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The module serves as an introduction to multiphysics solvers and basic no-
tions in iterative methods. The following outline describes the content of the
first three lectures, scheduled for Monday May 31 (morning and afternoon) and
Tuesday June 1 (morning only). Each lecture is 1.5 hours long. The fourth
lecture of this mini-course will take place the following Monday (June 7) and
will be given by Hamdi Tchelepi. I may not show all the proofs in detail, but
major theorems will be illustrated by numerical examples.

1 Examples of multiphysics problems

Goal: Show examples of multiphysics problems. We illustrate how for some
single-physics problems can be solved efficiently by exploiting the underlying
physics, but this cannot be applied blindly to multiphysics problems.

1.1 Two-phase flow in porous media

We derive the discrete model using mass conservation. If the fluid pressures
are known, then the saturation (i.e., fraction of volume occupied by one of the
phases) can be calculated by forward substitution. If the saturation is known,
then fluid pressure at a fixed time step satisfies an elliptic equation, which can
be solved by multigrid. But the two problems are coupled.

1.2 Different physics in different parts of the domain

We consider the problem of cooling a hot metal object by a cold fluid. The fluid
flow is governed by the Navier-Stokes equation; the temperature in the solid is
governed by conduction only, whereas in the fluid, both convective and diffusive
effects are present. Here, the two subdomains have different physics, and an
interface condition couples the two. It is therefore natural to use specialized
solvers in the two subdomains and iterate to convergence, but the convergence
rate depends on “coupling strength”. Other examples of this type (mentioned
but not done in detail):
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� coupling due to geometry (matrix-fracture coupling)

� coupling due to simplifying assumptions (Navier-Stokes near the airfoil,
Stokes far away)

2 Fixed point methods

Goal: Introduce basic notions of iterative methods, as well as some classical
iterative methods for linear problems.

2.1 Fundamentals of fixed point methods

We use Newton’s method as a first example of fixed point methods. We derive
Newton’s method for f(x) = 0 by doing a Taylor expansion about the initial
guess, then write it in fixed point form xk+1 = G(xk). For a general fixed point
map G, we deduce the behaviour of the error ek = xk − x∗ in terms G(x∗) and
its derivatives.

2.2 Classical iterative methods for linear problems

We show the classical Jacobi and Gauss-Seidel methods as examples of fixed
point methods linear problems. We mention block variants, which can be applied
to coupled problems. The error of such methods behaves like ek = Gke0 for some
G. We show the necessary and sufficient conditions for convergence, as well as
the convergence rate, in terms of the spectrum of G. We illustrate the theory
by showing actual convergence curves together with the numerically calculated
spectrum in a few examples.

3 Krylov methods

Goal: Introduce Krylov methods and their role in accelerating stationary meth-
ods.

3.1 Conjugate gradient

We formulate Ax = b as a minimization problem when A is symmetric positive
definite. We show visually with a 2×2 problem that steepest descent converges,
but it is suboptimal because the search directions are almost linearly dependent.
We take conjugate directions to remove this redundancy and obtain CG. We
state the optimality property and the classical convergence result in terms of
the condition number of A. (The proof may be omitted depending on time and
preparation of the participants.) We mention other Krylov methods that can be
used for non-SPD problems, without going into detail (MINRES for indefinite
problems, GMRES/BiCG/QMR for non-symmetric problems).
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3.2 Preconditioning

We explain the basic idea of preconditioning and how stationary iterative meth-
ods induce a preconditioned problem. We show how the optimality property
implies that CG and GMRES always converge in fewer iterations than the un-
derlying stationary method. Several numerical examples illustrate this.
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