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Introduction

To simulate different processes, such as mechanics, fluid flow, thermal equilibrium, etc.
implies the solution of a system of PDEs, where each equation has its own
characteristics, e.g., nature (elliptic, parabolic, hyperbolic), time and space scales, and
order of magnitude of the coefficients, and can be discretized with different Galerkin
approaches (finite volumes, finite elements, etc.).

From a numerical standpoint, we need to solve a system of discretized non linear
equations. After the linearization stage (Newton’s scheme), a block linear system is
obtained. Due to the different nature of each block, the solution of this linear system
can be extremely difficult to obtain.
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Preconditioners for single block matrices

To efficiently solve large and sparse linear systems, we have to use iterative methods
[Saa03]. Direct methods, indeed, have too high memory requirement and are almost
sequential by design. However, iterative methods are effective only if properly
preconditioned. For a single physics matrix, such as a stiffness matrix or a mass
matrix, the literature offers several preconditioners:

incomplete factorizations [Saa94, LM99, Ben02]

approximate inverses [BMT96, Tan99, Huc03a, JFSG15]

domain decomposition methods [DJN15, Zam16, BMP16, LS17]

multigrid methods [MR82, Stü83, BBKL15, PMFJ19]

If we try to use one of these techniques for a block matrix, they will fail, because they
do not consider the multiphysics nature of the block matrix.
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Monolithic approaches

Standard approaches, such as incomplete factorizations, approximate inverses, and
multigrid usually do not work on block matrices, due to the different natures of the
blocks. Just to cite few of them, they can be:

stiffness matrices from structural mechanics problem;

mass matrices;

Laplacian matrices from finite volumes based on TFPA/MPFA;

not deriving from PDEs (e.g., constraints);

null blocks.

This huge variety requires the use of specialized solvers, based on the underlying
physics. Indeed, it is of paramount importance to solve with different tool matrices
arising from different problems.
This is why monolithic approaches cannot be used and the block approach is used in
multiphysics problems.
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Schur complement

Let’s start with a simple 2× 2 example:

A =

[
A B
C D

]
that corresponds to:{

Ax + By = f

Cx + Dy = g

Assuming that A is a regular matrix,
from the first equation, we can solve for
x, obtaining:

x = A−1 (f − By)

Substituting in the second equation, we
have:

CA−1f − CA−1By + Dy = g

where S = D − CA−1B is the Schur
complement. The solution is:

y = S−1
(
g − CA−1f

)
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Block LDU factorization

Another way to solve the same problem is to compute its block LDU factorization:

A =

[
A B
C D

]
=

[
I 0

CA−1 I

] [
A 0
0 S

] [
I A−1B
0 I

]
= LDU

where S = D − CA−1B is again the Schur complement. Once the matrix is factorized,
the solution is trivial. To apply the inverse of the LDU factorization, the inverse of S is
needed.
This is very nice ..., but we do not know:

the inverse of A, to compute the Schur complement

the inverse of S , the Schur complement itself

According to the different approximation we choose, we will obtain different methods.
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Coupled modeling of flow in
deformable porous media
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Coupled Biot’s model

Coupled poromechanics is the transient process involving the
simultaneous pore fluid flow and solid skeleton deformation in sat-
urated porous media [Bio41, Cou04]. Meaning with σtot and σeff

the total and effective stress, respectively, and b the Biot coeffient,
the relation with the pore pressure p is

σtot = σeff + bp.

There are several applications in environmental, geotechnical,
petroleum and biomedical engineering, such as hydrocarbon re-
covery, subsurface hydrology, geothermal energy extraction, and
geologic carbon storage, but also biomechanical modeling of bone
or soft tissue deformations.
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Applications

Figure: Subsidence caused
by overexploitation of
aquifer. Figure: Injection and

production wells in oil field.

Figure: Microscopic image
of a bone.
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Numerical models

The numerical solution of Biot’s models is still challenging because of two main issues:

1 the instabilities that may arise at the boundary of heterogeneous media as
spurious oscillations in the pore pressure solution

2 the efficient numerical solution of the large-size ill-conditioned discretized system
of equations

We use a three-field formulation u − v − p combining Galerkin Finite Elements for the
equilibrium and Mixed Finite Elements for the flow with the aim at developing a mass
conservative approach. Other possible discretizations are hybridized formulations and
finite volume techniques, with the common objective of using low-order approximation
spaces.
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Governing PDEs

The governing equations are:
−∇σ(u, p) = f → linear momentum balance

µκ−1q +∇p = 0 → Darcy’s law

b∇u̇ + M−1ṗ +∇q = g → mass balance

where σ = Cdr : ∇su − bp1 is the total stress, Cdr the rank-four elasticity tensor, µ
the fluid viscosity, κ the rank-two permeability tensor, M Biot’s modulus and f and g
external forcing terms.
The primary unknowns are: displacement u, Darcy’s flux q and pressure p.
Appropriate initial and boundary conditions, such as prescribed tractions t̄ and
pressures p̄, close the problem.
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Discrete weak form

With the spaces:

U = {H1(Ω)} Q = {H(div ; Ω)} P = {L2(Ω)}

the semidiscrete weak from is: find {u,q, p} ∈ U ×Q× P such that:

(∇sη,C : ∇su)Ω − (∇η, bp)Ω = (η, t̄)Γ + (η, f )Ω ∀η ∈ U(
ψ, µκ−1q

)
Ω
− (∇ψ, p)Ω =

(
ψ · n, b̄

)
Γ

∀ψ ∈Q
(χ, b∇u̇)Ω +

(
χ,M−1ṗ

)
Ω

+ (χ,∇q)Ω = (χ, g)Ω ∀χ ∈ P

This is equivalent to the matrix form:K 0 −Q
0 A −B
0 BT 0

u
q
p

+

 0 0 0
0 0 0
QT 0 P

u̇
q̇
ṗ

 =

f
g
h


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Finite element space

A popular discrete finite element space for displacement, flux and pressure is
Q1 − RT0 − P0.

Figure: Location of degrees of freedom for Q1 − RT0 − P0 space.
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Linear system

Using implicit Euler as time scheme, with γ = ∆t, the linear system is:

Ax = b→ A =

 K 0 −Q
0 A −B

γ−1QT BT γ−1P


where:

K and A are symmetric and positive definite matrices (SPD)

P is a symmetric and positive semidefinite matrix (SPSD)

Q and B are rectangular coupling blocks

To solve this block linear system, specific techniques are needed.
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Stabilization

The presented framework can be unstable in the LBB sense [Woh11]. This happens in
the presence of incompressible fluid and solid constituents and undrained conditions.
There are different approaches to overcome this limitation (e.g. [SK90]). Common
techniques are bubble stabilization [RHO+18] and jump stabilization [FCFW20].
Usually, these approaches do not change the global structure of the block linear
system, since they just provide a correction matrix to be summed to one of the already
present blocks. Following [FCFW20], we have:

A =

 K 0 −Q
0 A −B

γ−1QT BT γ−1P + Astab


In other cases, the stabilized system can be reduced, through static condensation, to
another with the original block patter.
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Pressure-displacement formulations

In the literature there exists several preconditioners for the two-field (pressure-
displacement) formulation of the poromechanics problem. The block matrix is:

A =

[
K C
CT P

]
Available approaches are:

Polynomial-pressure-projection [WB08, HMFJ18, Cho19]

Block preconditioning [BFG08, WCT16, AGH+20]

Multigrid methods [GR17, LRGO17]

For the three-field formulation (pressure-velocity-displacement) available works are:

Bubble functions [RHO+18, NRH21]

Sequential approaches (fixed stress splitting) [KTJ11, BBN+17, DW18]

Spectrally-equivalent block diagonal preconditioners [LMW17, HKLW20]

Block approaches [CWF16, FCF19, FFJ+19]
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General framework

A general multiphysics problem can be defined as:

A =


A

(1)
1 B

(1)
2 B

(1)
3 · · · B

(1)
n

C
(1)
2 A

(2)
2 B

(2)
3 B

(2)
n

C
(1)
3 C

(2)
3 A

(3)
3 B

(3)
n

...
. . .

...

C
(1)
n C

(2)
n C

(3)
n · · · A

(n)
n


where:

A
(i)
i ∈ Rni×ni is the square diagonal block referring to the i-th process described

by ni inner variables, with i = 1, . . . , n;

B
(j)
i ∈ Rnj×ni and C

(j)
i ∈ Rni×nj , with i = 2, . . . , n and j = 1, . . . , i − 1, are the

off-diagonal rectangular blocks coupling the variables associated to the i-th and
j-th processes.
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Decoupling strategy

The basic idea is to decouple the different processes, so that each single-physics
process can be addressed independently of the others. In particular, we have:

S = GAF

with no coupling blocks, i.e.:

S =


S1

S2

S3

. . .

Sn


where Si ∈ Rni×ni , i = 1, . . . , n.
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Decoupling strategy

Block matrices G and F are:

G =


I

G
(1)
2 I

G
(1)
3 G

(2)
3 I

...
. . .

G
(1)
n G

(2)
n G

(3)
n · · · I

 , F =


I F

(1)
2 F

(2)
3 · · · F

(1)
n

I F
(2)
3 F

(2)
n

I F
(3)
n

. . .

I


Then, GAF = S if and only if:{

AiFi+1 = −Bi+1

Gi+1Ai = −Ci+1

, i = 1, . . . , n − 1
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Schur complements and observations

The matrix S contains the exact Schur complements, defined as:

Si = A
(i)
i − CiA

−1
i−1Bi

If the coupled problem is well-posed, S is non-singular and each Schur
complement Si can be inverted, with the inverse of A reading:

A−1 = F−1S−1G−1

As F , S and G are dense, they cannot be generally computed.

A general preconditioning framework can be obtained by approximating F , G, and
S−1, e.g., by solving inexactly the set of multiple right-hand side systems defining
Fi and Gi , and the local single-physics systems with Si . Different local
approximations will produce different schemes. The key is to keep each
approximation as sparse as possible.
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Application to poroelasticity

Application of the general block preconditioning framework to the three-field
poromechanical problem:

A =

 A
(1)
1 B

(1)
2 B

(1)
3

C
(1)
2 A

(2)
2 B

(2)
3

C
(1)
3 C

(2)
3 A

(3)
3

 =

 K 0 −Q
0 A −B
QT γBT P


Mechanics and Darcy’s flow are already decoupled and because of symmetry only one
of the two decoupling factors can be computed, e.g., F :{

F
(1)
3 = K−1Q

F
(2)
3 = A−1B

and

{
G

(1)
3 = −F (1),T

3

G
(2)
3 = −γF (2),T

3

The diagonal blocks of S are:

S1 = K S2 = A S3 = P + F
(1),T
3 KF

(1)
3 + γF

(2),T
3 AF

(2)
3
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Approximate inverses

The blocks of the decoupling factor F can be computed explicitly and inexactly using
sparse approximate inverse techniques, such as block FSAI and SPAI, where the
sparsity pattern for the blocks is enforced [BKT01, Huc03b, CS98, JF11, JFSG15].

Figure: Schematic representation of a linear system solution subject to sparsity constraints,
before (a) and after (b) pattern symmetrization, i.e., forming K = I ∪ J . Here I and J are
the sets for rows and columns, respectively. The pattern of matrix C is shown in gray.
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Approximate inverses

By enforcing a sparse structure to the columns of F
(1)
3 and F

(2)
3 , the size of the

multiple right-hand sides systems are reduced. Moreover, they become dense and can
be solve in parallel.{

K [K(k)
1 ,K(k)

1 ] F1[K(k)
1 , k] = Q[K(k)

1 , k]

A[K(k)
2 ,K(k)

2 ] F2[K(k)
2 , k] = B[K(k)

2 , k]
, k = 1, . . . , np,

To select the subsets K1 and K2 is not trivial and an effective choice is based on the
combination of static and adaptive approaches [NFA20, FCF21]. The strategy is:

start from the non-zero pattern of the right-hand side

add to K the position corresponding to the largest components of the residual
vector

drop small entries
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Applications

(a) Mandel (b) Treporti (c) Reservoir

Figure: Proposed test cases: sketches.

case nu nq np total

Mandel 177,147 161,280 51,200 389,627
Treporti 178,923 170,257 55,368 404,548
Reservoir 687,531 651,280 211,200 1,550,011

Table: Proposed test cases: sizes.

25 of 46



Numerical results

The setup cost is split into two phases: T
(1)
p and T

(2)
p , i.e., a γ-independent and a

γ-dependent phase. T
(1)
p is a one-time cost, while T

(2)
p will be spent any time ∆t

changes.

γ µ nit T
(1)
p [s] T

(2)
p [s] Ts [s]

0.15 1.579 883 19.224 2.035 25.049
Mandel 1 1.567 337 25.561 5.702 10.003

100 1.568 210 24.011 3.866 5.927

0.01 1.794 272 28.712 9.788 7.992
Treporti 1 1.662 183 31.706 10.829 4.989

100 1.719 91 31.727 7.456 3.011

8.64 · 102 1.144 299 16.805 5.068 28.435
Reservoir 8.64 · 104 1.139 182 22.456 9.179 17.740

8.64 · 106 1.130 182 16.582 4.926 19.708

Table: Numerical results for the test cases.
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Observations

Limits of the aFSAI-based approach:

robustness: depending on the problem features, an explicit sparse approximation
of the decoupling blocks might not exist, so that large densities could be
necessary to obtain convergence;

scalability: the iteration count to converge depends on the size of the spatial and
temporal discretizations.

An alternative idea relies on using an implicit approximation of the decoupling block.

The application of F
(1)
3 and F

(2)
3 is obtained by a matrix-vector product with Q and B,

and the application of an inner preconditioner for K and A, respectively ... but we
loose the possibility to explicitly compute the Schur complement S3:

S3 = P + F
(1),T
3 KF

(1)
3 + γF

(2),T
3 AF

(2)
3 = P + SK + γSA
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We try to use physically-based approximations of SK and SA:

The contribution SA preserves the structure of a scaled Laplacian [BMS94]:

SA = BT Ã−1B Ã = diag(a1, a2, ...), ai = ‖A(i , :)‖2

The contribution SK can be computed
using the classical uncoupled solution to
precondition the fully coupled model, i.e.,
the so-called fixed-stress approximation
[CWT15]. This procedure can be
generalized in a purely algebraic way
[FCF19].
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Contact mechanics problem for
hydraulically active fractures
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Faults and fractures in geomechanics

Faults and fractures are discontinuities in the subsurface that can slide and/or open.
As a consequence of geological movements or human activities (e.g. fracking), they
can activate/propagate and cause several phenomena, such as micro-seismicity and
fluid leakage, with a huge impact on both the environment and economy of the area.
Usually, in the fractures there is fluid, which behavior is strongly coupled with the
mechanics response and can be described as a coupled fluid-structure interaction.
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Applications

Figure: Earth fissure in
Arizona.

initial ground surface

initial aquifer level

Figure: Scheme of
subsidence with fissures. Figure: Number of

earthquakes in the Central
US.
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Numerical models

To model faults and fractures there are several options available, such as:

explicit discretization of the discontinuity

? a thin layer of finite element with specific properties [RBT08, PRFY14, LKMR19]
? discrete fracture model (DFM) with zero-thickness special interface elements

[GTB68, FGJT08, GKFT16, SFW+17]

implicit discretization of the discontinuity

? embedded discrete fracture model (EDFM) [SS15, RJY16, WDG+19, WYM19]
? extended finite elements methods (XFEM) [FFS16, VK17, KVH18]

regularized (smooth) field in a continuum discretization, e.g., phase field and
damage-mechanics-based approaches [VdB13, AMS+14, WWW14, GLH+19]

We use DFM with Lagrange multipliers to impose the constraints
[HR10, JJ14, FFJT16, BBK+20, KMR19], instead of the penalty method
[PO92, ZGL11, GKFT16, SFW+17].
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Governing PDEs

The governing equations are:
−∇σ(u, p) = 0 → linear momentum balance

ġN(u) +∇q(u, p) = qs → mass balance

σ(u) · nf − pnf = 0 → traction balance on the fracture

with the normal and tangential constraints:

tN = t · nf ≤ 0 gN = JuK · nf ≥ 0 tNgN = 0

‖tT‖2 − τmax(tN) ≤ 0 ġT · tT − τmax(tN) ‖ġT‖2 = 0

where gN = JuK · nf is the normal component of the jump, q(u, p) = −Cf (u)
µ ∇p

represents Darcy’s flux and t are the Lagrangian multipliers, i.e., the tractions.
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Discrete weak form

With the spaces:

U = {H1(Ω)} M(tN) = {µ ∈ L(Γf )3, µN ≤ 0, ‖µT‖2 ≤ τmax(tN)} P = {L2(Γf )}

the discrete weak from is: find {u, t, p} ∈ U ×M(tN)× P such that:

(∇sη,σ)Ω + (JηK, t − pnf )Γf
− (η, t̄)∂Ωσ = 0 ∀η ∈ U

(tN − µN , gN)Γf
+ (tT − µT ,∆ngT )Γf

≥ 0 ∀µ ∈M(tN)(
χ,

∆ngN

∆nt

)
Γf

+ [χ, p]Ff
− FFf

(χ) + GFf
(χ)− (χ, qs)Γf

= 0 ∀χ ∈ P

This is equivalent to the matrix form:K C1 Q1

C2 −Ht 0
Q2 0 T + Hp

u
t
p

 =

f
g
h


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Active set strategy

The contact constraints produce a variational inequality. To solve this, we use the
active-set strategy, a numerical optimization technique employed in quadratic
programming [NW06, AKLR18].
In simple words, we assign an initial status to all the Lagrange multipliers (active or
inactive) and solve the discrete nonlinear problem with Newton’s method. Then we
check if out hypothesis was correct and, in case, update the element subdivision.
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Discrete spaces and stabilization

To avoid interpolations between traction and pressure fields, both defined on the
fracture, we use the same discrete space for them, i.e., a cell-centered (face-centered)
piece-wise constant representation. For the displacement, a standard linear finite
element space is employed. For u − t − p the space is Q1 − P0 − P0.
This mixed finite element-finite volume space is not uniformly stable [Woh11] and
requires a stabilization. Different approaches are available (macroelement [ESW14],
algebraic approaches [FCWT20]), but the underlying idea is the same: to fix the Schur
complement with a correction matrix (Ht and Hp in the previous Jacobian).
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Pure contact mechanics problem

Let’s start analyzing the pure contact mechanics problem, i.e.:

A =

[
K C1

C2 −Ht

]
where Ht , the stabilization matrix, is usually singular. As seen before, a block LDU
factorization is a possible strategy to build a preconditioner:

A =

[
K C1

C2 −Ht

]
=

[
I 0

C2K
−1 I

] [
K 0
0 S

] [
I K−1C1

0 I

]
= LDU

where the Schur complement is S = −Ht − C2K
−1C1. Available preconditioners for

this problem are [AKW13, FCF19]:

additive Schwarz preconditioner

additive/multiplicative field split

approximate inverses
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Comparison

All these approaches are based on an approximation
of the leading diagonal block K . We compare them
on a simple case with 5 refinement levels.
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(a) Additive Schwarz method.

38 of 46



0 50 100 150 200

iteration count

1×10
-8

1×10
-6

1×10
-4

1×10
-2

1×10
0

re
la

ti
v
e
 r

e
s
id

u
a
l

144 nodes

726 nodes

4k nodes

30k nodes

223k nodes

(b) Additive field split.
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(c) Multiplicative field split.
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(d) Field split + upper Schur
complement.
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(e) Field split + full Schur
complement.
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(f) FSAI + FSAI.
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(g) FSAI + block diagonal.
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Another Schur complement

According to the different comparisons, it is clear that the the weak scalability is
missing, since the number of iterations increases at each refinement level. To improve
this aspect, i.e., to build a scalable preconditioner, a better Schur complement is
needed.
Another idea is to change the order:

A? =

[
−Ht C2

C1 K

]
with the Schur complement S? = K + C1H

−1
t C2, but ... Ht is a singular matrix. We

can approximate Ht with a regular matrix, e.g., a diagonal matrix. This approach can
be extended to other discretizations, also when no stabilization is required.
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Multigrid for the Schur complement

The new Schur complement S? is very similar to K , i.e., a structural matrix, and a
multigrid preconditioner works properly. For S this was the opposite, since the matrix
properties are not suited for a multigrid solver. Moreover, it can be proved that S?

scales almost perfectly with h. Using a multigrid to solve S?, the approach is scalable.
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Application

High Island 24L (HI24l) is an hydrocarbon field located in offshore Texas State Waters
[Rui19]. It is characterized by 32 faults and the computational grid has 4,848,384
elements, 853,006 nodes and 63,678 interface elements.

nu nt total

2,559,018 191,034 2,750,052

Table: HI24L: sizes.
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Extensions to other discretiazions

Other discretizations are instrisically stable [FFJT16] and provide a Jacobian that is a
pure saddle point matrix:

A =

[
K C1

C2 0

]
For this kind of matrix, a possible approach is to add, for preconditioning purposes
only, a diagonal matrix, such as:

A∗ =

[
K C1

C2 −D

]
where D is the inverse of the augmentation matrix [BO06, FGG07]. Then the same
preconditioner as before is built on A∗ and applied to A.
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Coupling with fluid

The 3× 3 Jacobian matrix is:

A =

K C1 Q1

C2 −Ht 0
Q2 0 T + Hp


Exploiting what we know about the pure contact problem, we derive a strategy for this
block linear system:

A =

 K C1 Q1

C2 −Ht 0

Q2 0 T + Hp

→ [
Acm Q1

Q2 T + Hp

]

and from here, we compute an approximated second Schur complement using the
diagonal for the first Schur complement, i.e., the one arising from the pure contact
mechanics.
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Application

To test this approach, a test case with 320,000 elements, 342,642 nodes and 5,184
interface elements is analyzed. A linearly increasing flow rate is injected in a central
well intersecting 9 fractures. During the simulation all fracture states are encountered.
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Figure: Computational grid and right-preconditioned GMRES convergence profiles for all the
linear systems in one time step.
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Conclusions

We have investigated numerical techniques for multiphysics problems, in particular how
to build effective preconditioners for block linear systems. Moreover, we have analyzed
two different multiphysics problem:

poroelasticity;

fluid flow in fractured porous media.

For both of them, specialized block preconditioners based on the problem have been
derived. The key is to choose a Schur complement with a physical meaning and
approximate it in a cheap way (sparse). This can be done for each multiphysics
problem, but usually with different strategies.
To easy this stage, a general framework has been presented and can be used to design
a new preconditioner for a novel application.
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K. Stüben, Algebraic multigrid (AMG): experiences and comparisons, Appl. Math. Comput. 13 (1983), no. 3-4, 419–451.

W.-P. Tang, Toward an effective sparse approximate inverse preconditioner, SIAM J. Matrix Anal. Appl. 20 (1999), no. 4, 970–986.

C.V. Verhoosel and R. de Borst, A phase-field model for cohesive fracture, Int. J. Numer. Methods Eng. 96 (2013), no. 1, 43–62.

M. Vahab and N. Khalili, Numerical investigation of the flow regimes through hydraulic fractures using the X-FEM technique, Eng. Fract.

Mech. 169 (2017), 146–162.

J. A. White and R. I. Borja, Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault

zone transients, Computer Methods in Applied Mechanics and Engineering 197 (2008), no. 49-50, 4353–4366.

J. A. White, N. Castelletto, and H. A. Tchelepi, Block-partitioned solvers for coupled poromechanics: A unified framework, Computer

Methods in Applied Mechanics and Engineering 303 (2016), 55–74.

D.L.Y. Wong, F. Doster, S. Geiger, E. Francot, and F. Gouth, Investigation of Water Coning Phenomena in a Fractured Reservoir Using the

Embedded Discrete Fracture Model (EDFM), 81st EAGE Conference and Exhibition 2019, Society of Petroleum Engineers, 2019, pp. 1–5.

B. Wohlmuth, Variationally consistent discretization schemes and numerical algorithms for contact problems, Acta Numer. 20 (2011),

569–734.

M.F. Wheeler, T. Wick, and W. Wollner, An augmented-Lagrangian method for the phase-field approach for pressurized fractures, Comput.

Methods Appl. Mech. Eng. 271 (2014), 69–85.

54 of 46



References IX

K. Wu, W. Yu, and J. Miao, Integrating Complex Fracture Modeling and EDFM to Optimize Well Spacing in Shale Oil Reservoirs, 53rd US

Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, 2019, pp. 1–8.

S. Zampini, PCBDDC: a class of robust dual-primal methods in PETSc, SIAM J. Sci. Comput. 38 (2016), no. 5, S282–S306.

M. Zang, W. Gao, and Z. Lei, A contact algorithm for 3D discrete and finite element contact problems based on penalty function method,

Comput. Mech. 48 (2011), no. 5, 541–550.

55 of 46


