levels...

• Theoretical challenges: behaviour of a few methods is not completely understood. (e.g.
heterogeneities, spectral coarse spaces..).

• Practical challenges: some applications require the exploitation of specific features of these methods,
often not covered by theory (convince a new community to adopt these different methods is not easy!)

• Computational: interplay between precision and parallel performance (not to increase complexity
beyond necessity !)
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