Mol UNIVERSITE

55 LAVAL

s G

Mini-course on Stationary lterative Methods

Lecture 2 — Fixed point methods

8 Felix Kwok
Département de mathématiques et de statistique, Université Laval
@ May 31, 2021
I 2021 CRM Summer School: Solving large systems efficiently in multi-

physics numerical simulations

M4 UNIVERSITE

:= Qutline

© Definitions and basic notions

© lterative methods for linear problems

Definitions and basic notions

© lterative methods IUK\E/EE

Suppose we want to solve the nonlinear system

fl(arl,xg...,wn) 1

fo(z1,20...,2p) T
F(x) =) =0 for 5% =

fo(z1,22.. ., 20) Ty

We assume that F': D C R™ — R" is (Fréchet-) differentiable.

e If F(x) = Ax — b, then the system is linear and can be solved by e.g. Gaussian
elimination. lterative methods can also be used, see the next section.

e If F' is nonlinear, there is no direct method that solves F'(x) = 0 in a finite number of
operations for arbitrary F'.

e An iterative method generates a sequence of approximations x',x2, ..., such that x*
(hopefully) converges to the solution x* as k — oo.

© Example : Newton’s method B s

1

Newton's method starts with an initial guess x" and generates the next iterate x! as follows :

Bl UNIVERSITE

© Example : Newton’s method

1

Newton's method starts with an initial guess x" and generates the next iterate x! as follows :

1. Approximate F'(x) by a first order Taylor expansion about the point x° :
F(x) = F(x%) + F'(x%)(x = x°) + O(||Jx — x°||?).

Here, F’(x") is the Jacobian matrix :

[¢) 9 [¢)

B0) e)

2(x%) (X% .- F2(x7)
F’(Xo) _ 81’1 - 3132) an

Ofn Afn Ofn

3_{21 (XO) 3£2 (XO) T 3_5,1, (XO)

Bl UNIVERSITE

© Example : Newton’s method

1

Newton's method starts with an initial guess x" and generates the next iterate x! as follows :

1. Approximate F(x) by a first order Taylor expansion about the point x° :
F(x) = F(x%) + F'(x%)(x = x°) + O(||Jx — x"||*).
2. Find the root of the linearized equation and call it x! :

0=FE")+FEHx -x") = x' =x"— (F/(x°)'F(xY).

Bl UNIVERSITE

© Example : Newton’s method

1

Newton's method starts with an initial guess x" and generates the next iterate x! as follows :

1. Approximate F(x) by a first order Taylor expansion about the point x° :
F(x) = F(x%) + F'(x°)(x = x%) + O(|x — x°||*).
2. Find the root of the linearized equation and call it x! :
0=FE")+FEHx -x") = x' =x"— (F/(x°)'F(xY).
3. Repeat the process using the newly calculated point :

X = xb (M) TR, k=12,

Bl UNIVERSITE

© Example : Newton’s method

1

Newton's method starts with an initial guess x" and generates the next iterate x! as follows :

1. Approximate F(x) by a first order Taylor expansion about the point x° :
F(x) = F(x%) + F/(x)(x - x°) + O(lx — x°|[*).
2. Find the root of the linearized equation and call it x! :
0=FE")+FEHx -x") = x' =x"— (F/(x°)'F(xY).
3. Repeat the process using the newly calculated point :
xM=xF — (F'(x") 7R (xY), k=1,2,...

4. Stop when x* and x**! are very close (or when ||F(x*)]|| is very small, or both).

BHeMM UNIVERSITE

© Example : Newton’s method

Apply Newton's method to the real and imaginary parts of the equation 23 — 1 = 0 for
z=x+ 1y :

_ | faly)| _ |2® = 3zy® -1
et = [f2(x,y)1 - [32y —y°]

Newton convergence, x, = (0,2) Newton attraction basins

100 -

Error

10—10 L

0 2 4 6 8 10

Iterations e

’ = BB UNIVERSITE
© Newton’s method — remarks B LAVAL

e Instead of computing the matrix inverse in x*+1 = x* — (F'(x*))~1 F(x*) the Newton
step is usually implemented as follows :

1. Solve F'(x*)z = F(x*) for z using an appropriate linear solver;
2. Update xFt! =x* — z.
A good linear solver for F” is therefore crucial !
e Newton's method can diverge or stagnate when xg is too far from the solution!
e Jacobian evaluation is expensive ; one could freeze the Jacobian at the initial guess (or
update every few iterations) to obtain

M =xF (Fx))'FxY), k=0,1,2,...

This is known as the simplified Newton method.

Bl UNIVERSITE

© Fixed point methods

e Newton's method can be written in the general form x**! = G(x*), where
G : D CR" — R" is the fixed point map. For Newton, we have

G(x) = x — (F'(x)) "' F(x).
e If a fixed point method converges and G is continuous, then the limit point x* satisfies

x* = lim x* = klim G(Xk_l) =G (lim xk_l) = G(x").
—00

k—o0 k—o0

The method therefore converges to a fixed point of G.
e Example : the fixed point for Newton's method is

x*=G(x*) =x" — (F/(x")) 'F(x*) = (F'(x*)'F(x*) =0.

If F'(x*) is non-singular, then F(x*) =0 = x* is a solution to the nonlinear system.

Bl UNIVERSITE

© Convergence of fixed point methods

Definition : Let x* be a fixed point of G and let x°,x!, ... be iterates that satisfy x*
G(x*), k =0,1,2,.... Then the error of the kth iterate is deflned as

ef = xF — x*.

To understand how the error behaves as a function of k&, we calculate

k+1 k+1 X*

(x*) = G(x*)
(x") + G'(x") (x* = x*) + O(||x" —x"[*) - G(x")
'(x*)e" + O(lle"]?).

e

x
G
G
G

Bl UNIVERSITE

© Example 1

To find one of the roots of z° — 3z +1 = 0, we

start with zg = 0 and consider the method y=1a°—3zr+1
k41 _ Lo ks 25t
@ = 5((35)+ 1).

Then G(z) = £(23+1), G'(z) = 2% For the fixed ~ **|
point z* & 0.3473, we have G'(z*) ~ 0.1206, so > |

for z* close to x*, we have osf
ol
eF 1~ 0.1206 * + O((eF)?), os}
1 L L
so the error is reduced by about a factor of 8 with oo

each additional iteration.

rk

ek

elc-i—l/ek

© 00 N O O & W N K+ O

—
o

0
0.333333333333333
0.345679012345679
0.347102186947062
0.347272948851898
0.347293532356960
0.347296014843951
0.347296314265793
0.347296350380446
0.347296354736406
0.347296355261799

-0.347296355333861
-0.013963022000527
-0.001617342988182
-0.000194168386799
-0.000023406481962
-0.000002822976901
-0.000000340489909
-0.000000041068068
-0.000000004953414
-0.000000000597455
-0.000000000072062

0.040204919476061
0.115830440439082
0.120053933035803
0.120547337021927
0.120606629621737
0.120613778000051
0.120614640035547
0.120614743217285
0.120614753443415
0.120614636167759

Bl UNIVERSITE

© What about Newton’s method ?

In one dimension :

W@
Gl =2-7a
) =1 - L@ @~ [@"6) _) @)

(f'(2))? - (@)

e If z* is a root of f(z) such that f'(z*) # 0 (i.e., a simple root), then

So for |z* — z*| small, we have
FHL = G(a)ek +O(1etE) = Ol

Thus, we have quadratic convergence !

© Example 2 : Newton’s method

Tosolve 23 —3z+1=0 using Newton's method, we write

k+1 _ _k

M UNIVERSITE

f@*) k(@) —32h+1

e I o

The number of correct digits doubles after every iteration = quadratic convergence

xk

ek

€k+l/(ek)2

A W NN = O

0
0.333333333333333
0.347222222222222
0.347296353163868
0.347296355333861

-0.347296355333861

-0.013963022000527

-0.000074133111638

-0.000000002169993
0

-0.115765451777953

-0.380236133250081

-0.394851507080994
0

Bl UNIVERSITE

© Some problems with Newton

e Recall :
= G () + O(|e) = O(H?)
If |e¥| is large, then
leF | = CleF|? > |e¥| if |CeF| > 1.

So Newton's method may not converge in this case; it may cycle or diverge.
e If 2* is a double root of f, i.e., if f(z*) = f'(z*) =0 (but f”(x*) # 0), then

. / T 17 f(x) el . f’(l’) _ 1

So Newton converges linearly with 1/2 as the asymptotic contraction factor.
e A more involved analysis leads to analogous results for higher dimensions

© Problems with Newton : some fixes IUK\E/EE

e Line search :

e Instead of using the full Newton correction x*+! = x;, — (F'(x*))"' F(x*), make a
shorter step

%

= xp, — a(F'(xF)) 71 F(xY), 0<axl

e « is chosen to ensure ||F(x*+1)|| < || F(x¥)]|
e Under some hypotheses, one can show convergence to a solution F(x*) = 0.
e Preconditioning : transform F(x) = 0 to some equivalent problem H(x) = 0 with the
same solution x*, but which is easier to solve for Newton (e.g., closer to a linear function)

e Continuation : If the problem depends continuously on a parameter «, i.e.,
F(z(a);a) =0,

start with an “easy” « and vary « step by step, using the solution from the previous step

as an initial guess

Iterative methods for linear
problems

.}

Suppose we want to solve the linear system

2 -1 0 f]
-1 2 -1 f2
x = .
1 2 -l :
0 -1 2 fn

Instead of eliminating unknowns, Jacobi (1845) has the following idea :
1. Make some initial guess x° = (29, 29,...,2%)T
2. Use the ith equation to solve for the new x; using the previous data :

k

1
—xi 1+ 2x; — i1 = f; = .’EZ—+1 = 5(17?71 —&-xfﬂ + fl), k=1,...

3. lterate until convergence (?!).

© Jacobi method, n = 10

15

10

k=1, error=14.5

— ~

10

UNIVERSITE

UNIVERSITE

© Jacobi method, n = 10

k=2, error=14

15 T — ~—
~ ~
~ ~
7 AN
Ve AN
7 AN
s N
/ \
/ \
/ \
101 / \ b
/ \
/ \
/ \
/ \
/ \
/ \

/ \
SZ z

b— O
0 \ \ \ \ \ \ \ \

1 2 3 4 5 6 7 8 9 10

© Jacobi method, n = 10

15

10

k=3, error=13.5

— ~

8 9 10

UNIVERSITE

UNIVERSITE

© Jacobi method, n = 10

k=10, error=10.2109

16

UNIVERSITE

© Jacobi method, n = 10

k=20, error=6.7574

16

UNIVERSITE

© Jacobi method, n = 10

k=50, error=1.9545

16

UNIVERSITE

© Jacobi method, n = 10

k=100, error=0.24724

16

© Gauss-Seidel method IUK\E/EE

Make a programming mistake :

e Jacobi :

ot = gttt), i=loom
e Gauss-Seidel :

o:f“ ;("+1+xl+1+fz) i1=1,...,n

Gauss explained in a letter in 1823 how to use this method to solve a least squares problem :

“I recommend this method to you for imitation. You will hardly ever again eliminate
directly, at least not when you have more than 2 unknowns. The indirect procedure
can be done while half asleep, or while thinking about other things.”

© Gauss-Seidel method, n = 10 IUK\E/RRE

k=1, error=14.0312

15 — —
-~ ~
~ ~
4 N
7 N
4 N
4 N
/ \
4 \
/ \
10 / \ il
/ \
/ \
/ \
/ \
/ \
/ \
/ \
5Z ;
1 2 3 4 5 6 7 8 9 10

© Gauss-Seidel method, n = 10

15

10

3.1016

<
~

10

UNIVERSITE

© Gauss-Seidel method, n = 10 IUK\E/RRE

k=3, error=12.2109

15 — e
-~ ~
~ ~
4 N
7 N
4 N
4 N
/ \
4 \
/ \
10 / \ il
/ \
/ \
/ \
/ \
/ \
/ \
/ \

5Z ;
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

1 2 3 4 5 6 7 8 9 10

UNIVERSITE

© Gauss-Seidel method, n = 10

k=10, error=7.0534

16

UNIVERSITE

© Gauss-Seidel method, n = 10

k=20, error=3.0935

16

© Gauss-Seidel method, n = 10 IUK\E/RRE

k=50, error=0.25885

16

© Gauss-Seidel method, n = 10 IUK\E/RRE

k=100, error=0.0041422

16

Bl UNIVERSITE

© Stationary iterative method : General form

The Jacobi and Gauss-Seidel methods for solving Ax = f can be rewritten in the general form
MxFt = NxF 4+ f,

where M is a non-singular matrix, and N = M — A.
e Jacobi : M = D = diag(a11, a2, ..., Gnn)

e Gauss-Seidel : M =L+ D= | .] , i.e., the lower triangular part of A

An1 e e Qnn
e Other choices are possible, as long as systems involving M are cheap to solve.
Note that we need N = M — A so that the fixed point x* = lim x* satisfies

Mx*=Nx*"+f < (M- N)x*"=f < Ax* =f.

MxFtt = NxF + £

e This is a fixed point method, because we can write it in terms of a fixed point map
g(x) :
xF = MINXP + MU = G(xY),

e Another way to write this is in terms of the residual r* = f — Ax* :
MxP = (M — A)x* + £ = Mx* 4% = xFH =xF 4 M1k,

so the method will keep updating x**1 as long as r* # 0.

k

e A stopping criterion is usually needed to decide when the solution x* is “close enough™.

Some options are ||r*||, ||x**! — x*||, or some other norm of the error/residual.

M UNIVERSITE

© Direct vs iterative method

e Recall : cost of direct methods depends heavily on the density of LU factors
e lterative methods can be matrix free, with much lower cost per iteration
e But : speed of convergence is paramount !
nnz(A) = 6400 nnz(L) = 91909 nnz(U) = 91909

Bl UNIVERSITE

© Convergence of a stationary iterative method

| Mx" ! = Nx* 4 f (%)

e Define the error eF = x* — x*.

Subtracting the above from (x) gives

M(xF —x*) = N(x* —x*) = Me"™! = Ne.

Therefore, we have

el = GeF, where G =M 'N=1-M1'A

Applying the above relation several times yields

& = G = CE) = @ CE) = o0 = G,

where e = x? — x* is the initial error (generally unknown).

Let €’ # 0 be an eigenvector of G, i.e., Ge’ = \e” for some A\ (which may be complex). Then
e’ = GFe" = \GF el = ... = N = |Ie¥| = |A[F|Ie0

Several cases :
o If |A\| <1, then |A|¥ = 0ask — oo = |le*|| =0, i.e., convergence!
e If |\ > 1, then |\|* — 0o = ||€¥|| — oo, i.e., divergence.
e If |\| =1, then |le*| = ||€°| for all kK => no convergence to x*.

In general, € is a (usually unknown) linear combination of eigenvectors of G.

Theorem : A stationary iterative method Mx*t!1 = Nx*¥ + f converges to the unique
solution x* = A~ for all initial guess x° if and only if all the eigenvalues of G = M !N
have modulus strictly less than 1.

Bl UNIVERSITE

© Convergence rate

Definition : The spectral radius p(G) of a matrix G is defined as the maximum modulus
of all the eigenvalues, i.e.,
p(G) = max |A\,

1<i<n

where A1, ...,)\, are the eigenvalues of G.

Let p(G) < 1, so that the stationary method converges. If G is diagonalizable with eigenvectors
{v1,va,...,v,}, then we have

e’ = ZCin‘ — e"=GFe’ = Zci)\fvi
i=1 i=1
le¥Il < > leal Pl lvall < C(p(@)*

=1

Therefore, the error norm is multiplied by roughly p(G) at each iteration.

[le*]l < C(p(@))F]

e p(G) gives the contraction factor of the method :

e p(G) <1 = fast convergence
e p(G) =1 = slow convergence

e The “best” method is when p(G) = 0, which happens when G =0 :
G=I-M1A=0 < M 'A=1 <& M=A.

But solving with M would be just as expensive as solving with A
e Designing a good method involves a tradeoff :

e M is a “good” approximation of A (in some sense)
e Systems involving M are cheap(er) to solve than those involving A

M UNIVERSITE

© Example : Jacobi and Gauss-Seidel

Consider the 10 x 10 system

fora =2 and a = 4.

UNIVERSITE

© Example : Jacobi, a =2

Jacobi spectrum, p = 0.95949

Jacobi convergence
101t] 7 BN Y]
e N
e ——-pG)
/ \
0.5} N
\
/ \
! \
5 I \
O 100+] or ‘J‘“ + o+ o+ + o+ o+ w}L
! I
\ /
/
-05 \ /
\\ //
\\\ v
10-1 2\ 4\ L L . ‘ ‘\ - ‘ ‘
0 0 0 60 80 00 0 os o5 1

k

A tenfold reduction in

error requires p¥ = 0.1 = k = 55.68 iterations!

UNIVERSITE

© Example : Jacobi, a =4

Jacobi convergence Jacobi spectrum, p = 0.47975

100 T T T T =7 T
0.4+ o7 So |+ AG)4
s N
7 ——-pG)
/ \
/ \
51 J 0.2r / \ 1
10 , \
/ \
5 I \
5 or ‘J‘“ + o+ o+ + + + o+ o+ w}L —
\
10%0¢] \ /
\
-0.2 \ ,/ 1
N 7
\\\ //
7
1018 ¢] 0.4t NN e]
0 20 40 K 60 80 100 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

A tenfold reduction in error requires p*¥ = 0.1 == k = 3.13 iterations!

© Example : Gauss-

UNIVERSITE

Seidel, a =2

) Gauss-Seidel convergence Gauss-Seidel spectrum, p = 0.92063
10 i " " i i e T = "
7 I Y)
// N (G)
——p
10t ¢ 1 | /]
0.5 / N
/ \
/ \
10%¢ 1 / \
5 I \
= I
5 0 | o+ + + w}L
10" 1 \ |
\ /
\
\ //
102F 4 05 N Y
\\ 2
\\ ///
10-3 L L)) S - - -))
0 20 40 ’ 60 80 100 1 05 o 05 1

A tenfold reduction in

error requires p* = 0.1 = k = 27.84 iterations!

© Example : Gauss-

UNIVERSITE

Seidel, a =4

o Gauss-Seidel convergence Gauss-Seidel spectrum, p = 0.23016
10 T T T T T = == T
021 - S +)\i(G) b
e N
7 ——-pG)
/ \
sl I 0.1t / N 1
10 / \
! \
S | \
= L]
5 0 ‘ o+ + + w}L
\
10%0¢] \ /
\ /
-0.1r \ / 1
\ /
\\\ //
e
1015} — 02t \\ I ,
0 20 40) 60 80 100 02 o1 o 01 02

A tenfold reduction in

error requires p¥ = 0.1 = k = 1.57 iterations!

© Classical convergence theorems IUX\E;,&E

Theorem : Let A be strictly diagonally dominant, i.e., the diagonal element in each row is
greater than the sum of the off-diagonal entries (in absolute value) in that row. Then the
Jacobi and Gauss-Seidel methods, applied to Ax = f, both converge for all initial guess.

Theorem : Let A be symmetric positive definite. Then the Gauss-Seidel method, applied to
Ax = f, converges for all initial guess.

Note : for the matrices in our example, it can be shown that the eigenvalues of the
Gauss-Seidel matrix are the squares of the eigenvalues of the Jacobi matrix. Thus,
Gauss-Seidel converges twice as fast as Jacobi in those examples.

Bl UNIVERSITE

© Block methods

Suppose we have a coupled multiphysics problem :
F(u,v) =0,
G(u,v) =0.

If we solve this problem by Newton's method, we need to solve linear systems of the form

Fu(w/,v7) Fy(w,v7)| W —u/| | F(W/,v7)
Gu(w,vl) Gy(u,vI)| [Vt —vi| |G/, V)
A x f

Block Jacobi is defined as Mx*t!1 = Nx* + f, where M contains only a single “physics” :

M = Fu(uj,vj) v] .

0 Gy, v7)

In other words, within each Newton step j, we solve for k =0,1,2, ...

Fu(uj,vj)(u~7+1="~‘+1 _ uj) — ,F(uJ”VJ’) - Fv(uj,vj)(vj“”‘”’ —_ vj),

Gv(uj,vj)(VHl‘]"+1 — vj) = —G(uj,vj) — Gu(uj7vj)(uj+1’k’ — uj).

One can also use block Gauss-Seidel to maintain some coupling by keeping one off-diagonal
block :

M =

Fu(u,v) 0
Gu(u,v) Gy(u,v)|’

Of course, one could also consider a nonlinear block Jacobi or Gauss-Seidel fixed-point

iteration by solving directly the nonlinear problems

F(uk+17 Vk)

G(uf,vi Tl =

0,
. k=0,1,2,...

Bl UNIVERSITE

© Example : CPR method (wallace et al.,1985)

To solve the Jacobian systems arising from two-phase flow equations :

Water : 2 (6p08) = V - (K(0)puha(S) VD) + 4w,
Oil : %(d)po(l —9)) =V (K(x)poro(S) VD) + qo,

1. Add the two equations to obtain the discrete pressure equation

2. Use e.g. algebraic multigrid to solve the pressure equation.
3. Compute the new velocity field vp.
4. Solve local, 2 x 2 systems to update the saturation S, in decreasing order of pressure, or
using an incomplete LU factorization.
5. lterate to convergence. @

Bl UNIVERSITE

© Example : cooling by fluids

Momentum : V-@2nVev) —pr(v-V)v-=Vp=0 in Qy,

Mass : V.- (psv)=0 in Qp,
Heat : —V - (K;VNT)+V - (vp;C/T)=0 in Qp,
Heat : -V - (K,VT)=¢q in g,
Coupling : K,NVT -ng + KyVT -ny =0 onT.

Apply block Jacobi/Gauss-Seidel to sub-problems :

e Solve Navier-Stokes for (v, p) at fixed temperature, and heat equations at fixed v
e Further split Navier-Stokes into a momentum equation and a pressure equation
e Split the heat equation into two subproblems based on the material

Performance depends on “coupling strength”, which depends on p, v, ...

© Implementation

e In the exercise session on Tuesday, you will simulate the cooling problem in MEF++, the
finite element software developed by GIREF at Université Laval.
MEF++ uses PETSc! to handle solution to linear problems arising from Newton's method

PETSc offers block preconditioners under the FieldSplit option. Preconditioners
available :

e Additive Schwarz (Block Jacobi + overlap)

e Multiplicative Schwarz (Block Gauss-Seidel + overlap)

e Symmetric Multiplicative Schwarz (Forward + backward Gauss-Seidel)
e Schur complement preconditioning (Eliminate (1,1)block exactly)

Try different configurations to see what works best for your problem !

! https://www.mcs.anl.gov/petsc/

	Definitions and basic notions
	Iterative methods for linear problems

