Multiscale solvers for flow and transport in porous media

Hamdi Tchelepi¹ Sergey Klevtsov¹ Nicola Castelletto²

¹Stanford University

²Lawrence Livermore National Laboratory

2021 CRM Summer School Jun 07, 2021

Acknowledgements:

- Xiaochen Wang
- Marc Hesse
- Hui Zhou
- Yixuan Wang
- Abdul-Rahman Manea
- Arthur Moncorge
- Sebastian Bosma
- Sergey Klevtsov

- Patrick Jenny
- Seong Lee
- Pavel Tomin
- Nicola Castalletto
- Hadi Hajibeygi
- Joshua White
- Olav Moyner
- Brad Mallison

Outline

- Introduction
- MultiScale Formulations
- Flow: MSFE & MSFV
- Algebraic MultiScale (AMS)
- Two-Stage Algebraic Multi-Scale
- Mechanics
- Poro-Mechanics
- Multi-Level MultiScale

Governing equations

Conservation laws:

$$\frac{\partial}{\partial t}(\phi \sum_{\alpha} x_{\alpha}^{i} \rho_{\alpha} S_{\alpha}) + \nabla \cdot (\sum_{\alpha} x_{\alpha}^{i} \rho_{\alpha} \mathbf{v}_{\alpha}) - \sum_{\alpha} x_{\alpha}^{i} \rho_{\alpha} q_{\alpha} = 0 \quad \text{(mass balance of comp. } i)$$

$$\nabla \cdot (\boldsymbol{\sigma}' - b \bar{p} \mathbf{1}) + \boldsymbol{f} = \mathbf{0} \quad \text{(momentum balance)}$$

Constitutive models:

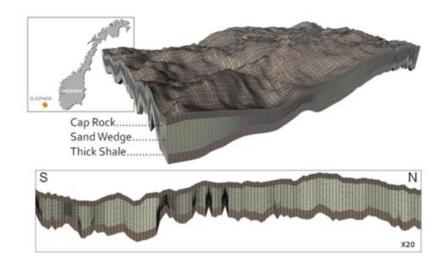
$$\begin{aligned} \boldsymbol{v}_{\alpha} &= -\frac{k_{r\alpha}(S_{\alpha})}{\mu_{\alpha}} \boldsymbol{\kappa} \cdot (\nabla p_{\alpha} - \rho_{\alpha} \boldsymbol{g}) & \text{(multiphase Darcy's law)} \\ \rho_{\alpha} &= \rho_{\alpha}(p_{\alpha}, x_{\alpha}^{i}), \ \mu_{\alpha} = \mu_{\alpha}(p_{\alpha}, x_{\alpha}^{i}), & \text{(fluid properties)} \\ p_{\alpha} &= \boldsymbol{p} + p_{\alpha}^{c}(S_{\alpha}), & \text{(capillary pressure)} \\ \Delta \phi &= b \Delta \epsilon_{v}(\boldsymbol{u}) + \frac{(b - \phi_{0})}{K_{s}} \Delta \bar{\boldsymbol{p}}, & \text{(porosity model)} \\ \boldsymbol{\sigma}' &= \mathbf{C}_{\mathsf{dr}} : \nabla^{s} \boldsymbol{u} & \text{(linear elasticity)} \end{aligned}$$

Multiscale methods

Why multiscale solvers?

- Tightly coupled PDEs
- Strongly discontinuous properties
- High fidelity/resolution requirements
- Multiscale nature of the problems

Robust and scalable solvers are in demand!



Sleipner CO₂ storage problem [Cavanagh (2013)].

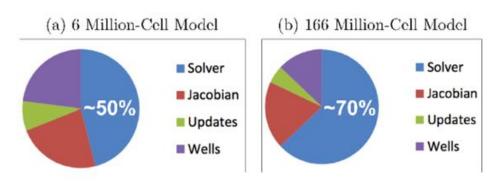
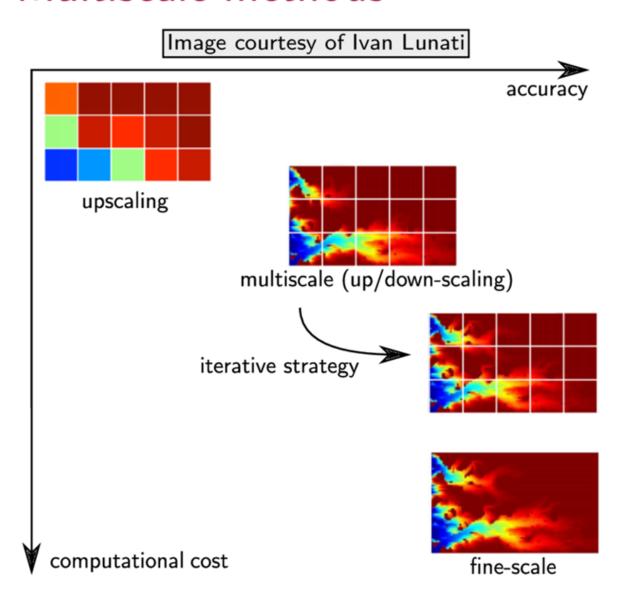


Figure 1.1: Performance breakdown for a simulation of 37 years of production using a compositional model on 720 Westmere cores and 5,640 Westmere cores, performed by Saudi ARAMCO's in-house reservoir simulator, GigaPOWERSTM.

Manea, PhD Thesis [2015]

Multiscale methods



Upscaling Methods

- Effective Coefficients
- Pseudo Functions
- Volume Averaging
- Homogenization methods

Multiscale Methods

- Heterogeneous Multiscale Methods
- Variational Multiscale Method
- Multiscale Finite Element Method
- Multiscale Finite Volume Method
- Multiscale Mixed Finite Element Method
- ...

Governing equations

Conservation laws:

$$\frac{\partial}{\partial t}(\phi \sum_{\alpha} x_{\alpha}^{i} \rho_{\alpha} S_{\alpha}) + \nabla \cdot (\sum_{\alpha} x_{\alpha}^{i} \rho_{\alpha} \mathbf{v}_{\alpha}) - \sum_{\alpha} x_{\alpha}^{i} \rho_{\alpha} q_{\alpha} = 0 \quad \text{(mass balance of comp. } i)$$

$$\nabla \cdot (\boldsymbol{\sigma}' - b \bar{p} \mathbf{1}) + \boldsymbol{f} = \mathbf{0} \quad \text{(momentum balance)}$$

Constitutive models:

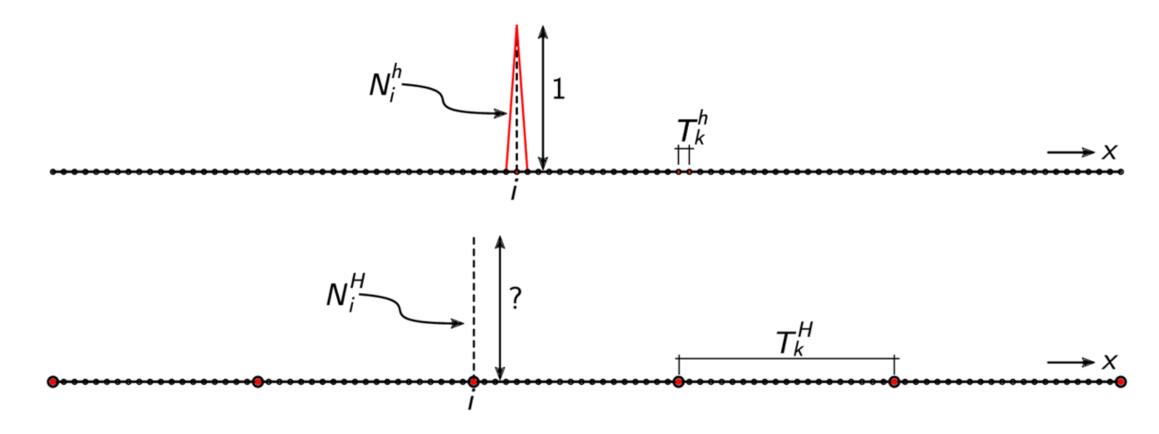
$$\begin{aligned} \boldsymbol{v}_{\alpha} &= -\frac{k_{r\alpha}(S_{\alpha})}{\mu_{\alpha}} \boldsymbol{\kappa} \cdot (\nabla p_{\alpha} - \rho_{\alpha} \boldsymbol{g}) & \text{(multiphase Darcy's law)} \\ \rho_{\alpha} &= \rho_{\alpha}(p_{\alpha}, x_{\alpha}^{i}), \ \mu_{\alpha} = \mu_{\alpha}(p_{\alpha}, x_{\alpha}^{i}), & \text{(fluid properties)} \\ p_{\alpha} &= \boldsymbol{p} + p_{\alpha}^{c}(S_{\alpha}), & \text{(capillary pressure)} \\ \Delta \phi &= b \Delta \epsilon_{v}(\boldsymbol{u}) + \frac{(b - \phi_{0})}{K_{s}} \Delta \bar{\boldsymbol{p}}, & \text{(porosity model)} \\ \boldsymbol{\sigma}' &= \mathbf{C}_{\mathsf{dr}} : \nabla^{s} \boldsymbol{u} & \text{(linear elasticity)} \end{aligned}$$

MultiScale Methods for Flow & Transport:

- MSFV: Flow Problem
- MSFV: IMPES: Adaptivity of Flow & Transport
- Three-Phase Flow with Interphase Mass Transfer
- Sequential Fully Implicit (SFI)
- Wells
- Compressible Multi-Phase Flow
- Nonlinear Transport: Adaptivity
- Compositional Flow & Transport
- Poro-Mechanics

- Super-element method: Fedorenko (1976)
- Special/generalized finite element method: Babuska (1983, 1994)
- Multiscale finite element method: Hou & Wu (1997)
- Extensions and related work:
 - ▶ Multiscale mixed finite element method (Chen & Hou, 2003)
 - ▶ Multiscale mortar method (Arbogast et al., 2007)
 - ▶ Use of limited global information (Efendiev & Hou, 2007)
 - ▶ Application to vector problems (Efendiev & Hou, 2009; Buck et al. 2013)
 - ...and many other

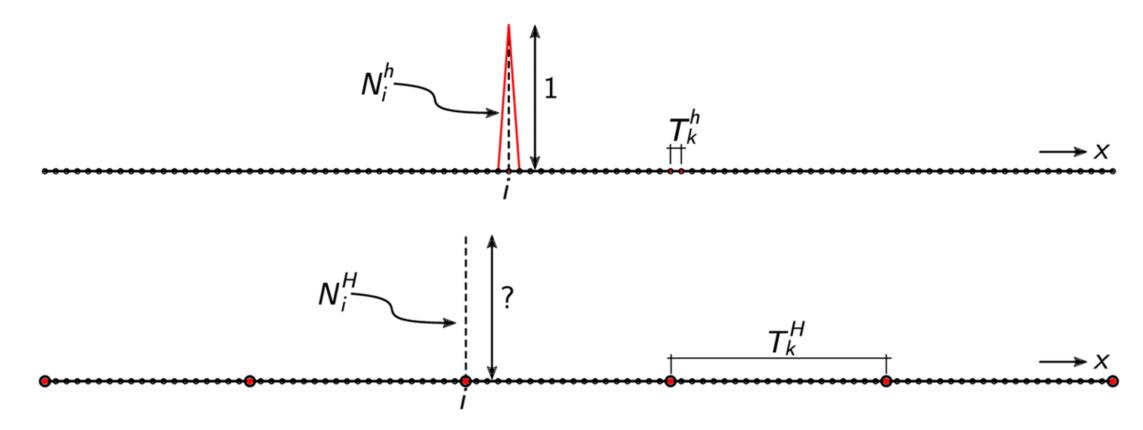
A coarse mesh is introduced (\mathcal{T}^H) along with new basis functions (N_i^H) :



▶ We want to solve:

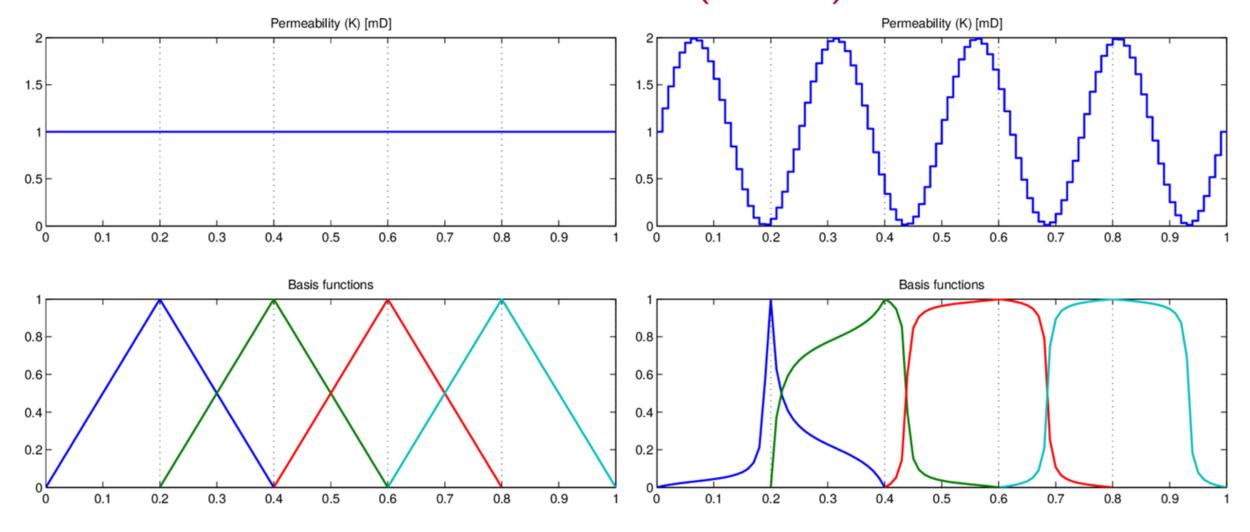
$$egin{aligned}
abla \cdot [oldsymbol{\kappa}(oldsymbol{x})
abla \phi] + f &= 0, & ext{in } \Omega \ \phi &= oldsymbol{g}, & ext{on } \partial \Omega \end{aligned}$$

A coarse mesh is introduced (\mathcal{T}^H) along with new basis functions (N_i^H) :

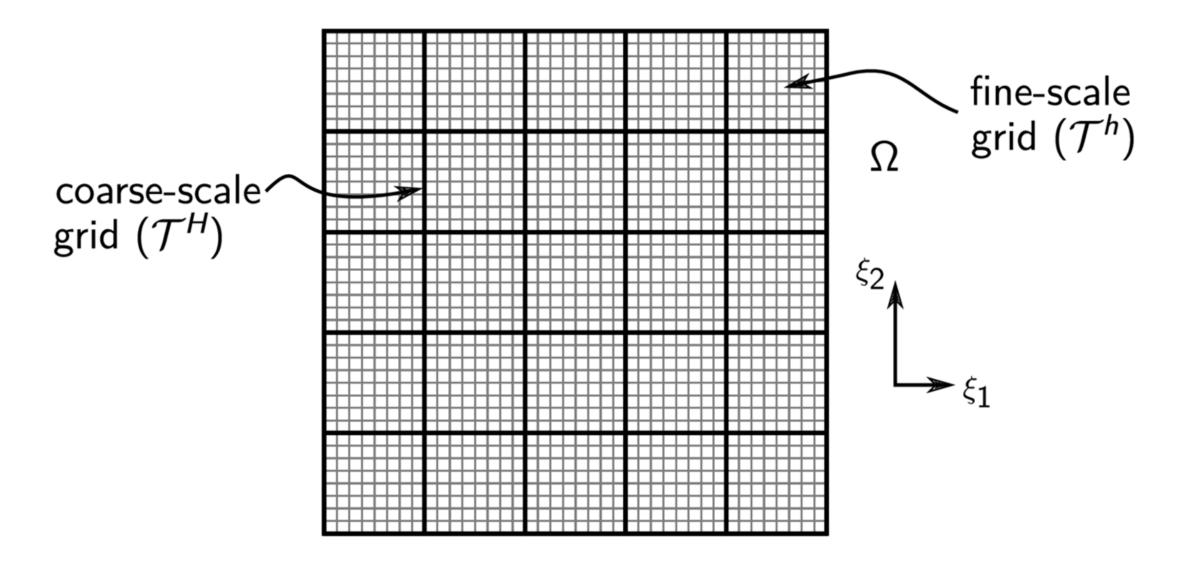


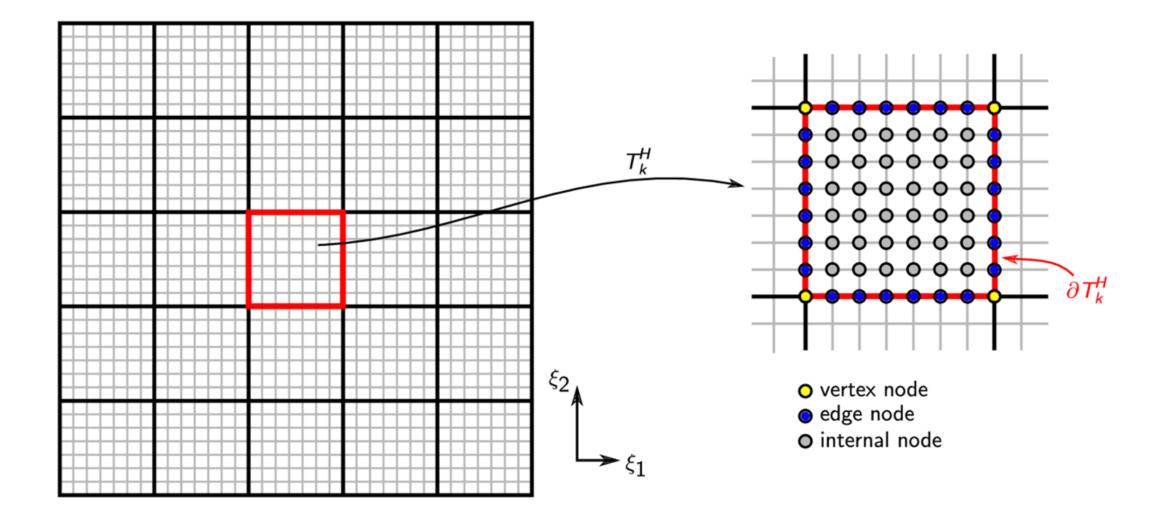
▶ The coarse basis functions satisfy:

$$abla \cdot \left[oldsymbol{\kappa}(oldsymbol{x})
abla N_i^H(oldsymbol{x}_j) = 0, \quad \text{in } T_k^H \ N_i^H(oldsymbol{x}_j) = \delta_{ij} \$$



[Møyner & Lie, 2016]



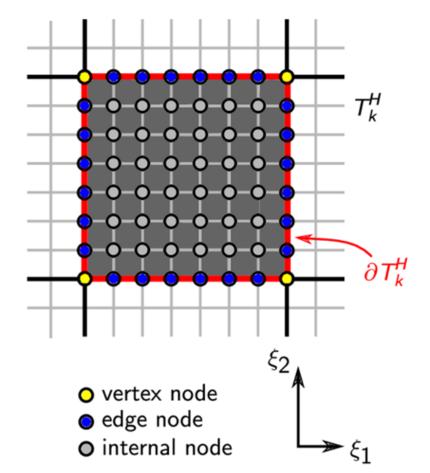


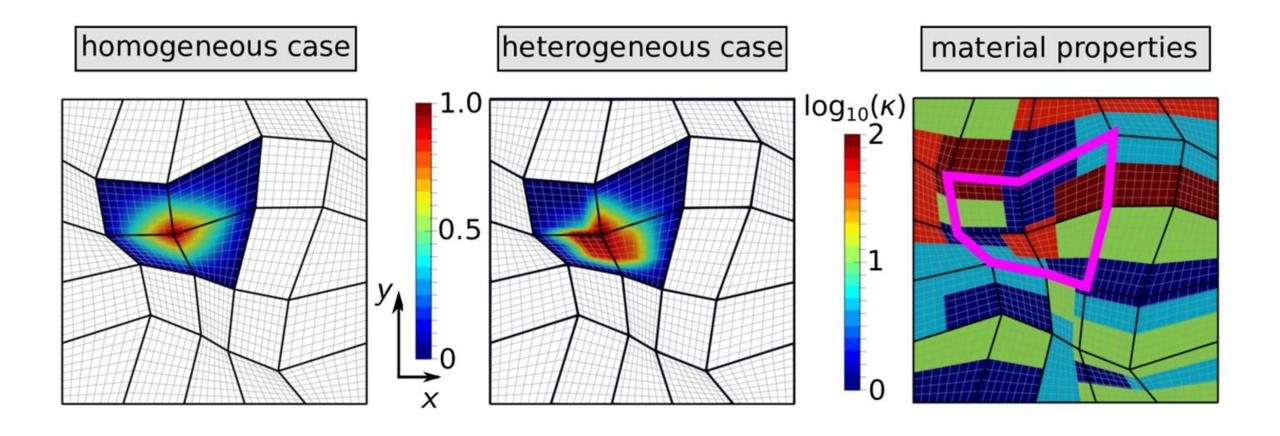
- Computed solving local problems on each coarse element
- Solutions of reduced-dimension problems on boundaries used as boundary conditions (localization assumption)

Given
$$\mathcal{S}^h = \operatorname{span}\left\{ oldsymbol{N}_j^h(\Omega), j = 1, \dots, n^h \right\}$$
, find $oldsymbol{N}_i^H$: $\mathcal{S}^h o \mathbb{R}^2$ such that:
$$\nabla \cdot \left(\kappa(\mathbf{x}) \nabla oldsymbol{N}_i^H \right) = \mathbf{0} \qquad \text{in } T_k^H$$

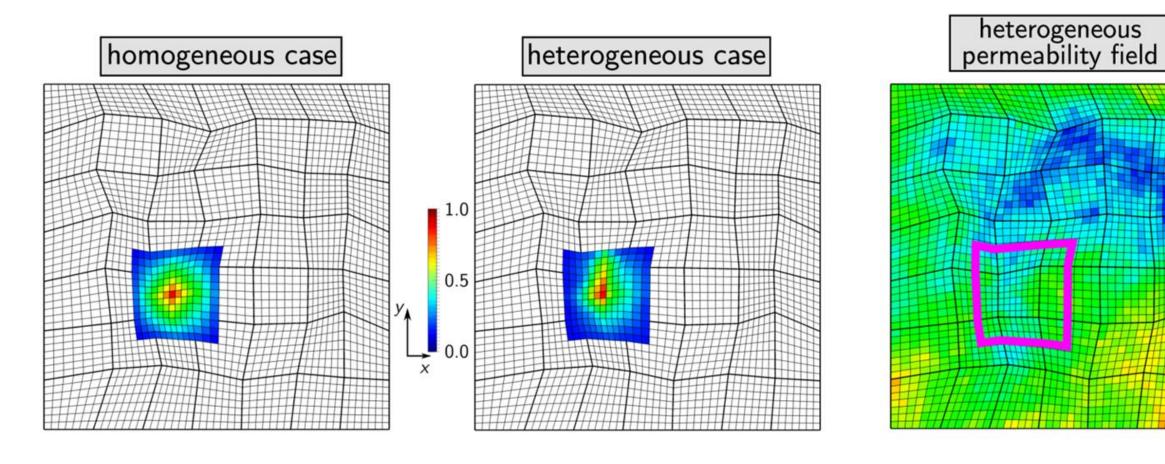
$$\nabla_{\parallel} \cdot \left(\kappa(\mathbf{x}) \nabla_{\parallel} oldsymbol{N}_i^H \right) = \mathbf{0} \qquad \text{on } \partial T_k^H$$

$$oldsymbol{N}_i^H(\boldsymbol{\xi}_j^V) = \delta_{ij} \qquad \forall j \in \left\{1, \dots, n^H\right\}$$

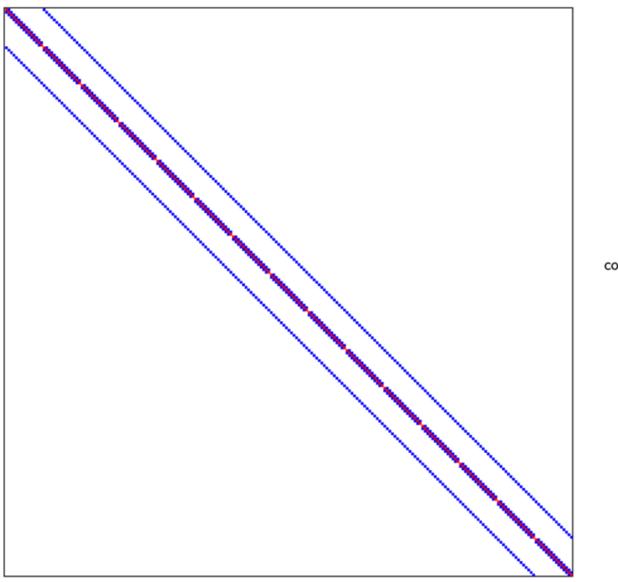


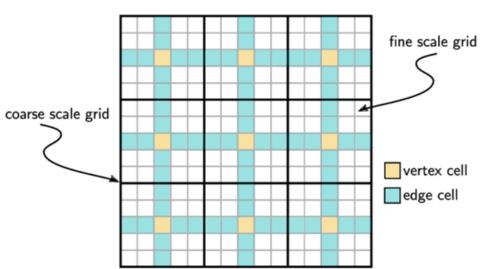


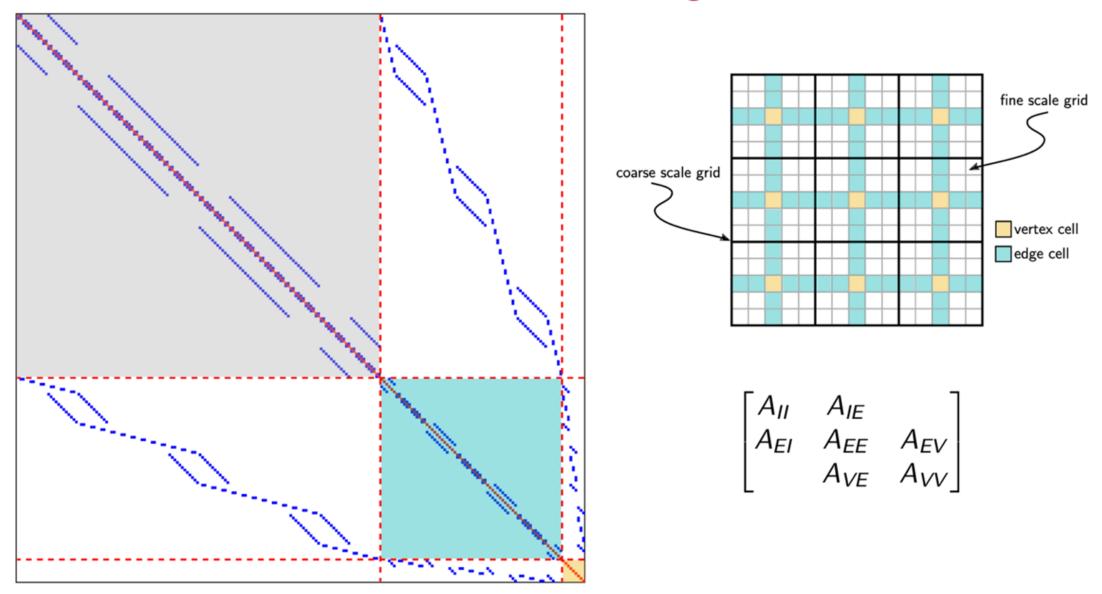
MSFV flow dual basis functions

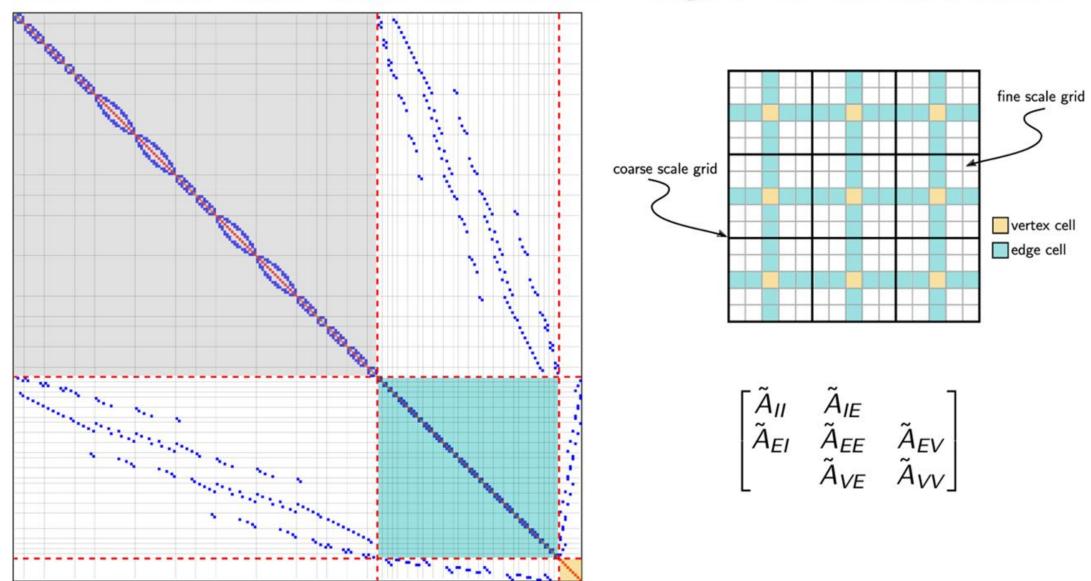


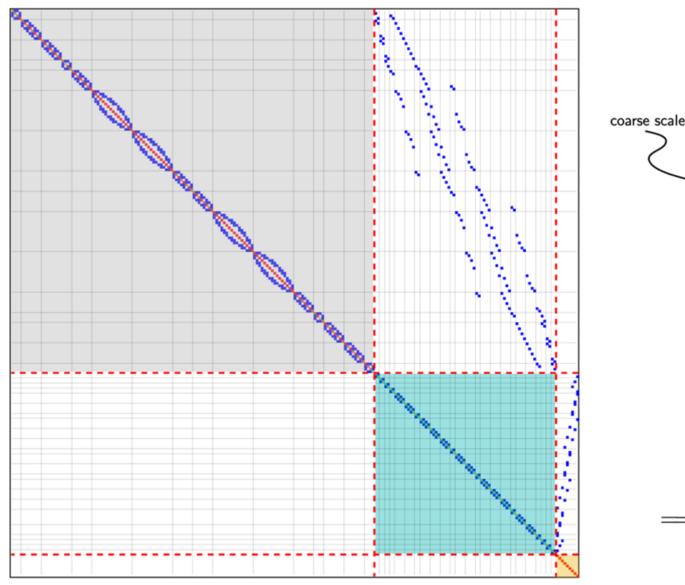
AMS Algebraic MultiScale

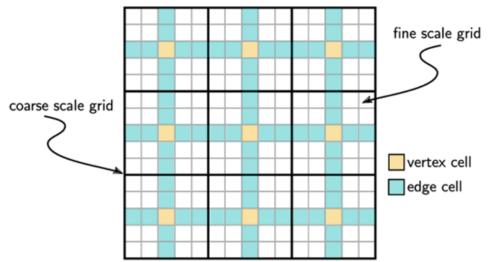








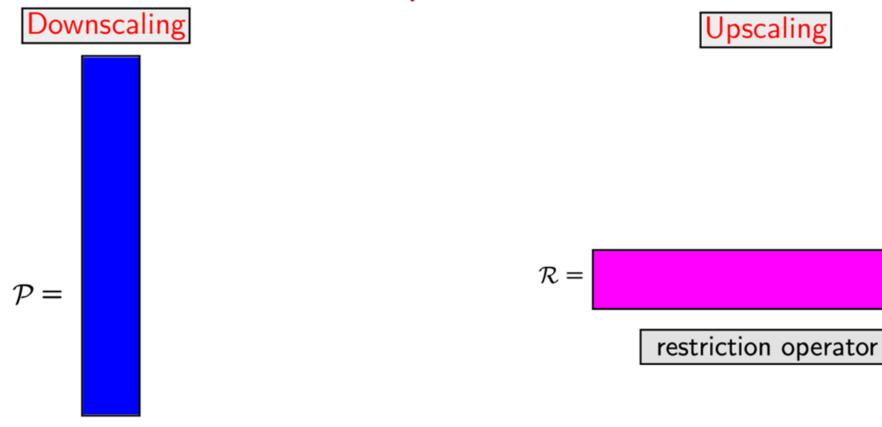




$$\begin{bmatrix} \tilde{A}_{II} & \tilde{A}_{IE} \\ & \tilde{\tilde{A}}_{EE} & \tilde{A}_{EV} \\ & & I_{VV} \end{bmatrix} \Longrightarrow$$

$$\Longrightarrow P = \begin{bmatrix} P_{IV} \\ P_{EV} \\ I_{VV} \end{bmatrix} = \begin{bmatrix} -\tilde{A}_{IL}^{-1} \tilde{A}_{IE} P_{EV} \\ -\tilde{A}_{EE}^{-1} \tilde{A}_{EV} \\ I_{VV} \end{bmatrix}$$

Prolongation and restriction operators

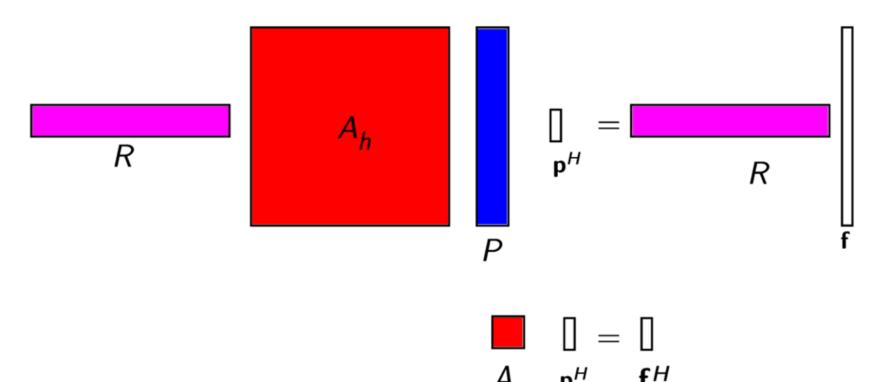


prolongation operator

• \mathcal{P} takes vectors on \mathcal{T}^H and defines their analogue in \mathcal{T}^h

• \mathcal{R} takes vectors on \mathcal{T}^h and defines their analogue in \mathcal{T}^H

Prolongation and restriction operators



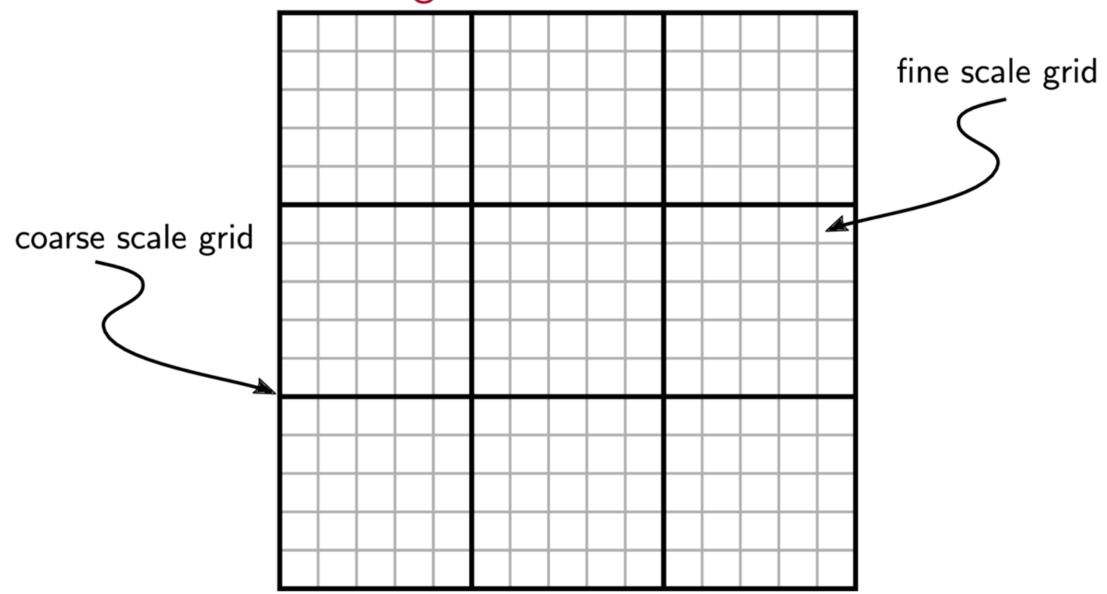
$$\underbrace{\mathcal{R}A_{h}\mathcal{P}}_{A_{H}}oldsymbol{p}^{H}=\underbrace{\mathcal{R}oldsymbol{b}}_{oldsymbol{b}^{H}}$$

Solve for
$$m{p}^H$$
, then compute $m{p}_{MS}^h = \mathcal{P}m{p}^H$

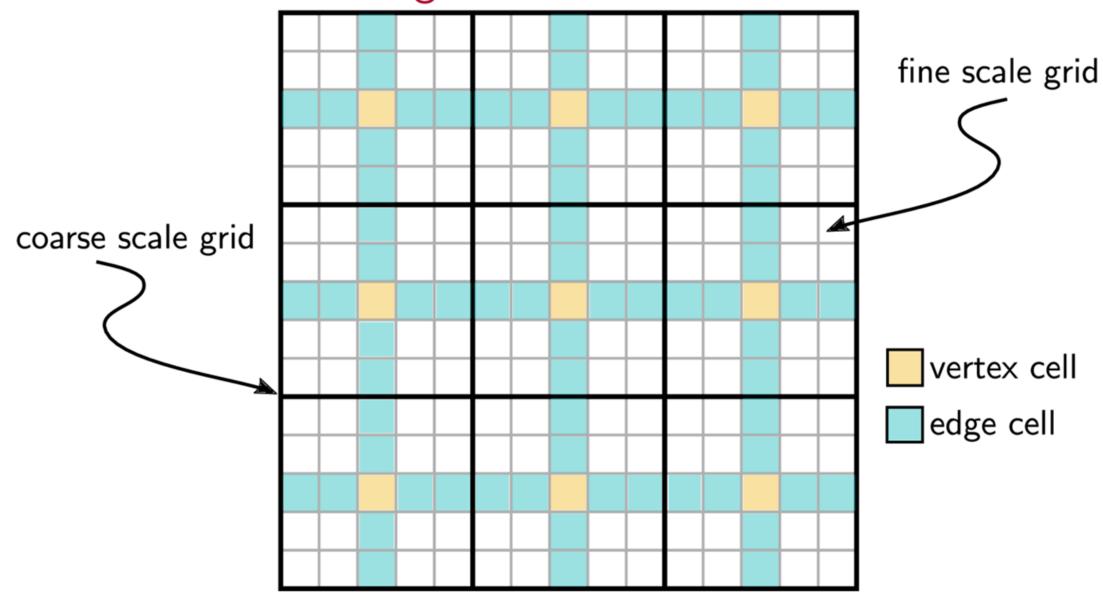
Approximate fine-scale solution

MSFV Conservative Fine-Scale Velocity

MSFV flow dual coarse grid



MSFV flow dual coarse grid



MSFV flow dual basis functions

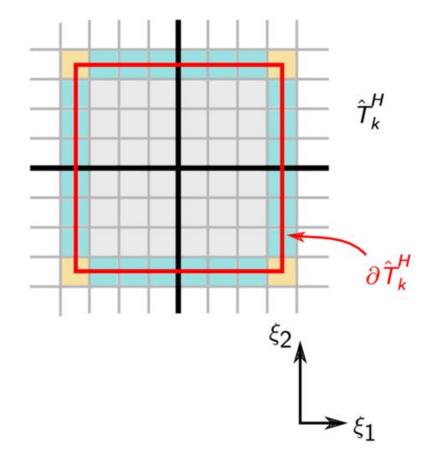
- Computed solving local problems (e.g. mass balance) on each dual coarse element
- Solutions of reduced-dimension problems on boundaries used as boundary conditions (localization assumption)

Given
$$S^h = \operatorname{span} \left\{ N_j^h(\Omega), j = 1, \dots, n^h \right\}$$
, find $N_i^H : S^h \to \mathbb{R}$ such that:

$$\nabla \cdot \left(\boldsymbol{\kappa}(\boldsymbol{x}) \nabla N_i^H \right) = 0 \quad \text{in } \hat{T}_k$$

$$\nabla_{\parallel} \cdot \left(\boldsymbol{\kappa}(\boldsymbol{x}) \nabla N_i^H \right)_{\parallel} = 0 \quad \text{on } \partial \hat{T}_k$$

$$N_i^H(\boldsymbol{\xi}_j^V) = \delta_{ij} \quad \forall j \in \left\{ 1, \dots, n^H \right\}$$



MSFV conservative velocity reconstruction

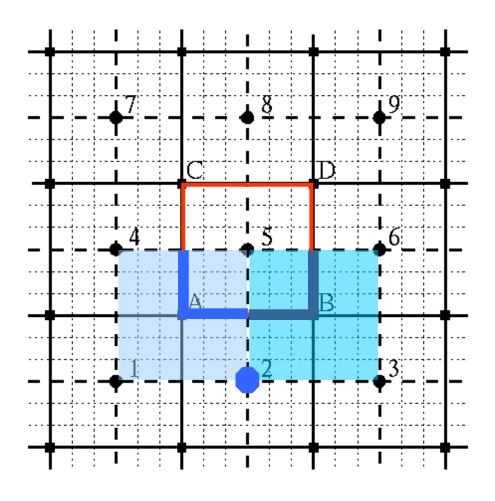
Dual basis functions are used to:

- Compute coarse-scale transmissibility coefficients
- Interpolate coarse-scale pressure solution

MSFV employs a second set of basis functions (primal):

- Constructed by solving local Neumann problems using fluxes obtained from interpolated pressure field as boundary conditions
- Used to reconstruct a locally conservative fine-scale velocity field (important for transport problems)

Conservative Fine-Scale Velocity Field



Superposition in Primal CV 5:

$$p = \sum_{j=1}^9 p^j \Phi_5^j$$

Multiscale finite volume (MSFV)

- Multiscale finite volume method: Jenny, Lee, Tchelepi (2003)
- Extensions and related work
 - correction functions to handle non-elliptic features (Lee et al. 2008, Lunati & Jenny, 2008)
 - extension to compressible flow (Zhou & Tchelepi, 2008)
 - handling of wells (Wolfsteiner et al., 2006; Wang, 2015)
 - adaptive updating of basis functions (and transport equations)
 - ▶ iterative formulation with smoothers (Hajibeygi, 2008; Zhou & Tchelepi, 2012)
 - ▶ algebraic formulation (Zhou & Tchelepi, 2008; Wang et al. 2014)
 - ▷ ... and many more!

TAMSTwo-Stage Algebraic Multiscale Solver

Two-stage multiscale preconditioner

- Multiscale *global* operator: $\mathcal{M}_{G}^{-1} = \mathcal{P} \left(\mathcal{R} A_{h} \mathcal{P}\right)^{-1} \mathcal{R}$
- \mathcal{M}_G^{-1} is rank-deficient by $n^h n^H$!
- Complement with a *local* smoother \mathcal{M}_L^{-1} (Jacobi, Gauss-Seidel, ILU, ...)
- Multiplicative two-stage preconditioner: $\mathcal{M}_{\mathsf{TAMS}}^{-1}: \mathbf{v} \longmapsto \mathbf{z}$

$$egin{aligned} oldsymbol{z}_1 &= \mathcal{M}_G^{-1} oldsymbol{v} \ oldsymbol{z} &= oldsymbol{z}_1 + \mathcal{M}_L^{-1} \left(oldsymbol{v} - A_h oldsymbol{z}_1
ight) \end{aligned} \qquad \qquad ext{(stage 1)}$$

$$\left|\mathcal{M}_{\mathsf{TAMS}}^{-1} = \mathcal{M}_{\mathsf{G}}^{-1} + \mathcal{M}_{\mathsf{L}}^{-1} \left(\mathit{I} - \mathit{A}_{\mathsf{h}} \mathcal{M}_{\mathsf{G}}^{-1}
ight)
ight|$$

Two-stage multiscale preconditioner: scalability

Y. Wang et al. / Journal of Computational Physics 259 (2014) 284–303

301

Table 3CPU time (sec) and iteration steps for SAMG on a patchy domain.

Problem size	$32\times32\times32$	$64\times64\times64$	$128\times128\times128$	$256\times256\times256$
Setup phase	0.12	1.14	12.33	157.41
Solution phase	0.14	0.76	6.33	73.02
Total	0.26	1.90	18.66	230.43
GMRES iterations	6	7	9	10

Table 4CPU time (sec) and iteration steps for AMS on a patchy domain.

Problem size	32 × 32 × 32	$64 \times 64 \times 64$	128 × 128 × 128	256 × 256 × 256
Setup phase	0.29	2.12	17.00	147.96
Solution phase	0.10	0.87	8.01	55.91
Total	0.39	2.99	25.01	203.87
GMRES iterations	22	21	21	18

Two-stage multiscale preconditioner: parallel performance

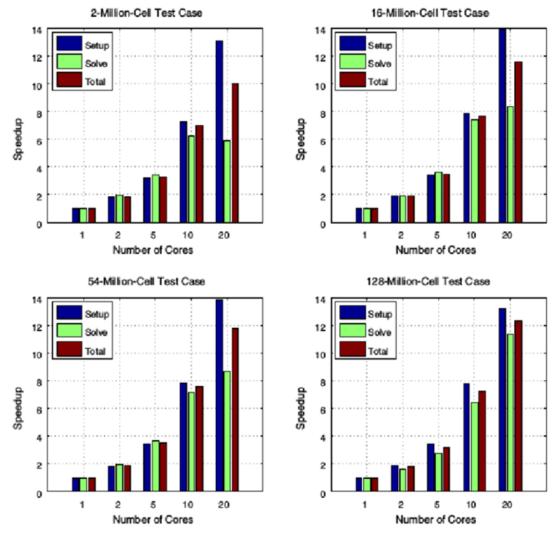


Fig. 11—Speedup of setup and solve kernels of AMS for several problem sizes running on two sockets of Intel Xeon Processor E5-2690-v2.

Multiscale poromechanics

Incompressible flow and geomechanics

Two-field fomulation: find the displacement vector, \boldsymbol{u} , and pressure, \boldsymbol{p} , such that:

$$\nabla \cdot \underbrace{\left(\mathbf{C}_{dr} : \nabla^{s} \mathbf{u} - b \mathbf{p} \mathbf{1}\right)}_{\text{Cauchy stress tensor}} + \mathbf{f} = \mathbf{0} \qquad \text{(linear momentum balance)}$$

$$\underbrace{\frac{\partial}{\partial t} \left(b \nabla \cdot \mathbf{u}\right)}_{\text{Cluid volume change}} - \nabla \cdot \underbrace{\left(\frac{\kappa}{\mu} \nabla \mathbf{p}\right)}_{\text{Darcy's law}} = q \qquad \text{(mass balance)}$$

Discretization

- Linear nodal FE for u
- Cell-centered FV for p
- Backward Euler time integration

Matrix form

$$\begin{bmatrix} K & B_1 \\ B_2 & C \end{bmatrix} \begin{Bmatrix} \boldsymbol{u}_{n+1}^h \\ \boldsymbol{p}_{n+1}^h \end{Bmatrix} = \begin{Bmatrix} \boldsymbol{f}_{n+1} \\ \boldsymbol{g}_{n+1} \end{Bmatrix}$$

MultiScale Mechanics

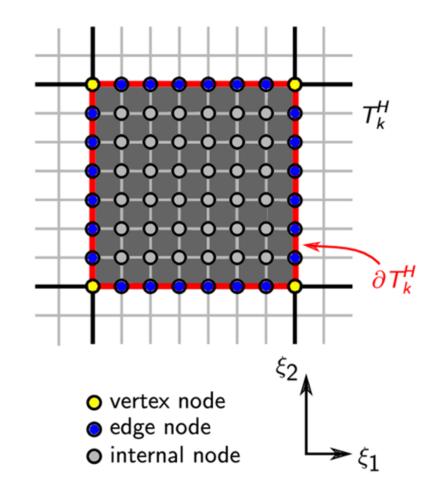
Mechanics multiscale basis functions

Computed solving local linear-momentum balance assuming drained conditions

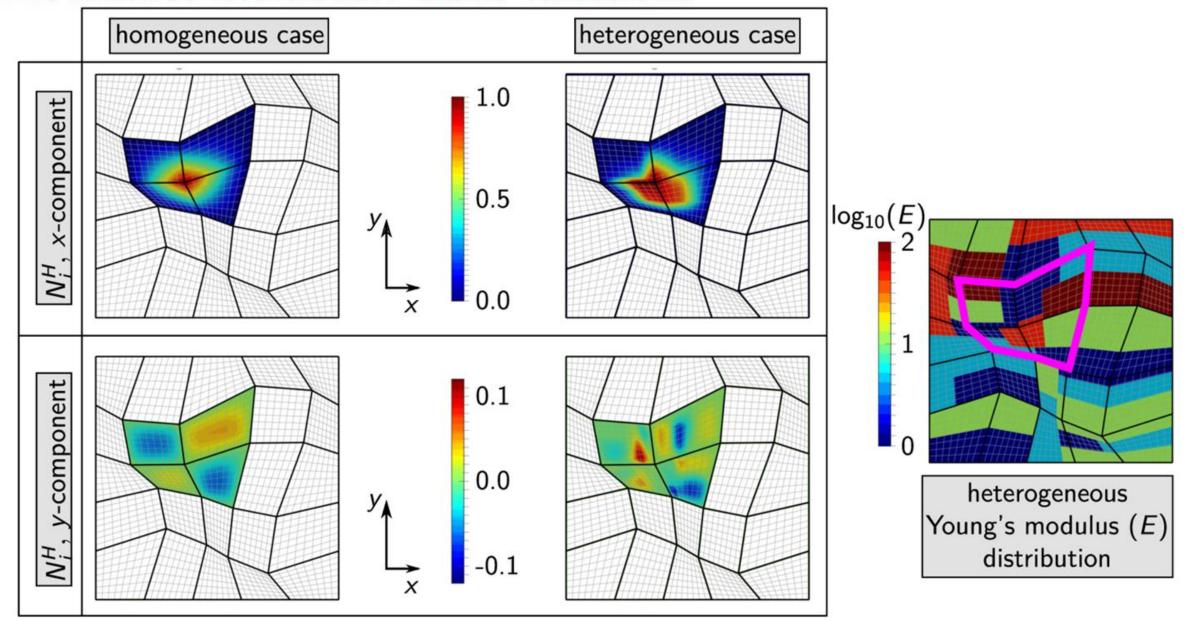
Given
$$\mathcal{S}_{\boldsymbol{u}}^h = \operatorname{span}\left\{\boldsymbol{N}_{\boldsymbol{u},j}^h(\Omega), j=1,\ldots,n_{\boldsymbol{u}}^h\right\}$$
, find $\boldsymbol{N}_{\boldsymbol{u},i}^H:\mathcal{S}_{\boldsymbol{u}}^h \to \mathbb{R}^2$ such that:
$$\nabla \cdot \left(\mathbf{C}_{dr}:\nabla^s \boldsymbol{N}_{\boldsymbol{u},i}^H\right) = \mathbf{0} \quad \text{in } T_k^H$$

$$\nabla_{\parallel} \cdot \left(\mathbf{C}_{dr}:\nabla^s_{\parallel} \boldsymbol{N}_{\boldsymbol{u},i}^H\right) = \mathbf{0} \quad \text{on } \partial T_k^H$$

$$\boldsymbol{N}_{\boldsymbol{u},i}^H(\boldsymbol{\xi}_{\boldsymbol{u},j}^V) = \delta_{ij} \; \boldsymbol{e} \quad \forall j \in \left\{1,\ldots,n_{\boldsymbol{u}}^H\right\}$$



Mechanics multiscale basis functions



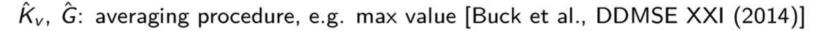
Mechanics reduced boundary problems

$$\hat{\mathbf{C}}_{dr} = \begin{bmatrix} \hat{K}_{v} & (\hat{K}_{v} - 2\hat{G}) & 0\\ (\hat{K}_{v} - 2\hat{G}) & \hat{K}_{v} & 0\\ 0 & 0 & \hat{G} \end{bmatrix}$$

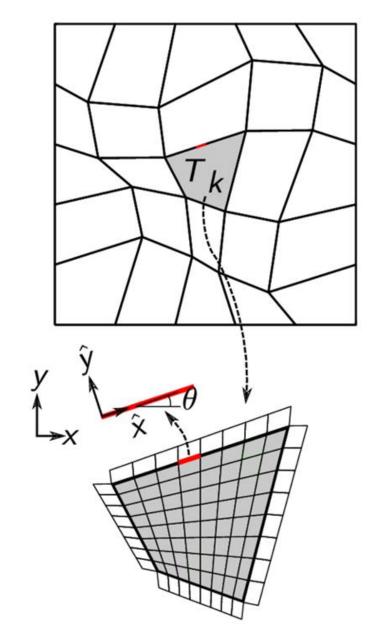
$$\hat{\nabla}^s = \begin{pmatrix} \hat{\nabla} \cdot \end{pmatrix}^T = \begin{bmatrix} \frac{\partial}{\partial \hat{x}} & 0\\ 0 & \frac{\partial}{\partial \hat{y}} \\ \frac{\partial}{\partial \hat{y}} & \frac{\partial}{\partial \hat{x}} \end{bmatrix}$$

$$\begin{vmatrix} \hat{\nabla}^s = (\hat{\nabla} \cdot)^T = \begin{bmatrix} \frac{\partial}{\partial \hat{x}} & 0 \\ 0 & \frac{\partial}{\partial \hat{y}} \\ \frac{\partial}{\partial \hat{y}} & \frac{\partial}{\partial \hat{x}} \end{bmatrix} \end{vmatrix} \qquad \begin{vmatrix} \hat{\nabla}^s_{\parallel} = (\hat{\nabla}_{\parallel})^T = \begin{bmatrix} \frac{\partial}{\partial \hat{x}} & 0 \\ 0 & 0 \\ 0 & \frac{\partial}{\partial \hat{x}} \end{bmatrix} \end{vmatrix}$$

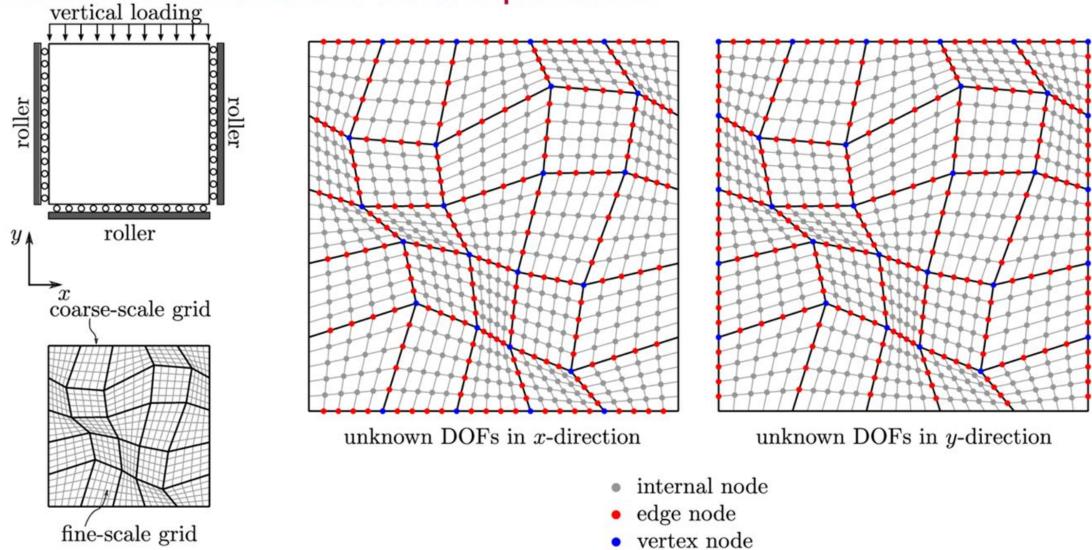
$$\begin{cases} \frac{\partial}{\partial \hat{x}} \left(\hat{K}_{v} \frac{\partial \hat{N}_{i_{\hat{x}}}^{H}}{\partial \hat{x}} \right) = 0 & \text{(axial equilibrium)} \\ \frac{\partial}{\partial \hat{x}} \left(\hat{G} \frac{\partial \hat{N}_{i_{\hat{y}}}^{H}}{\partial \hat{x}} \right) = 0 & \text{(transverse equilibrium)} \end{cases}$$



[Castelletto, Hajibeygi, Tchelepi. JCP (2017)]



Mechanics wirebasket decomposition



[Castelletto, Hajibeygi, Tchelepi. JCP (2017)]

Mechanics algebraic construction

Given the permutation matrix W associated with the wire-basket permutation, the fine-scale system can be rewritten as

$$\hat{K}_h\hat{m{d}}^h=\hat{f}^h$$

with

$$\hat{K}_h = W^T K W = \begin{bmatrix} \hat{K}_{II} & \hat{K}_{IE} & \hat{K}_{IV} \\ \hat{K}_{EI} & \hat{K}_{EE} & \hat{K}_{EV} \\ \hat{K}_{VI} & \hat{K}_{VE} & \hat{K}_{VV} \end{bmatrix}$$

The subscripts I, E, and V denote the internal, edge, and vertex DOFs

Mechanics algebraic construction

Gaussian elimination of the first block row leads to:

$$\begin{bmatrix} \hat{K}_{II} & \hat{K}_{IE} & \hat{K}_{IV} \\ 0 & \hat{S}_{EE} & \hat{S}_{EV} \\ 0 & \hat{S}_{VE} & \hat{S}_{VV} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{d}}_{I} \\ \hat{\boldsymbol{d}}_{E} \\ \hat{\boldsymbol{d}}_{V} \end{bmatrix} = \begin{bmatrix} I & 0 & 0 \\ -\hat{K}_{EI}\hat{K}_{II}^{-1} & I & 0 \\ -\hat{K}_{VI}\hat{K}_{II}^{-1} & 0 & I \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{f}}_{I} \\ \hat{\boldsymbol{f}}_{E} \\ \hat{\boldsymbol{f}}_{V} \end{bmatrix},$$

where \hat{S}_{ij} are the blocks of the Schur complement matrix \hat{S} , i.e., $\hat{S}_{ij} = \hat{K}_{ij} - \hat{K}_{il}\hat{K}_{ll}^{-1}\hat{K}_{lj}, \forall (i,j) \in \{E,V\} \times \{E,V\}$. The reduced boundary condition is an approximation to the second block row, i.e.,

$$\tilde{K}_{EE}\hat{\boldsymbol{d}}_{E}+\tilde{K}_{EV}\hat{\boldsymbol{d}}_{V}=\boldsymbol{0},$$

Algebraic MultiScale Solvers: Unstructured Grid

"Algebraic" multiscale

How to construct the coarse grid and supports only from the system matrix A?

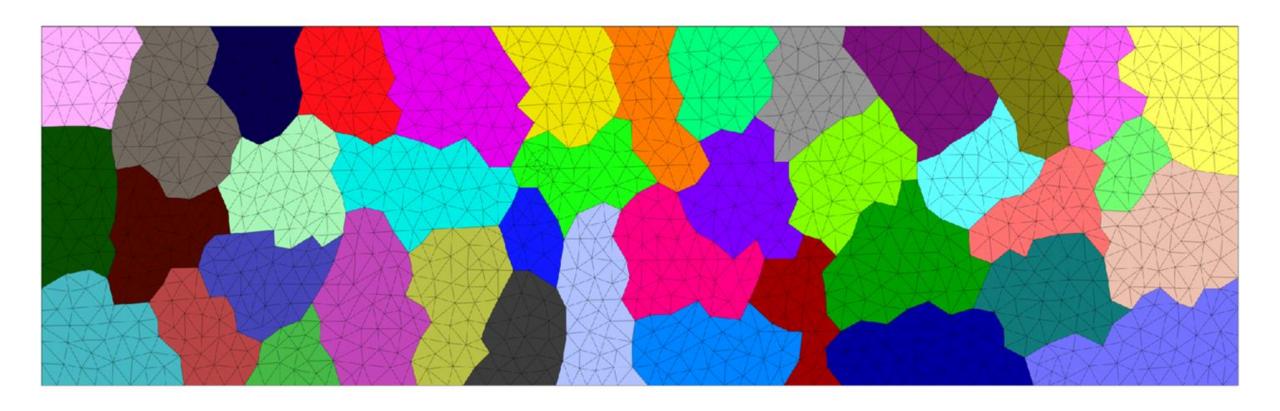
- Difficult to construct "wirebasket" in general case
- Just do AMG?

Add minimal grid information: element-to-node adjacency (topology)

- Available in any FEM code
- Also available "for free" from a coupled poroelastic system
- Keep this representation at the coarse level to allow >2 levels

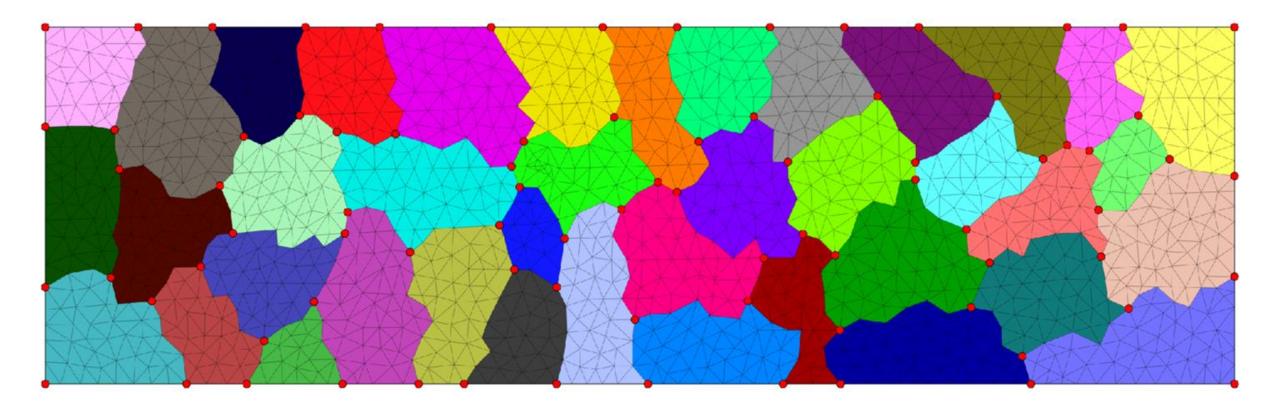
Mechanics - coarse grid

Step 1: generate the coarse grid from partition

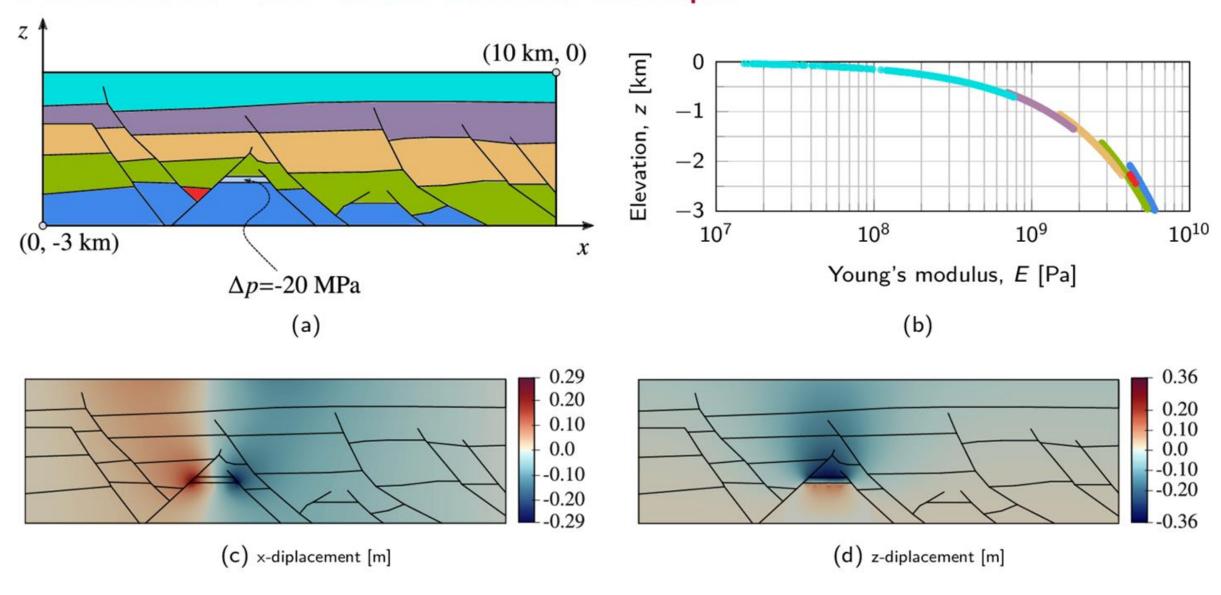


Mechanics - coarse grid

Step 1: generate the coarse grid from partition



Mechanics - 2D cross-section example



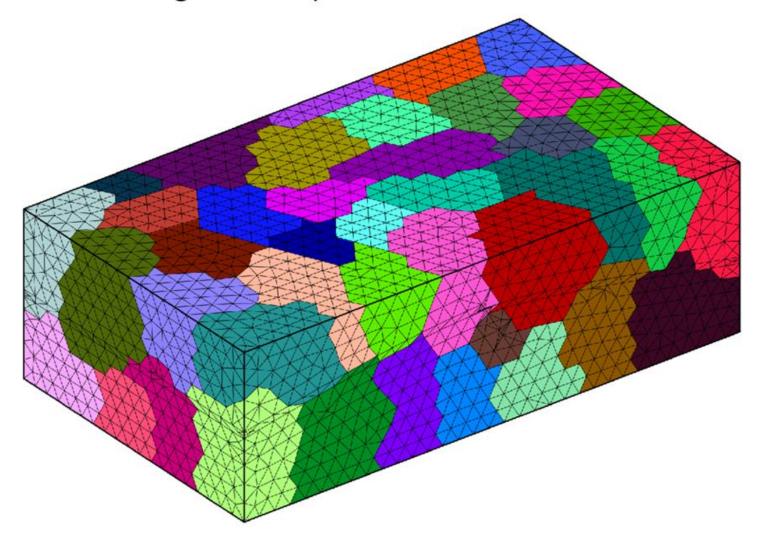
Mechanics - 2D cross-section example

ℓ		fine grid			coarse grid	coarsen	coarsening ratio	
	# cell	# node	# dof	# cell	# node	# dof	cell	dof
1	23,390	11,947	23,894	64	128	256	365.5	93.3
2	46,932	23,817	47,634	128	256	512	366.7	93.0
3	93,129	47,085	94,170	256	512	1,024	363.8	92.0
4	186,940	94,165	188,330	512	1,021	2,042	365.1	92.2
5	372,359	187,210	374,420	1,024	2,038	4,076	363.6	91.9
6	745,904	374,346	748,692	2,048	4,078	8,156	364.2	91.8
7	1,490,288	747,199	1,494,398	4,096	8,162	16,324	363.8	91.5

ℓ	IC(IC(0)		Gauss-Seidel		Sym. Gau	ıss-Seidel	ℓ_1 -Jacol	ℓ_1 -Jacobi ($ imes2$)	
	MsRSB	no MS	MsRSB	no MS		MsRSB	no MS	MsRSB	no MS	
1	27	137	54	290		39	204	69	369	
2	27	194	55	410		39	290	70	517	
3	28	268	57	576		40	407	72	736	
4	26	385	54	818		38	570	68	1046	
5	27	544	57	1155		40	816	72	1478	
6	27	769	56	1633		40	1153	71	_	
7	27	1085	56	_		40	1629	72	_	

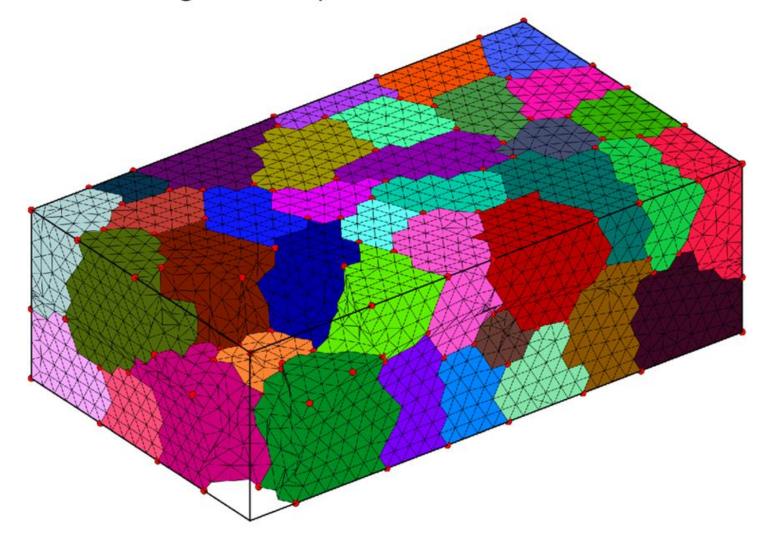
Mechanics - coarse grid

Step 1: generate the coarse grid from partition



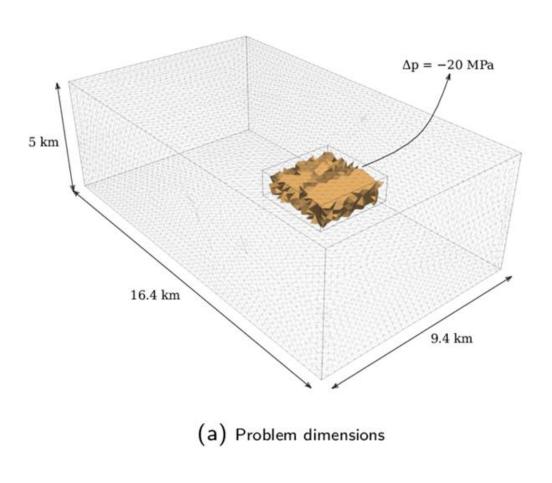
Mechanics - coarse grid

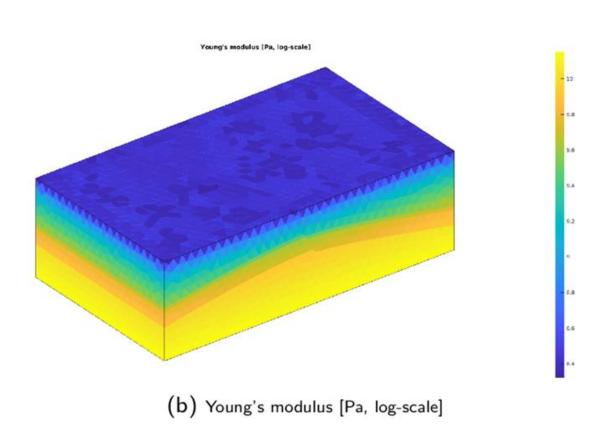
Step 1: generate the coarse grid from partition



3D unstructured mesh - elasticity

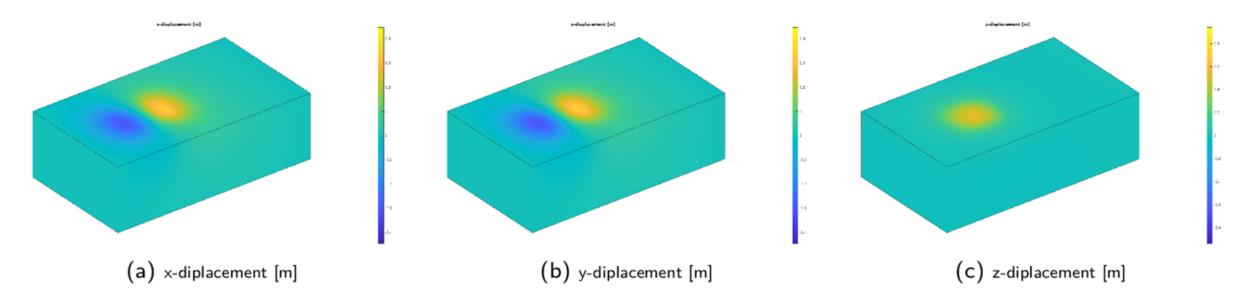
Problem setup:





3D unstructured mesh - elasticity

Solution:

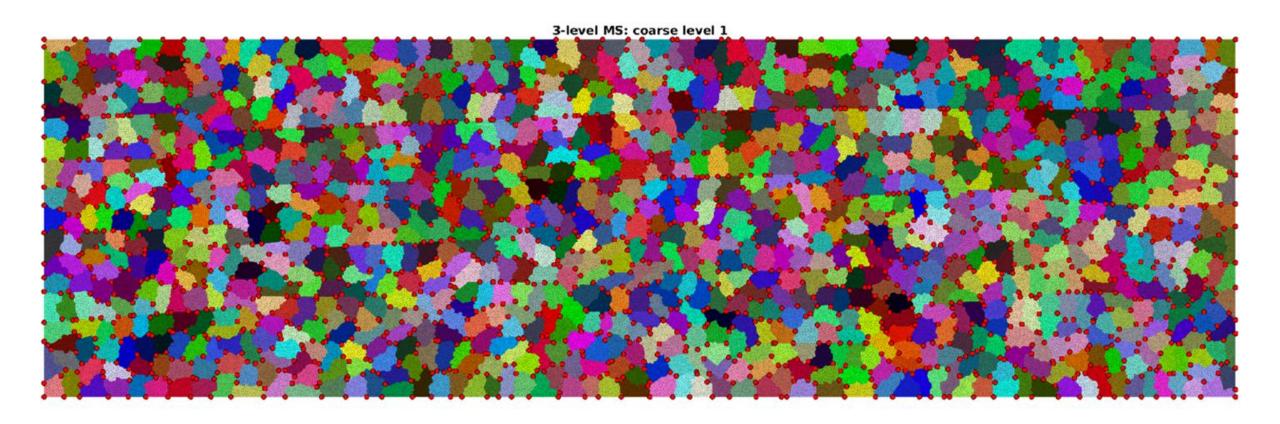


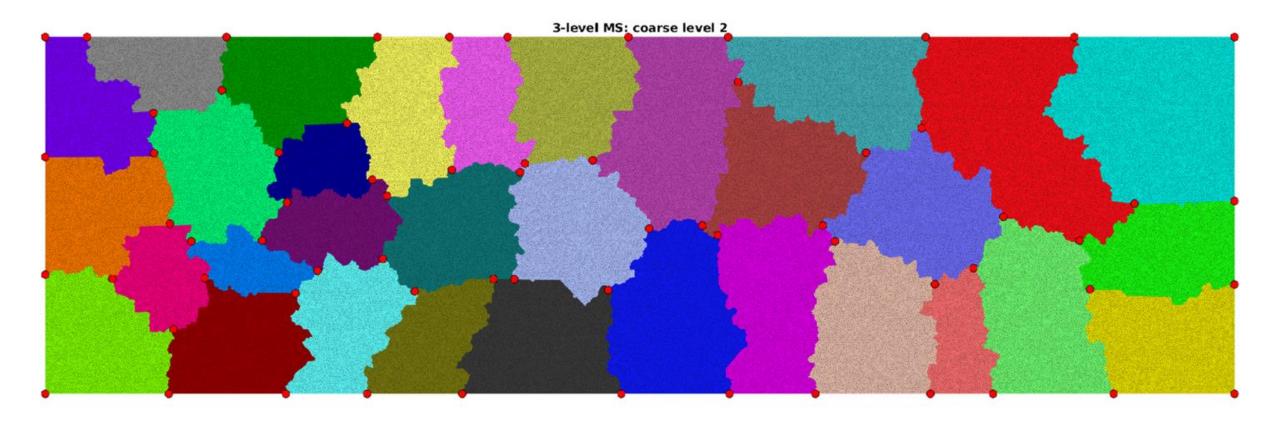
3D unstructured mesh - elasticity

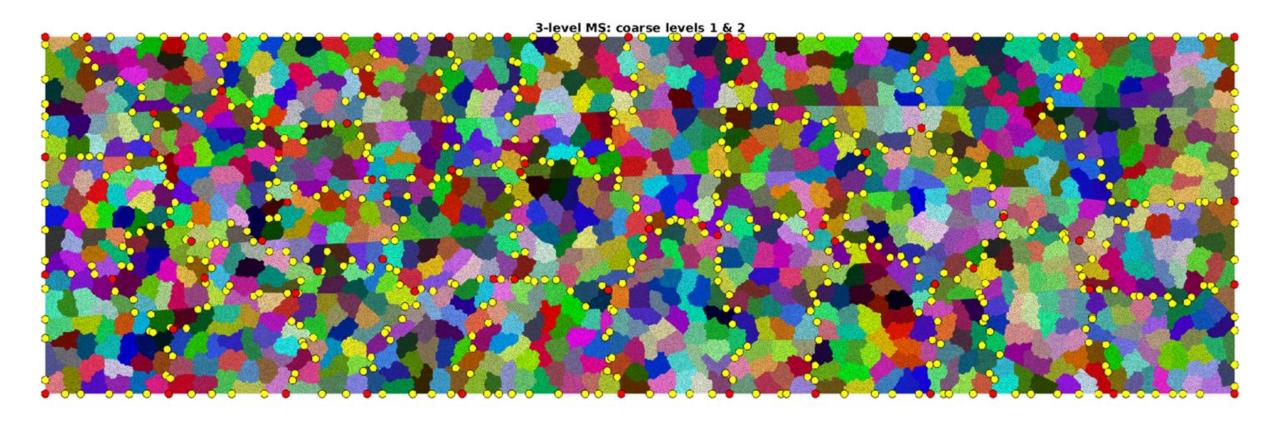
ℓ		fine grid			coarse grid	coarsenin	coarsening ratio	
	# cell	# node	# dof	# cell	# node	# dof	cell	dof
0	9,140	1,956	5,868	12	52	156	761.67	37.62
1	61,656	11,570	34,710	64	321	963	963.38	36.04
2	274,299	48,633	145,899	256	1,344	4,032	1071.48	36.19

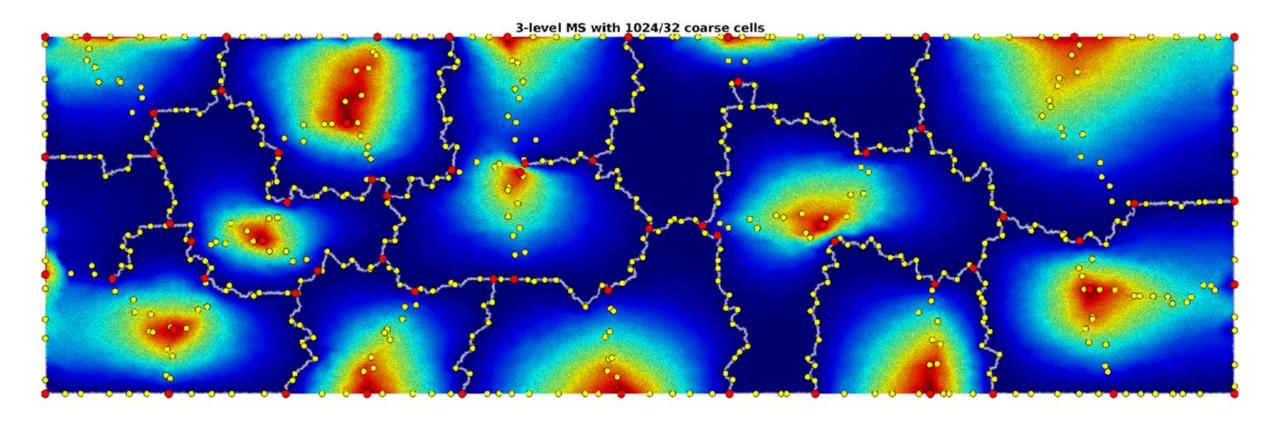
ℓ	IC(0)	Sym. Gau	ss-Seidel	ℓ_1 -Jacob	ℓ_1 -Jacobi ($ imes2$)		
	MsRSB	no MS	MsRSB	no MS	MsRSB	no MS		
1	55	73	31	49	52	90		
2	48	101	25	60	43	132		
3	47	159	22	92	39	206		

Multi-Level Multi-Scale Poro-Mechanics









Mechanics - 2D cross-section example - 3-level multiscale

ℓ	fine grid		L1 coa	L1 coarse grid		L1 ratio		L2 coarse grid		L2 ratio	
	cell	dof	cell	dof	cell	dof	cell	dof	cell	dof	
2	46,932	47,634	128	512	366.66	93.04	4	16	32	32.00	
3	93,129	94,170	256	1,024	363.79	91.96	8	36	32	28.44	
4	186,940	188,330	512	2,042	365.12	92.23	16	68	32	30.03	
5	372,359	374,420	1,024	4,076	363.63	91.86	32	132	32	30.88	
6	745,904	748,692	2,048	8,156	364.21	91.80	64	260	32	31.37	
7	1,490,288	1,494,398	4,096	16,324	363.84	91.55	128	516	32	31.64	

Table: 3-level vs 2-level multiscale, CG iterations

ℓ	MsRSB	+ IC(0)	MsRSB + SGS		
	3-level	2-level	3-level	2-level	
2	27	27	40	39	
3	28	28	41	40	
4	26	26	38	38	
5	27	27	40	40	
6	27	27	40	40	
7	27	27	40	40	

Poroelasticity - preconditioner design

Form and solve coarse-scale system:

$$\mathbf{x} \approx \underbrace{\left\{ \begin{matrix} \mathbf{u}_{MS}^h \\ \mathbf{p}_{MS}^h \end{matrix} \right\}}_{\mathbf{x}_{MS}} = \underbrace{\left[\begin{matrix} \mathcal{P}^{(u,u)} \\ \mathcal{P} \end{matrix} \right]}_{\mathcal{P}} \underbrace{\left\{ \begin{matrix} \mathbf{u}^H \\ \mathbf{p}^H \end{matrix} \right\}}_{\mathbf{x}^H} \quad \Rightarrow \quad \underbrace{\mathcal{R}A^h \mathcal{P}}_{A^H} \mathbf{x}^H = \underbrace{\mathcal{R}b^h}_{b^H}$$

• The coarse-scale system is fully coupled:

$$\begin{bmatrix} \mathcal{R}^{(u,u)} & & \\ & \mathcal{R}^{(p,p)} \end{bmatrix} \begin{bmatrix} K^h & B_1^h \\ B_2^h & C^h \end{bmatrix} \begin{bmatrix} \mathcal{P}^{(u,u)} & & \\ & \mathcal{P}^{(p,p)} \end{bmatrix} = \begin{bmatrix} K^H & B_1^H \\ B_2^H & C^H \end{bmatrix}$$

Can use different coarse grids and/or resolutions for the two problems

[Castelletto, Klevtsov, Hajibeygi, Tchelepi. CompGeo (2019)]

Poroelasticity - preconditioner design

• Multiplicative preconditioner: $\mathcal{M}_{\text{mult}}^{-1}: \mathbf{v} \longmapsto \mathbf{z}$

$$egin{aligned} oldsymbol{z}_1 &= \mathcal{M}_{MS}^{-1} oldsymbol{v} \ oldsymbol{z} &= oldsymbol{z}_1 + \mathcal{M}_L^{-1} \left(oldsymbol{v} - A oldsymbol{z}_1
ight) \end{aligned} \qquad \qquad ext{(stage 1)}$$

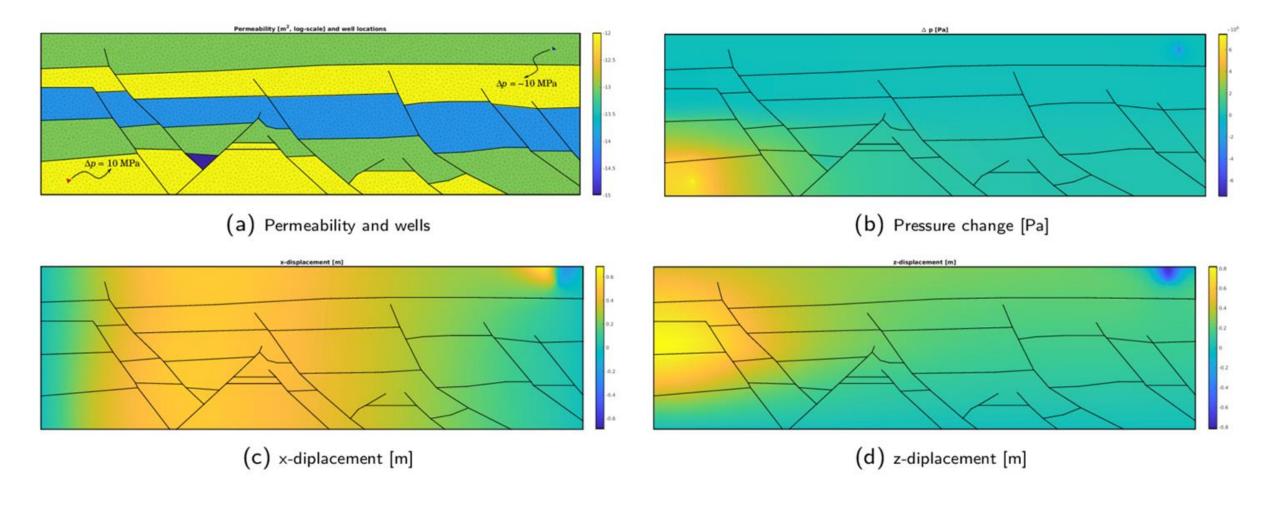
- Multiscale operator: $\mathcal{M}_{G}^{-1} = \mathcal{P} \left(\mathcal{R} A \mathcal{P}\right)^{-1} \mathcal{R}$
- Post-smoothing via block-triangular operator with fixed-stress split:

$$\mathcal{M}_L^{-1} = \begin{bmatrix} \tilde{K} & -B_1 \\ & \tilde{S} \end{bmatrix}^{-1}$$
 $S \approx C - B_2 K^{-1} B_1$

Schur complement constructed algebraically via probing

[Castelletto, Klevtsov, Hajibeygi, Tchelepi. CompGeo (2019)]

Poroelasticity - 2D cross-section example



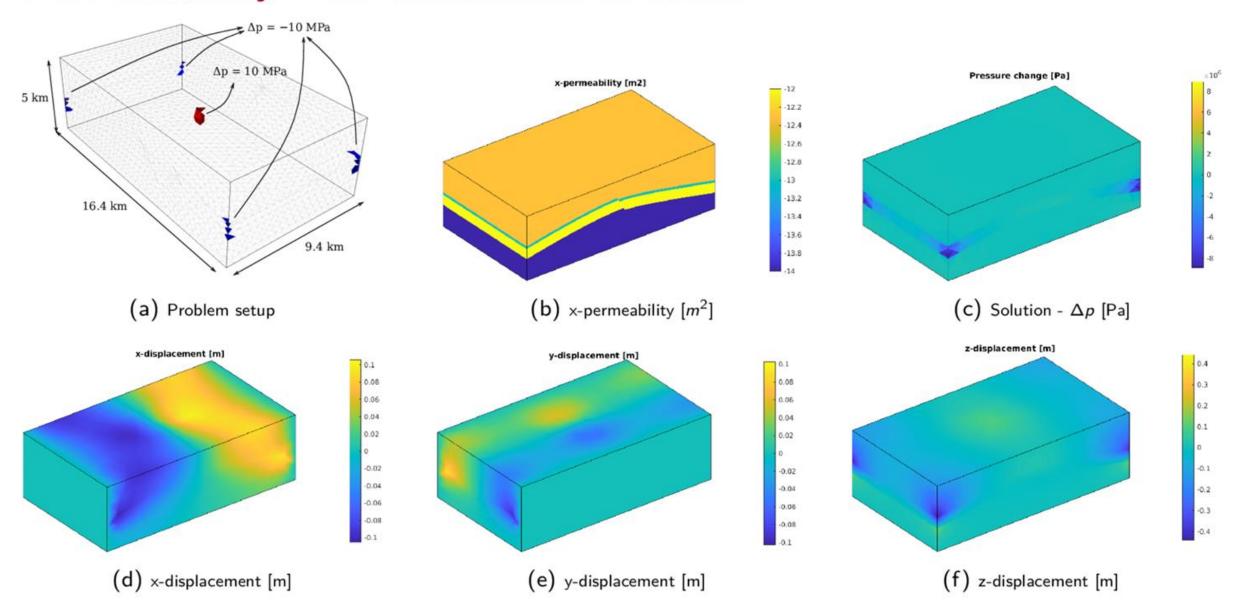
Poroelasticity - 2D cross-section example

ℓ	fine grid			c. gri	c. grid (M)		c. grid (F)		coarsening ratio		
	# cell	# node	# dof	# cell	# dof	# cell	# dof	mech	flow	total	
0	11,879	6,119	24,117	64	256	64	64	47.80	185.61	75.37	
1	23,390	11,947	47,284	128	504	128	128	47.41	182.73	74.82	
2	46,932	23,817	94,566	256	1,012	256	256	47.07	183.33	74.58	
3	93,129	47,085	187,299	512	2,030	512	512	46.39	181.89	73.68	
4	186,940	94,165	375,270	1,024	4,066	1,024	1,024	46.32	182.56	73.73	
5	372,359	187,210	746,779	2,048	8,132	2,048	2,048	46.04	181.82	73.36	

ℓ	IC(0)	Sym. Gai	ıss-Seidel	ℓ_1 -Jacob	ℓ_1 -Jacobi ($ imes2$)		
	MsRSB	no MS	MsRSB	no MS	MsRSB	no MS		
0	71	312	82	355	131	_		
1	67	433	78	480	117	_		
2	66	500	78	_	115	_		
3	62	_	76	_	104	_		
4	72	_	86	_	117	_		
_5	67		82		109			

Note: GMRES iteration limit set to 500

Poroelasticity - 3D unstructured mesh



Poroelasticity - 3D unstructured mesh

ℓ		fine grid			c. grid (M)		c. grid (F)		coarsening ratio		
	# cell	# node	# dof	# cell	# dof	# cell	# dof	mech	flow	total	
0	9,140	1,956	15,008	12	156	29	29	37.62	315.17	81.12	
1	61,656	11,570	96,366	64	963	156	156	36.04	395.23	86.12	
_2	274,299	48,633	420,198	256	4,032	677	677	36.19	405.17	89.23	

ℓ	IC((0)	Sym. Gau	ıss-Seidel	ℓ_1 -Jacobi ($ imes2$)		
	MsRSB	no MS	MsRSB	no MS	MsRSB	no MS	
0	55	82	64	103	100	270	
1	65	144	67	159	97	419	
2	68	217	67	235	93	642	

Summary – MultiScale Formulations for Flow & Mechanics in Porous Media

Many acronyms:

- MSFE
- MSFV
- AMS
- TAMS
- Multi-Level Multi-Scale

Acknowledgements

 Industrial Consortium on Reservoir Simulation Research at Stanford (SUPRI-B)

 MAELSTROM Project Sponsored by TotalEnergies