
Mini-course on Stationary Iterative Methods
Lecture 2 – Fixed point methods

� Felix Kwok
Département de mathématiques et de statistique, Université Laval

{ May 31, 2021
� 2021 CRM Summer School: Solving large systems efficiently in multi-

physics numerical simulations

� Outline

± Definitions and basic notions

± Iterative methods for linear problems

Definitions and basic notions

± Iterative methods

Suppose we want to solve the nonlinear system

F (x) =

f1(x1, x2 . . . , xn)
f2(x1, x2 . . . , xn)

...

fn(x1, x2 . . . , xn)

 = 0 for x =

x1

x2
...

xn

 .

We assume that F : D ⊂ Rn → Rn is (Fréchet-) differentiable.

• If F (x) = Ax− b, then the system is linear and can be solved by e.g. Gaussian
elimination. Iterative methods can also be used, see the next section.

• If F is nonlinear, there is no direct method that solves F (x) = 0 in a finite number of
operations for arbitrary F .

• An iterative method generates a sequence of approximations x1,x2, . . . , such that xk

(hopefully) converges to the solution x∗ as k →∞.
1

± Example : Newton’s method

Newton’s method starts with an initial guess x0 and generates the next iterate x1 as follows :

1. Approximate F (x) by a first order Taylor expansion about the point x0 :

F (x) ≈ F (x0) + F ′(x0)(x− x0) +O(‖x− x0‖2).

2. Find the root of the linearized equation and call it x1 :

0 = F (x0) + F ′(x0)(x1 − x0) =⇒ x1 = x0 − (F ′(x0))−1F (x0).

3. Repeat the process using the newly calculated point :

xk+1 = xk − (F ′(xk))−1F (xk), k = 1, 2, . . .

4. Stop when xk and xk+1 are very close (or when ‖F (xk)‖ is very small, or both).

2

± Example : Newton’s method

Newton’s method starts with an initial guess x0 and generates the next iterate x1 as follows :
1. Approximate F (x) by a first order Taylor expansion about the point x0 :

F (x) ≈ F (x0) + F ′(x0)(x− x0) +O(‖x− x0‖2).

Here, F ′(x0) is the Jacobian matrix :

F ′(x0) =

∂f1
∂x1

(x0) ∂f1
∂x2

(x0) · · · ∂f1
∂xn

(x0)
∂f2
∂x1

(x0) ∂f2
∂x2

(x0) · · · ∂f2
∂xn

(x0)
...

...
...

∂fn

∂x1
(x0) ∂fn

∂x2
(x0) · · · ∂fn

∂xn
(x0)

 .

2. Find the root of the linearized equation and call it x1 :

0 = F (x0) + F ′(x0)(x1 − x0) =⇒ x1 = x0 − (F ′(x0))−1F (x0).

3. Repeat the process using the newly calculated point :

xk+1 = xk − (F ′(xk))−1F (xk), k = 1, 2, . . .

4. Stop when xk and xk+1 are very close (or when ‖F (xk)‖ is very small, or both).

2

± Example : Newton’s method

Newton’s method starts with an initial guess x0 and generates the next iterate x1 as follows :

1. Approximate F (x) by a first order Taylor expansion about the point x0 :

F (x) ≈ F (x0) + F ′(x0)(x− x0) +O(‖x− x0‖2).

2. Find the root of the linearized equation and call it x1 :

0 = F (x0) + F ′(x0)(x1 − x0) =⇒ x1 = x0 − (F ′(x0))−1F (x0).

3. Repeat the process using the newly calculated point :

xk+1 = xk − (F ′(xk))−1F (xk), k = 1, 2, . . .

4. Stop when xk and xk+1 are very close (or when ‖F (xk)‖ is very small, or both).

2

± Example : Newton’s method

Newton’s method starts with an initial guess x0 and generates the next iterate x1 as follows :

1. Approximate F (x) by a first order Taylor expansion about the point x0 :

F (x) ≈ F (x0) + F ′(x0)(x− x0) +O(‖x− x0‖2).

2. Find the root of the linearized equation and call it x1 :

0 = F (x0) + F ′(x0)(x1 − x0) =⇒ x1 = x0 − (F ′(x0))−1F (x0).

3. Repeat the process using the newly calculated point :

xk+1 = xk − (F ′(xk))−1F (xk), k = 1, 2, . . .

4. Stop when xk and xk+1 are very close (or when ‖F (xk)‖ is very small, or both).

2

± Example : Newton’s method

Newton’s method starts with an initial guess x0 and generates the next iterate x1 as follows :

1. Approximate F (x) by a first order Taylor expansion about the point x0 :

F (x) ≈ F (x0) + F ′(x0)(x− x0) +O(‖x− x0‖2).

2. Find the root of the linearized equation and call it x1 :

0 = F (x0) + F ′(x0)(x1 − x0) =⇒ x1 = x0 − (F ′(x0))−1F (x0).

3. Repeat the process using the newly calculated point :

xk+1 = xk − (F ′(xk))−1F (xk), k = 1, 2, . . .

4. Stop when xk and xk+1 are very close (or when ‖F (xk)‖ is very small, or both).

2

± Example : Newton’s method

Apply Newton’s method to the real and imaginary parts of the equation z3 − 1 = 0 for
z = x+ iy :

F (x, y) =
[
f1(x, y)
f2(x, y)

]
=
[
x3 − 3xy2 − 1

3x2y − y3

]
= 0

0 2 4 6 8 10

Iterations

10-10

100

E
rr

or

Newton convergence, x
0
 = (0,2) Newton attraction basins

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

3

± Newton’s method – remarks

• Instead of computing the matrix inverse in xk+1 = xk − (F ′(xk))−1F (xk) the Newton
step is usually implemented as follows :
1. Solve F ′(xk)z = F (xk) for z using an appropriate linear solver ;
2. Update xk+1 = xk − z.

A good linear solver for F ′ is therefore crucial !
• Newton’s method can diverge or stagnate when x0 is too far from the solution !
• Jacobian evaluation is expensive ; one could freeze the Jacobian at the initial guess (or

update every few iterations) to obtain

xk+1 = xk − (F ′(x0))−1F (xk), k = 0, 1, 2, . . .

This is known as the simplified Newton method.

4

± Fixed point methods

• Newton’s method can be written in the general form xk+1 = G(xk), where
G : D ⊂ Rn → Rn is the fixed point map. For Newton, we have

G(x) = x− (F ′(x))−1F (x).

• If a fixed point method converges and G is continuous, then the limit point x∗ satisfies

x∗ = lim
k→∞

xk = lim
k→∞

G(xk−1) = G

(
lim

k→∞
xk−1

)
= G(x∗).

The method therefore converges to a fixed point of G.
• Example : the fixed point for Newton’s method is

x∗ = G(x∗) = x∗ − (F ′(x∗))−1F(x∗) =⇒ (F ′(x∗))−1F (x∗) = 0.

If F ′(x∗) is non-singular, then F (x∗) = 0 =⇒ x∗ is a solution to the nonlinear system.
5

± Convergence of fixed point methods

Definition : Let x∗ be a fixed point of G and let x0,x1, . . . be iterates that satisfy xk+1 =
G(xk), k = 0, 1, 2, Then the error of the kth iterate is defined as

ek := xk − x∗.

To understand how the error behaves as a function of k, we calculate

ek+1 = xk+1 − x∗

= G(xk)−G(x∗)
= G(x∗) +G′(x∗)(xk − x∗) +O(‖xk − x∗‖2)−G(x∗)
= G′(x∗)ek +O(‖ek‖2).

6

± Example 1

To find one of the roots of x3 − 3x + 1 = 0, we
start with x0 = 0 and consider the method

xk+1 = 1
3((xk)3 + 1).

Then G(x) = 1
3 (x3+1), G′(x) = x2. For the fixed

point x∗ ≈ 0.3473, we have G′(x∗) ≈ 0.1206, so
for xk close to x∗, we have

ek+1 ≈ 0.1206 ek +O((ek)2),

so the error is reduced by about a factor of 8 with
each additional iteration.

y = x3 − 3x+ 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-1

-0.5

0

0.5

1

1.5

2

2.5

3

y
7

k xk ek ek+1/ek

0 0 -0.347296355333861 0.040204919476061
1 0.333333333333333 -0.013963022000527 0.115830440439082
2 0.345679012345679 -0.001617342988182 0.120053933035803
3 0.347102186947062 -0.000194168386799 0.120547337021927
4 0.347272948851898 -0.000023406481962 0.120606629621737
5 0.347293532356960 -0.000002822976901 0.120613778000051
6 0.347296014843951 -0.000000340489909 0.120614640035547
7 0.347296314265793 -0.000000041068068 0.120614743217285
8 0.347296350380446 -0.000000004953414 0.120614753443415
9 0.347296354736406 -0.000000000597455 0.120614636167759
10 0.347296355261799 -0.000000000072062 –

8

± What about Newton’s method ?

In one dimension :

G(x) = x− f(x)
f ′(x)

G′(x) = 1− f ′(x) · f ′(x)− f(x)f ′′(x)
(f ′(x))2 = f(x)f ′′(x)

(f ′(x))2

• If x∗ is a root of f(x) such that f ′(x∗) 6= 0 (i.e., a simple root), then

G′(x∗) = 0 · f ′′(x∗)
(f ′(x∗))2 = 0.

So for |xk − x∗| small, we have

ek+1 = G′(x∗)ek +O(|ek|2) = O(|ek|2)

Thus, we have quadratic convergence !
9

± Example 2 : Newton’s method

To solve x3 − 3x+ 1 = 0 using Newton’s method, we write

xk+1 = xk − f(xk)
f ′(xk) = xk − (xk)3 − 3xk + 1

3(xk)2 − 3

The number of correct digits doubles after every iteration =⇒ quadratic convergence

k xk ek ek+1/(ek)2

0 0 -0.347296355333861 -0.115765451777953
1 0.333333333333333 -0.013963022000527 -0.380236133250081
2 0.347222222222222 -0.000074133111638 -0.394851507080994
3 0.347296353163868 -0.000000002169993 0
4 0.347296355333861 0 –

10

± Some problems with Newton

• Recall :
ek+1 = G′(x∗)ek +O(|ek|2) = O(|ek|2)

If |ek| is large, then
|ek+1| ≈ C|ek|2 > |ek| if |Cek| > 1.

So Newton’s method may not converge in this case ; it may cycle or diverge.
• If x∗ is a double root of f , i.e., if f(x∗) = f ′(x∗) = 0 (but f ′′(x∗) 6= 0), then

lim
x→x∗

G′(x) = lim
x→x∗

f ′′(x) f(x)
(f ′(x))2 = f ′′(x∗) lim

x→x∗

f ′(x)
2f ′(x)f ′′(x) = 1

2 .

So Newton converges linearly with 1/2 as the asymptotic contraction factor.
• A more involved analysis leads to analogous results for higher dimensions

11

± Problems with Newton : some fixes

• Line search :
• Instead of using the full Newton correction xk+1 = xk − (F ′(xk))−1F (xk), make a
shorter step

xk+1 = xk − α(F ′(xk))−1F (xk), 0 < α < 1

• α is chosen to ensure ‖F (xk+1)‖ < ‖F (xk)‖
• Under some hypotheses, one can show convergence to a solution F (x∗) = 0.

• Preconditioning : transform F (x) = 0 to some equivalent problem H(x) = 0 with the
same solution x∗, but which is easier to solve for Newton (e.g., closer to a linear function)

• Continuation : If the problem depends continuously on a parameter α, i.e.,

F (x(α);α) = 0,

start with an “easy” α and vary α step by step, using the solution from the previous step
as an initial guess

12

Iterative methods for linear
problems

Suppose we want to solve the linear system

2 −1 0
−1 2 −1

. . .
. . .

. . .

−1 2 −1
0 −1 2

x =

f1

f2
...
...

fn

.

Instead of eliminating unknowns, Jacobi (1845) has the following idea :

1. Make some initial guess x0 = (x0
1, x

0
2, . . . , x

0
n)T

2. Use the ith equation to solve for the new xi using the previous data :

−xi−1 + 2xi − xi+1 = fi =⇒ xk+1
i = 1

2(xk
i−1 + xk

i+1 + fi), k = 1, . . . , n

3. Iterate until convergence (?!).

13

± Jacobi method, n = 10

1 2 3 4 5 6 7 8 9 10
0

5

10

15
k=1, error=14.5

14

± Jacobi method, n = 10

1 2 3 4 5 6 7 8 9 10
0

5

10

15
k=2, error=14

14

± Jacobi method, n = 10

1 2 3 4 5 6 7 8 9 10
0

5

10

15
k=3, error=13.5

14

± Jacobi method, n = 10

1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

16
k=10, error=10.2109

14

± Jacobi method, n = 10

1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

16
k=20, error=6.7574

14

± Jacobi method, n = 10

1 2 3 4 5 6 7 8 9 10
4

6

8

10

12

14

16
k=50, error=1.9545

14

± Jacobi method, n = 10

1 2 3 4 5 6 7 8 9 10
4

6

8

10

12

14

16
k=100, error=0.24724

14

± Gauss-Seidel method

Make a programming mistake :

• Jacobi :

xk+1
i = 1

2(xk
i−1 + xk

i+1 + fi), i = 1, . . . , n

• Gauss-Seidel :

xk+1
i = 1

2(xk+1
i−1 + xk

i+1 + fi), i = 1, . . . , n

Gauss explained in a letter in 1823 how to use this method to solve a least squares problem :

“I recommend this method to you for imitation. You will hardly ever again eliminate
directly, at least not when you have more than 2 unknowns. The indirect procedure
can be done while half asleep, or while thinking about other things.”

15

± Gauss-Seidel method, n = 10

1 2 3 4 5 6 7 8 9 10
0

5

10

15
k=1, error=14.0312

16

± Gauss-Seidel method, n = 10

1 2 3 4 5 6 7 8 9 10
0

5

10

15
k=2, error=13.1016

16

± Gauss-Seidel method, n = 10

1 2 3 4 5 6 7 8 9 10
0

5

10

15
k=3, error=12.2109

16

± Gauss-Seidel method, n = 10

1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

16
k=10, error=7.0534

16

± Gauss-Seidel method, n = 10

1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

16
k=20, error=3.0935

16

± Gauss-Seidel method, n = 10

1 2 3 4 5 6 7 8 9 10
4

6

8

10

12

14

16
k=50, error=0.25885

16

± Gauss-Seidel method, n = 10

1 2 3 4 5 6 7 8 9 10
4

6

8

10

12

14

16
k=100, error=0.0041422

16

± Stationary iterative method : General form

The Jacobi and Gauss-Seidel methods for solving Ax = f can be rewritten in the general form

Mxk+1 = Nxk + f ,

where M is a non-singular matrix, and N = M −A.
• Jacobi : M = D = diag(a11, a22, . . . , ann)

• Gauss-Seidel : M = L+D =

a11

a21 a22
...

. . .

an1 · · · · · · ann

, i.e., the lower triangular part of A

• Other choices are possible, as long as systems involving M are cheap to solve.
Note that we need N = M −A so that the fixed point x∗ = lim xk satisfies

Mx∗ = Nx∗ + f ⇐⇒ (M −N)x∗ = f ⇐⇒ Ax∗ = f .
17

Mxk+1 = Nxk + f

• This is a fixed point method, because we can write it in terms of a fixed point map
G(x) :

xk+1 = M−1Nxk +M−1f =: G(xk),

• Another way to write this is in terms of the residual rk = f −Axk :

Mxk+1 = (M −A)xk + f = Mxk + rk =⇒ xk+1 = xk +M−1rk,

so the method will keep updating xk+1 as long as rk 6= 0.
• A stopping criterion is usually needed to decide when the solution xk is “close enough”.

Some options are ‖rk‖, ‖xk+1 − xk‖, or some other norm of the error/residual.

18

± Direct vs iterative method

• Recall : cost of direct methods depends heavily on the density of LU factors
• Iterative methods can be matrix free, with much lower cost per iteration
• But : speed of convergence is paramount !

nnz(A) = 6400

0 200 400 600 800 1000

nz = 6400

0

100

200

300

400

500

600

700

800

900

1000

nnz(L) = 91909

0 200 400 600 800 1000

nz = 91909

0

100

200

300

400

500

600

700

800

900

1000

nnz(U) = 91909

0 200 400 600 800 1000

nz = 91909

0

100

200

300

400

500

600

700

800

900

1000

19

± Convergence of a stationary iterative method

Mxk+1 = Nxk + f (∗)

• Define the error ek = xk − x∗.
• Subtracting the above from (∗) gives

M(xk+1 − x∗) = N(xk − x∗) =⇒ Mek+1 = Nek.

• Therefore, we have

ek+1 = Gek, where G = M−1N = I −M−1A.

• Applying the above relation several times yields

ek = Gek−1 = G(Gek−2) = G2(Gek−3) = · · · = Gke0,

where e0 = x0 − x∗ is the initial error (generally unknown).
20

Let e0 6= 0 be an eigenvector of G, i.e., Ge0 = λe0 for some λ (which may be complex). Then

ek = Gke0 = λGk−1e0 = · · · = λke0 =⇒ ‖ek‖ = |λ|k‖e0‖

Several cases :

• If |λ| < 1, then |λ|k → 0 as k →∞ =⇒ ‖ek‖ → 0, i.e., convergence !
• If |λ| > 1, then |λ|k →∞ =⇒ ‖ek‖ → ∞, i.e., divergence.
• If |λ| = 1, then ‖ek‖ = ‖e0‖ for all k =⇒ no convergence to x∗.

In general, e0 is a (usually unknown) linear combination of eigenvectors of G.

Theorem : A stationary iterative method Mxk+1 = Nxk + f converges to the unique
solution x∗ = A−1f for all initial guess x0 if and only if all the eigenvalues of G = M−1N

have modulus strictly less than 1.

21

± Convergence rate

Definition : The spectral radius ρ(G) of a matrix G is defined as the maximum modulus
of all the eigenvalues, i.e.,

ρ(G) = max
1≤i≤n

|λi|,

where λ1, . . . , λn are the eigenvalues of G.

Let ρ(G) < 1, so that the stationary method converges. If G is diagonalizable with eigenvectors
{v1,v2, . . . ,vn}, then we have

e0 =
n∑

i=1
civi =⇒ ek = Gke0 =

n∑
i=1

ciλ
k
i vi

‖ek‖ ≤
n∑

i=1
|ci| |λi|k‖vi‖ ≤ C(ρ(G))k

Therefore, the error norm is multiplied by roughly ρ(G) at each iteration.
22

‖ek‖ ≤ C(ρ(G))k

• ρ(G) gives the contraction factor of the method :
• ρ(G)� 1 =⇒ fast convergence
• ρ(G) ≈ 1 =⇒ slow convergence

• The “best” method is when ρ(G) = 0, which happens when G = 0 :

G = I −M−1A = 0 ⇐⇒ M−1A = I ⇐⇒ M = A.

But solving with M would be just as expensive as solving with A !
• Designing a good method involves a tradeoff :

• M is a “good” approximation of A (in some sense)
• Systems involving M are cheap(er) to solve than those involving A

23

± Example : Jacobi and Gauss-Seidel

Consider the 10× 10 system

a −1
−1 a −1

. . .
. . .

. . .

−1 a −1
−1 a

x =

1
1
...
...

1

for a = 2 and a = 4.

24

± Example : Jacobi, a = 2

0 20 40 60 80 100

k

10-1

100

101

E
rr

or

Jacobi convergence

-1 -0.5 0 0.5 1

-0.5

0

0.5

Jacobi spectrum, = 0.95949

i
(G)

(G)

A tenfold reduction in error requires ρk = 0.1 =⇒ k = 55.68 iterations !

25

± Example : Jacobi, a = 4

0 20 40 60 80 100

k

10-15

10-10

10-5

100

E
rr

or

Jacobi convergence

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.4

-0.2

0

0.2

0.4

Jacobi spectrum, = 0.47975

i
(G)

(G)

A tenfold reduction in error requires ρk = 0.1 =⇒ k = 3.13 iterations !

26

± Example : Gauss-Seidel, a = 2

0 20 40 60 80 100

k

10-3

10-2

10-1

100

101

102

E
rr

or

Gauss-Seidel convergence

-1 -0.5 0 0.5 1

-0.5

0

0.5

Gauss-Seidel spectrum, = 0.92063

i
(G)

(G)

A tenfold reduction in error requires ρk = 0.1 =⇒ k = 27.84 iterations !

27

± Example : Gauss-Seidel, a = 4

0 20 40 60 80 100

k

10-15

10-10

10-5

100

E
rr

or

Gauss-Seidel convergence

-0.2 -0.1 0 0.1 0.2

-0.2

-0.1

0

0.1

0.2

Gauss-Seidel spectrum, = 0.23016

i
(G)

(G)

A tenfold reduction in error requires ρk = 0.1 =⇒ k = 1.57 iterations !

28

± Classical convergence theorems

Theorem : Let A be strictly diagonally dominant, i.e., the diagonal element in each row is
greater than the sum of the off-diagonal entries (in absolute value) in that row. Then the
Jacobi and Gauss-Seidel methods, applied to Ax = f , both converge for all initial guess.

Theorem : Let A be symmetric positive definite. Then the Gauss-Seidel method, applied to
Ax = f , converges for all initial guess.

Note : for the matrices in our example, it can be shown that the eigenvalues of the
Gauss-Seidel matrix are the squares of the eigenvalues of the Jacobi matrix. Thus,
Gauss-Seidel converges twice as fast as Jacobi in those examples.

29

± Block methods

Suppose we have a coupled multiphysics problem :{
F (u,v) = 0,
G(u,v) = 0.

If we solve this problem by Newton’s method, we need to solve linear systems of the form[
Fu(uj ,vj) Fv(uj ,vj)
Gu(uj ,vj) Gv(uj ,vj)

]
︸ ︷︷ ︸

A

[
uj+1 − uj

vj+1 − vj

]
︸ ︷︷ ︸

x

= −
[
F (uj ,vj)
G(uj ,vj)

]
︸ ︷︷ ︸

f

.

Block Jacobi is defined as Mxk+1 = Nxk + f , where M contains only a single “physics” :

M :=
[
Fu(uj ,vj) 0

0 Gv(uj ,vj)

]
.

30

In other words, within each Newton step j, we solve for k = 0, 1, 2, . . .

Fu(uj ,vj)(uj+1,k+1 − uj) = −F (uj ,vj)− Fv(uj ,vj)(vj+1,k − vj),
Gv(uj ,vj)(vj+1,k+1 − vj) = −G(uj ,vj)−Gu(uj ,vj)(uj+1,k − uj).

One can also use block Gauss-Seidel to maintain some coupling by keeping one off-diagonal
block :

M :=
[
Fu(u,v) 0
Gu(u,v) Gv(u,v)

]
.

Of course, one could also consider a nonlinear block Jacobi or Gauss-Seidel fixed-point
iteration by solving directly the nonlinear problems

F (uk+1,vk) = 0,
G(uk,vk+1) = 0, k = 0, 1, 2, . . .

31

± Example : CPR method (Wallace et al.,1985)

To solve the Jacobian systems arising from two-phase flow equations :

Water : ∂

∂t
(φρwS) = ∇ · (K(x)ρwλw(S)∇p) + qw,

Oil : ∂

∂t
(φρo(1− S)) = ∇ · (K(x)ρoλo(S)∇p) + qo,

1. Add the two equations to obtain the discrete pressure equation

−∇ · (KT (x, S)∇p) = q̃,

2. Use e.g. algebraic multigrid to solve the pressure equation.
3. Compute the new velocity field vT .
4. Solve local, 2× 2 systems to update the saturation S, in decreasing order of pressure, or

using an incomplete LU factorization.
5. Iterate to convergence. 32

± Example : cooling by fluids

Momentum : ∇ · (2η∇sv)− ρf (v · ∇)v−∇p = 0 in Ωf ,
Mass : ∇ · (ρf v) = 0 in Ωf ,
Heat : −∇ · (Kf∇T) +∇ · (v ρfCfT) = 0 in Ωf ,
Heat : −∇ · (Ks∇T) = q in Ωs,
Coupling : Ks∇T · ns +Kf∇T · nf = 0 on Γ.

Apply block Jacobi/Gauss-Seidel to sub-problems :

• Solve Navier-Stokes for (v, p) at fixed temperature, and heat equations at fixed v
• Further split Navier-Stokes into a momentum equation and a pressure equation
• Split the heat equation into two subproblems based on the material

Performance depends on “coupling strength”, which depends on ρ, v, . . .
33

± Implementation

• In the exercise session on Tuesday, you will simulate the cooling problem in MEF++, the
finite element software developed by GIREF at Université Laval.

• MEF++ uses PETSc1 to handle solution to linear problems arising from Newton’s method
• PETSc offers block preconditioners under the FieldSplit option. Preconditioners
available :
• Additive Schwarz (Block Jacobi + overlap)
• Multiplicative Schwarz (Block Gauss-Seidel + overlap)
• Symmetric Multiplicative Schwarz (Forward + backward Gauss-Seidel)
• Schur complement preconditioning (Eliminate (1,1)block exactly)

• Try different configurations to see what works best for your problem !

1 https://www.mcs.anl.gov/petsc/
34

	Definitions and basic notions
	Iterative methods for linear problems

