
Domain decomposition and optimal control

Julien Salomon

Laboratoire J.-L. Lions, Sorbonne Université
&

ANGE project-team, INRIA

Problem: control on a fixed, bounded interval [0, T]
Given T > 0, consider the optimal control problem associated
with the cost functional

J(c) = 1
2‖y(T)− ytarget‖2 + α

2

∫ T

0
c2(t)dt,

where the state function x evolution is described by an equation:

ẏ(t) = f(y(t), c(t)),

with initial condition y(0) = yinit.

Objective: Given an optimal control solver,
combine it with a time-parallelization.

Optimality system (1/2)
How to characterize the optima ?
→ Solve the Euler-Lagrange equations !
• Define the Lagrange operator:

L(y, p, c) = J(c)−
∫ T

0
p(t) · (ẏ(t)− f(y(t), c(t)))dt

• Compute its partial derivatives.
• Cancel them !

Optimality system (2/2)
The optima are characterized by the Euler-Lagrange equations:

ẏ(t) =f(y(t), c(t))
y(t = 0) =y0

ṗ(t) =− [∂yf(y(t), c(t))]p(t)
p(t = T) =y(T)− y0

αc(t) =− p(t) · ∂cf(y(t), c(t))

"Non-linear control" or "Bilinear control"

Linear eq. Non-linear eq.
"Linear" control ẏ = Ay +Bc ẏ = f(y) +Bc

Non-linear control ẏ = A(c)y ẏ = f(y, c)

• y = y(t, x) state
• c = c(t) or c(t, x) control

Outline

1 An intermediate states method to parallelize

2 Linear Control
Time sub-intervals decomposition
Use of a coarse solver
Numerical examples

Outline

1 An intermediate states method to parallelize

2 Linear Control
Time sub-intervals decomposition
Use of a coarse solver
Numerical examples

Nonlinear control

Linear eq. Non-linear eq.
"Linear" control ẏ = Ay +Bc ẏ = f(y) +Bc

Non-linear control ẏ = A(c)y ẏ = f(y, c)

Control in quantum chemistry

Example: control physicochemical phenomena with
laser pulses

R.J. Levis, G.M. Menkir, H. Ra-
bitz, Science, 292, pp. 709-713,
2001.

Control in quantum chemistry

Mathematical model : The Schrödinger equation

i
∂ψ(x, t)
∂t

= [∆ + V (x)− µ(x)ε(t)]ψ(x, t)

• ψ(·, t)↔ y(t)
• ε(t)↔ c(t)
• [∆ + V (x)− µ(x)ε(t)]ψ(x, t)↔ f(y(t), c(t))

Control in quantum chemistry

Similar issue: Nuclear Magnetic Resonance

Aim : control spin using
Magnetic fields.

Applications :
• Medical imaging
• Quantum computing
• Porous media identification
• ...

∂M

∂t
(t, ω) =

[
u(t)e1 + v(t)e2 + ωe3

]
∧M(t, ω), ω ∈ (ω∗, ω∗)

An intermediate states method

Optimal control problems, usual requirements:
• Real-time constraints,
• Requires many propagations over the considered time
interval.

→ use parallelization to accelerate the computations.

Question: How to reach full efficiency ?

An intermediate states method

Optimal control problems, usual requirements:
• Real-time constraints,
• Requires many propagations over the considered time
interval.

→ use parallelization to accelerate the computations.

Question: How to reach full efficiency ?

An intermediate states method

Optimal control problems, usual requirements:
• Real-time constraints,
• Requires many propagations over the considered time
interval.

→ use parallelization to accelerate the computations.

Question: How to reach full efficiency ?

An intermediate states method
The idea behind the algorithm

•

•

•
•
•

• Initial points /
Intermediate targets
Λ =
(
λj

)
j=1,··· ,5

dU

dt
= f(U, c)

Uinitial

Ucible

Time of control
CPU

1

CPU

2

CPU

3

CPU

4

CPU

5

Disclaimer: not a parareal algorithm.

An intermediate states method
The idea behind the algorithm

And it follows:
• Independent sub-problems

J → (Jj)j=1,··· ,N ,

• Need for an update formula for the intermediate states

Λ = (λj)j=1,··· ,N .

An intermediate states method
Algorithm

Algorithm:
Given ck, Λk (intermediate targets) at step k:

1 solve in parallel on [Tj , Tj+1]

max
cj

Jj(cj)→ ck+1
j ,

2 define ck+1 as the concatenation of ck+1
j ,

3 define Λk+1 in a “relevant way” with ck+1, so that the
consistency lemma holds.

An intermediate states method
Algorithm

Parallelization setting:

Define λ0 = ψ0, λN = ψtarget, cj = c|[Tj ,Tj+1] and βj = T
Tj+1−Tj .

J‖(c,Λ) =
N−1∑
j=0

βjJj(cj , λj , λj+1)

where Jj are the parareal cost functionals:

Jj(cj , λj , λj+1) = ‖ψj(T−j+1)− λj+1‖2L2 +
∫ Tj+1

Tj

α′j(t)cj(t)2dt,

α′j(t) = α(t)
βj

, ψj(T+
j) = λj .

An intermediate states method
Properties of the algorithm

Theorem
Given c, with the previous notations, let us define
Λc = (λcj)j=1,...,N−1 by:

λcj = (1− γj)ψ(Tj) + γjχ(Tj),

where γj = Tj
T .

Then:
Λc = argminΛ

(
J‖(c,Λ)

)
.

Moreover we have:
J‖(c,Λc) = J(c).

An intermediate states method
Properties of the algorithm

Convergence?

J‖(ck+1,Λk+1)− J‖(ck,Λk) = J‖(ck+1,Λk+1)− J‖(ck,Λk+1)
J‖(ck,Λk+1)− J‖(ck,Λk)

≥ J‖(ck+1,Λk+1)− J‖(ck,Λk+1).

→Monotonicity preserved :
The proof of convergence is reduced to the one of the

optimization solver.

An intermediate states method
Properties of the algorithm

Convergence?

J‖(ck+1,Λk+1)− J‖(ck,Λk) = J‖(ck+1,Λk+1)− J‖(ck,Λk+1)
J‖(ck,Λk+1)− J‖(ck,Λk)

≥ J‖(ck+1,Λk+1)− J‖(ck,Λk+1).

→Monotonicity preserved :
The proof of convergence is reduced to the one of the

optimization solver.

An intermediate states method
Properties of the algorithm

Convergence?

J‖(ck+1,Λk+1)− J‖(ck,Λk) = J‖(ck+1,Λk+1)− J‖(ck,Λk+1)
J‖(ck,Λk+1)− J‖(ck,Λk)

≥ J‖(ck+1,Λk+1)− J‖(ck,Λk+1).

→Monotonicity preserved :
The proof of convergence is reduced to the one of the

optimization solver.

An intermediate states method
Properties of the algorithm

What about the optimization solver ?
We can show that:

∇J(c)|[Tj ,Tj+1] = Tj+1 − Tj
T

∇Jj(c|[Tj ,Tj+1]).

FOR EVERY c !

⇒ A new interpretation of the method:
the intermediate target method provides a decomposition of
the gradient that enables parallelization.

An intermediate states method
Numerical tests

Constant step gradient method

⇒ Full efficiency !

An intermediate states method
Numerical tests

Newton

Here, our parallelization method not only improves the Newton
convergence makes it possible .

N N · Time‖
1 -
2 -
4 33.722
10 3.2544
20 0.72559

An intermediate states method
Numerical tests

Full efficiency ?
The optimization is achieved in parallel, but ψ(t) and χ(t) seem
to require solving on [0, T] (full propagation) ?

NO !!! → only ψ(tj) and χ(tj) are required.

⇒ For low dimensional systems, the propagators tj → tj+1 can
be computed in parallel, when computing the gradient !

An intermediate states method
Numerical tests

Full efficiency ?
The optimization is achieved in parallel, but ψ(t) and χ(t) seem
to require solving on [0, T] (full propagation) ?

NO !!! → only ψ(tj) and χ(tj) are required.

⇒ For low dimensional systems, the propagators tj → tj+1 can
be computed in parallel, when computing the gradient !

An intermediate states method
Numerical tests

A nonlinear model: Gross-Pitaevskii equation

J(c) = 1
2‖ψtarget − ψ(., T)‖2L2 .

...to be minimized.
Constraint:

i
∂ψ(x, t)
∂t

= [− ~
2m∆ + V (x, c(t)) + g|ψ(x, t)|2]ψ(x, t),

with:

V (x, c) =


1
2

(
|x| − d.c

2

)2
, |x| > d.c

4
1
2

(
(d.c)2

8 − x2
)
, otherwise.

U. Hohenester, P.K. Rekdal, A. Borzì, J. Schmiedmayer, Optimal quantum control of

Bose-Einstein condensates in magnetic microtraps, Phys. Rev. A 75, 023602 (2007).

An intermediate states method
Numerical tests

A nonlinear model: Adaptations required
• To keep the gradient property: splitting of initial states
and targets.
• To approximate full-efficiency:

i
∂ψk+1(x, t)

∂t
= [− ~

2m∆+V (x, c(t))+g|ψk(x, t)|2]ψk+1(x, t).

⇒ Theoretical drawback: loss of the alternating
optimization interpretation of the method.

An intermediate states method
Numerical tests

A nonlinear model: numerical results

Outline

1 An intermediate states method to parallelize

2 Linear Control
Time sub-intervals decomposition
Use of a coarse solver
Numerical examples

"Linear control"

Linear eq. Non-linear eq.
"Linear" control ẏ = Ay +Bc ẏ = f(y) +Bc

Non-linear control ẏ = A(c)y ẏ = f(y, c)

• y = y(t, x) state
• c = c(t) or c(t, x) control

Linear Control
The optimality condition then reads

ẏ(t) = f(y(t)) + c(t),
λ̇(t) = −(f(y(t))′)Tλ(t),
αc(t) = −λ(t).

→ Elimination of c:
ẏ = f(y)− λ

α
,

λ̇ = −(f(y)′)Tλ,

and final condition λ(T) = y(T)− ytarget.

Time discretization⇒Mδt

(
Y
Λ

)
= b

Linear Control
Time parallelization

Our approach is based on two ideas:
1 Partition the time interval [0, T]:
T0 = 0 < T1 < . . . < TL = T .

2 Coarse approximation of the inverse: Mδt →M∆t.

Linear Control
Time sub-intervals decomposition

Boundary value problems notations : on the subinterval
[Tl, Tl+1] with initial condition y(Tl) = yl and final condition
λ(Tl+1) = λl+1, we denote(

y(Tl+1)
λ(Tl)

)
=
(
P (yl, λl+1)
Q(yl, λl+1)

)
.

Linear Control
Time sub-intervals decomposition

The optimality system is enriched:

y0 − yinit = 0
y1 − P (y0, λ1) = 0 λ1 −Q(y1, λ2) = 0
y2 − P (y1, λ2) = 0 λ2 −Q(y2, λ3) = 0

...
...

yL − P (yL−1, λL) = 0 λL − yL + ytarget = 0

(1)

That is : a system of boundary value subproblems,
satisfying matching conditions.

Linear Control
Time sub-intervals decomposition

Collecting the unknowns in the vector

(Y T ,ΛT) := (y0, y1, y2, . . . , yL, λ1, λ2, . . . , λL),

we obtain the nonlinear system

F(Y T ,ΛT) :=



y0 − yinit
y1 − P (y0, λ1)
y2 − P (y1, λ2)

...
yL − P (yL−1, λL)
λ1 −Q(y1, λ2)
λ2 −Q(y2, λ3)

...
λL − yL + ytarget


= 0.

Linear Control
Time sub-intervals decomposition

Newton’s method:

F′
(

Y n

Λn

)(
Y n+1 − Y n

Λn+1 − Λn

)
= −F

(
Y n

Λn

)
,

where the Jacobian matrix of F is given by

F′
(
Y
Λ

)
=

1
−PY (Y0,Λ1) 1 −PΛ(Y0,Λ1)

. . .
. . .

. . .
−PY (YN−1,ΛN) 1 −PΛ(YN−1,ΛN)

−QY (Y1,Λ2) 1 −QΛ(Y1,Λ2)
. . .

. . .
. . .

−QY (YN−1,ΛN) 1 −QΛ(YN−1,ΛN)
−1 1



Linear Control
Use of a coarse solver

Third idea: coarse approximation of the Jacobian

F ′ ≈ finite difference

Linear Control
Use of a coarse solver

Which concretely corresponds to:

Py(yn`−1, λ
n
`)(yn+1

`−1 − yn`−1) ≈ PG(yn+1
`−1 , λ

n
`)− PG(yn`−1, λ

n
`),

Pλ(yn`−1, λ
n
`)(λn+1

` − λn`) ≈ PG(yn`−1, λ
n+1
`)− PG(yn`−1, λ

n
`),

Qλ(yn`−1, λ
n
`)(λn+1

` − λn`) ≈ QG(yn`−1, λ
n+1
`)−QG(yn`−1, λ

n
`),

Qy(yn`−1, λ
n
`)(yn+1

`−1 − yn`−1) ≈ QG(yn+1
`−1 , λ

n
`)−QG(yn`−1, λ

n
`).

→ Inspiration from the Parareal algorithm:
J.-L. Lions, Y. Maday, and G. Turinici. A "parareal" in time disretization
of pde’s. Comptes Rendus de l’Acad. des Sciences, 2001.
→ and its interpretation:
M. Gander, S. Vandewalle, SISC 2003.

Linear Control
Parareal for Control

Partial summary:
• In parallel: all fine propagations on sub-intervals.
• Sequential part: only coarse solving.

Linear Control
Linear dynamics

Example : linear dynamics

ẏ(t) = σy(t) + c(t).

Discretizing and setting:

X =
(
Y
Λ

)
,

we get:
Xk+1 =

(
Id−M−1

∆tMδt

)
Xk +M−1

∆t b.

Linear Control
Linear dynamics

Example : linear dynamics

ẏ(t) = σy(t) + c(t).

Discretizing and setting:

X =
(
Y
Λ

)
,

we get:
Xk+1 =

(
Id−M−1

∆tMδt

)
Xk +M−1

∆t b.

Analyze the eigenvalues of Id−M−1
∆tMδt !

Linear Control
Linear dynamics

Results for implicit Euler:
• Contraction factor: ρ ≤ C(∆t− δt)
• For σ < 0, C can be chosen independent of σ
• For very large α, C can grow like log(α) when the number
of subdomains becomes large

F. Kwok, M. Gander, J. Salomon, to appear ...

Linear Control
Numerical example: Linear dynamics

ẏ(t) = σy(t) + c(t).

Convergence for various values of r = δt/∆t for fixed δt = δt0.

Linear Control
Numerical example: Linear dynamics

Convergence for various with respect to the number of iteration
for various number of subintervals.

Linear Control
Numerical example: Linear dynamics

ẏ(t) = σy(t) + c(t).

Convergence for various values of r = δt/∆t for fixed δt = δt0.

Linear Control
Numerical example: Linear dynamics

Convergence for various with respect to the number of iteration
for various number of subintervals.

Linear Control
Numerical example: Non-linear vectorial dynamics

• Minimize

J(c) = 1
2 |y(1)− ytarget|2 + 1

2

∫ 1

0
|c(t)|2 dt

with ytarget = (100, 20)T , subject to the Lotka-Volterra
equation

ẏ1 = a1y1 − b1y1y2 + c1, ẏ2 = a2y1y2 − b2y2 + c2

with initial conditions y(0) = (20, 10)T

• Backward Euler, δt = 10−5

Linear Control
Numerical example: Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #1

Linear Control
Numerical example: Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #2

Linear Control
Numerical example: Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #3

Linear Control
Numerical example: Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #4

Linear Control
Numerical example: Non-linear vectorial dynamics

• Minimize

J(c) = 1
2 |y(20)− ytarget|2 + 1

2

∫ 20

0
|c(t)|2 dt

with ytarget = (100, 20)T , subject to the Lotka-Volterra
equation

ẏ1 = a1y1 − b1y1y2 + c1, ẏ2 = a2y1y2 − b2y2 + c2

with initial conditions y(0) = (20, 10)T

• Backward Euler, δt = 20 · 10−5

Linear Control
Numerical example: Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #1

Linear Control
Numerical example: Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #2

Linear Control
Numerical example: Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #3

Linear Control
Numerical example: Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #4

Linear Control
Numerical example: Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #5

Linear Control
Numerical example: Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #6

Linear Control
Numerical example: Non-linear vectorial dynamics

Vector example - N = 10, r = δt/∆t = 0.01

Iteration #7

Linear Control
Numerical example: Non-linear vectorial dynamics

Trick : Derivative Evaluation by Gauss-Newton
• Approximation: neglect 2nd derivatives

dy′

dt
= f ′(y)y′ − λ′

α
, y′(0) = Y k+1

n − Y k
n ,

dλ′

dt
= −(f ′(y))Tλ′ −�������

(f ′′(y, y′))Tλ, λ′(T) = Λk+1
n+1 − Λkn+1.

• Simplified ODE for λ′ independent of y′

• Approximate derivatives in one backward-forward sweep!

Linear Control
Numerical example: Non-linear vectorial dynamics

N = 10 subdomains, varying r = δt/∆t

Linear Control
Numerical example: Non-linear vectorial dynamics

δt/∆t = 0.01, varying # subdomains

Linear Control
Numerical example: Non-linear vectorial dynamics

True Newton:

	 An intermediate states method to parallelize
	Linear Control
	Time sub-intervals decomposition
	Use of a coarse solver
	Numerical examples

