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± What is a multiphysics problem ?

• Multiphysics is the opposite of “single physics”
• Typical single physics problems :

• Heat transfer
• Convection/advection
• Wave propagation
• Elastic deformations
• . . .

• Many types of multiphysics :
• Interacting objects with different dynamics
• Different properties of the same object interacting
• Different approximations of the same physical phenomenon
• . . .
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± Multiphysics simulations

• Single physics problems often have specialized discretizations and solvers that exploit
specific properties of such problems
• Heat transfer : fast Poisson solvers, multigrid, . . .
• Wave propagation : ray tracing, sweeping preconditioners, . . .
• Advection : Upwinding, streamline methods, approximate Riemann solvers, ordering

methods, . . .
• . . .

• Such specialized approaches cannot be applied blindly to multiphysics problems !
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� Outline

± Multiphysics problem 1 : Two-phase flow in porous media

± Elliptic vs. hyperbolic problems

± Multiphysics problem 2 : Cooling by fluid injection



Multiphysics problem 1 :
Two-phase flow in porous media



± Flow in porous media

• Goal : Track the evolution of underground fluids (groundwater, crude oil, natural gas, . . . )
as well as the concentrations of dissolved chemicals (salinity, contaminants, . . . )

• Applications : oil & gas production, carbon sequestration, contaminant tracking, ground
subsidence,. . .
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± Darcy flow model

• Single phase flow : one fluid only
• Fluid velocity is proportional to the negative pressure

gradient :
v = −K(x)∇p

vvelocity j
Darcy

v

• Conservation of mass :

(Accumulation) = (Mass in)− (Mass out)
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± Darcy flow model

• Single phase flow : one fluid only
• Fluid velocity is proportional to the negative pressure

gradient :
v = −K(x)∇p

vvelocity j
Darcy

v

• Conservation of mass :

∂

∂t
(φρ) = ∇ · (K(x) ρ∇p) + q,

where
• φ = porosity
• ρ = ρ(p) = fluid density (as a function of p)
• q = sources (injection/productdion wells, chemical reactions, . . . )
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± Two-phase flow
• Two immiscible phases, e.g., oil and water
• Define :

Sw = saturation of water (i.e., fraction of pore space occupied by water)
So = saturation of oil (i.e., fraction of pore space occupied by oil)

• Pores are saturated : So = 1− Sw

• Flow of each phase interferes each other : fluid velocity depends on saturation

vw = −K(x)λw(Sw)∇p, vo = −K(x)λo(Sw)∇p

• Mass conservation, one per phase (write S = Sw from now on) :

Water : ∂

∂t
(φρwS) = ∇ · (K(x)ρwλw(S)∇p) + qw,

Oil : ∂

∂t
(φρo(1− S)) = ∇ · (K(x)ρoλo(S)∇p) + qo,
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± Two immiscible phases
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(Source : K. & Tchelepi, JCP 2007)
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± Where is the multiphysics ?

Water : ∂

∂t
(φρwS) = ∇ · (K(x)ρwλw(S)∇p) + qw,

Oil : ∂

∂t
(φρo(1− S)) = ∇ · (K(x)ρoλo(S)∇p) + qo,

• Assume rock and fluids are incompressible, i.e., φ, ρw and ρo are constant
• Add both equations and get

0 = ∇ · (K(x)(λw(S) + λo(S))∇p) + qw

ρw
+ qo

ρo
.

This is an elliptic equation of the form

−∇ · (KT (x, S)∇p) = q̃ (∗)

where the permeability depends on S.
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• Define the total fluid velocity vT = −K(x)(λw(S) + λo(S))∇p
• vT depends on S and p, but often varies slowly in time
• Special case : in 1D and with qw = qo = 0, (∗) becomes

d

dx
(vT ) = 0 =⇒ vT = const.!

• The water velocity vw = −K(x)λw(S)∇p is proportional to vT :

vw = λw(S)
λw(S) + λo(S)vT =: f(S)vT

• Rewrite water equation as

∂

∂t
(φS) +∇ · (f(S)vT ) = qw

ρw
.

• When qw = 0 and vT is constant, this is a hyperbolic conservation law !
• The two problems are coupled, since KT depends on S and vT on ∇p
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± Problem summary

• Unknowns : p = pressure, S = saturation
• In the incompressible limit, we have

−∇ · (KT∇p) = q̃

∂

∂t
(φS) +∇ · (f(S)vT ) = qw

ρw

• For fixed S, pressure satisfies a linear elliptic equation
• For fixed vT , saturation satisfies a nonlinear hypberbolic conservation law
• The two equations require very different discretizations and solvers !
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Elliptic vs. hyperbolic problems



± Elliptic problems

Our pressure equation is an elliptic problem is of the form

−∇ · (K(x)∇p) = q̃ for x ∈ Ω

together with boundary conditions :
• Dirichlet : p = g(x) on the boundary (or part of the boundary)
• Neumann : K(x) ∂p

∂n = g

• Robin : K(x) ∂p
∂n + αp = g

To approximate p(x), we discretize the PDE using finite difference, finite volumes or finite
element methods.
Example : At a grid point x = xij , approximate derivatives pij ≈ p(xij) using finite
differences :

∂

∂x

(
K
∂p

∂x

)
(xij) ≈

Ki+1/2,j(pi+1,j − pij)−Ki−1/2,j(pij − pi−1,j)
h2
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Important properties of this elliptic problem :

• Operator is isotropic : no preferential direction
• Operator is local : sparse matrix
• Operator is unbounded : ill-conditioned matrices
• Solution is smooth when K is continuous
• Infinite speed of propagation : solution at xij depends on data everywhere in the domain
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± Non-zero pattern of the matrix : 2D problem
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• LU factors are about twice as dense as A
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± Non-zero pattern of the matrix : 3D problem
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• LU factors are about 14 times as dense as A !
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± Solution methods

• Direct methods, i.e., Gaussian elimination
• Factorization step : costs roughly between O(|L+ U |) to O(|L+ U |1.5)
• Substitution step : costs O(|L+ U |)
• Reordering is important : minimal degree ordering, multi-frontal methods,. . .
• Works well for “small” problems, some parallelism possible (MUMPS)
• Less competitive for 3D problems because of more fill-in
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± Reordered matrix
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• LU factors are “only” 9 times as dense as Ã after reordering
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± Solution methods

• Iterative methods : generate a sequence of successively better approximations to the
solution
• Subdivide into smaller problems based on “subdomains”, then iterate to convergence

=⇒ Domain Decomposition Methods (mini-course Victorita Dolean, Wednesday to
Friday)

• Work on problem on many grids of different resolutions =⇒ multigrid methods
(mini-course by Scott MacLachlan, Tuesday to Thursday next week)

• Such methods often requires only matrix-vector multiplications =⇒ work proportional to
number of non-zeros in the matrix, matrix-free implementations

• Speed of convergence matters !
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± Hyperbolic Problems

• The saturation variable S in our two-phase problem satisfies the transport equation

∂

∂t
(φS) +∇ · (f(S)vT ) = qw

ρw
.

• When qw = 0, the equation is an example of a hyperbolic conservation law.
• The simplest example is the advection equation, when f(S) = S and φ = 1 :

∂S

∂t
+∇ · (SvT ) = 0.

• If vT is fixed in time and divergence free (∇ · vT = 0), then the exact solution is

S(x, t) = g(x− t · vT ),

where g(x) = S(x, 0) is the initial state.
• In other words, solution values just get transported, with speed and direction given by vT .
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± Nonlinear conservation law

• In many gas applications, f(S) is nonlinear.
Example from oil & gas :

f(S) = S2

S2 +M(1− S)2

• When f(S) is nonlinear, discontinuities can develop
from smooth initial states =⇒ shock waves 0 0.2 0.4 0.6 0.8 1
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• Other properties :
• Directional propagation : upwind discretizations
• Finite speed of propagation : short-range communication
• For explicit time discretizations : stability limit (CFL condition)
• Nonlinearities may cause problems with convergence
• Mass conservation is a must

18



± Nonlinear conservation law

Example : implicit in time, upwind discretization in 1D, vT > 0 :

Sn+1
j − Sn

j

∆t + vT ·
f(Sn+1

j )− f(Sn+1
j−1 )

∆x = 0.

• After linearization, matrix is lower triangular !
• In higher dimensions, this isn’t always true (e.g.

recirculation zones), but reordering can often help
with limiting fill-in and/or finding sparse
approximations for preconditioning (see later)
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Multiphysics problem 2 : Cooling
by fluid injection



± Cooling by fluid injection
• Another type of multiphysics problems actually involves different physics in different parts

of the domain
• Example : a heated metal object is cooled by a fluid that enters the domain at a

prescribed speed and temperature
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Define
• Ωs = part of the domain containing the solid
• Ωf = Ω \ Ωs = part of the domain containing the fluid
• Γ = solid-fluid interface

Within the solid, heat flow is modelled by Fourier’s law of heat conduction :

(Heat flux) = −Ks∇T
(Accumulation) = (Heat in)− (Heat out) + (Heat source)

∂

∂t
(ρsCsT ) = ∇ · (Ks∇T ) + q

where T = temperature (unknown)
Ks = heat conductivity,
Cs = specific heat capacity,
ρs = density,
q = heat source.
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Within the fluid part of the domain, the conservation of energy needs to take into account heat
being carried into our out of the control volume due to fluid flow :

(Heat flux) = −Kf∇T + v ρfCfT

(Accumulation) = (Heat in)− (Heat out)
∂

∂t
(ρfCfT )+∇ · (v ρfCfT ) = ∇ · (Kf∇T )

where T = temperature (unknown),
Ks = heat conductivity,
Cs = specific heat capacity,
ρs = density,
v = fluid velocity (unknown).

A large convective term can lead to boundary layers and other issues that affect the
discretization and the solver.
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The fluid velocity v is determined by the Navier-Stokes equation, which is appropriate for fluids
with low viscosity. For mass conservation, we have

∂ρf

∂t
+∇ · (ρf v) = 0

For momentum conservation, we define the Cauchy stress tensor σ :

σ = −pI + 2η∇sv,

where η = viscosity,

∇sv = 1
2(∇v + (∇v)T ) = symmetric gradient of v.

Any change in momentum must be balanced out by a velocity change. Writing the
conservation law on a volume moving with the fluid gives

∇ · σ = ρf

(
∂v
∂t

+ (v · ∇)v
)
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The fluid velocity v is determined by the Navier-Stokes equation, which is appropriate for fluids
with low viscosity. For mass conservation, we have

∂ρf

∂t
+∇ · (ρf v) = 0

For momentum conservation, we define the Cauchy stress tensor σ :

σ = −pI + 2η∇sv,

where η = viscosity,

∇sv = 1
2(∇v + (∇v)T ) = symmetric gradient of v.

Any change in momentum must be balanced out by a velocity change. Writing the
conservation law on a volume moving with the fluid gives

∇ · (2η∇sv)−∇p = ρf

(
∂v
∂t

+ (v · ∇)v
)
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± Conservation laws – summary

Momentum : ∇ · (2η∇sv)−∇p = ρf

(
∂v
∂t

+ (v · ∇)v
)

in Ωf ,

Mass : ∂ρf

∂t
+∇ · (ρf v) = 0 in Ωf ,

Heat : ∂

∂t
(ρfCfT ) +∇ · (v ρfCfT ) = ∇ · (Kf∇T ) in Ωf ,

Heat : ∂

∂t
(ρsCsT ) = ∇ · (Ks∇T ) + q in Ωs.

+ boundary conditions on v and T .

Heat transfer between solid and fluid is modelled by the coupling equation

Ks∇T · ns +Kf∇T · nf = 0, T continuous on Γ.
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± Conservation laws – steady state

Assuming that a steady state solution can be reached, we can set all time-derivative terms to
zero and get

Momentum : ∇ · (2η∇sv)− ρf (v · ∇)v−∇p = 0 in Ωf ,
Mass : ∇ · (ρf v) = 0 in Ωf ,
Heat : −∇ · (Kf∇T ) +∇ · (v ρfCfT ) = 0 in Ωf ,
Heat : −∇ · (Ks∇T ) = q in Ωs,
Coupling : Ks∇T · ns +Kf∇T · nf = 0 on Γ.

Here, there are different physics within each region,

• Navier-Stokes on Ωf (coupling to T via ρ and η),
• Diffusion on Ωs (coupled to T in Ωf ),
• Advection-diffusion on Ωf (coupled to T in Ωf and to v in N-S).
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• The Navier-Stokes problem itself has two variables of different types, the velocity v and
pressure p.

• Any stable finite element discretization must respect an inf-sup condition. One possibility is
to use piecewise quadratic approximations for v and piecewise linear approximations for p.

• Once discretized, we get a saddle-point problem[
A B

BT 0

][
v
p

]
=
[

f
g

]
.

• There are techniques for partially decoupling the velocity and pressure problems and using
specialized solvers for each of them, see e.g.
• H. Elman, D. Silvester and A. Wathen. Finite Elements and Fast Iterative Solvers :
with Applications in Incompressible Fluid Dynamics, 2nd Edition, Oxford University
Press, 2014.
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