

Mini-course on Stationary Iterative Methods

Lecture 2 - Fixed point methods

되 🛛 Felix Kwok

Département de mathématiques et de statistique, Université Laval

- 苗 May 31, 2021
- 2021 CRM Summer School: Solving large systems efficiently in multiphysics numerical simulations

∷ Outline

Definitions and basic notions

Iterative methods for linear problems

Definitions and basic notions

O Iterative methods

Suppose we want to solve the nonlinear system

$$F(\mathbf{x}) = \begin{bmatrix} f_1(x_1, x_2 \dots, x_n) \\ f_2(x_1, x_2 \dots, x_n) \\ \vdots \\ f_n(x_1, x_2 \dots, x_n) \end{bmatrix} = 0 \quad \text{for} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

We assume that $F: D \subset \mathbb{R}^n \to \mathbb{R}^n$ is (Fréchet-) differentiable.

- If $F(\mathbf{x}) = A\mathbf{x} \mathbf{b}$, then the system is linear and can be solved by e.g. Gaussian elimination. Iterative methods can also be used, see the next section.
- If F is nonlinear, there is no *direct* method that solves $F(\mathbf{x}) = 0$ in a finite number of operations for *arbitrary* F.
- An iterative method generates a sequence of approximations $\mathbf{x}^1, \mathbf{x}^2, \ldots$, such that \mathbf{x}^k (hopefully) converges to the solution \mathbf{x}^* as $k \to \infty$.

Newton's method starts with an initial guess \mathbf{x}^0 and generates the next iterate \mathbf{x}^1 as follows :

Newton's method starts with an initial guess \mathbf{x}^0 and generates the next iterate \mathbf{x}^1 as follows :

1. Approximate $F(\mathbf{x})$ by a first order Taylor expansion about the point \mathbf{x}^0 :

$$F(\mathbf{x}) \approx F(\mathbf{x}^0) + F'(\mathbf{x}^0)(\mathbf{x} - \mathbf{x}^0) + O(\|\mathbf{x} - \mathbf{x}^0\|^2).$$

Here, $F'(\mathbf{x}^0)$ is the Jacobian matrix :

$$F'(\mathbf{x}_0) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}^0) & \frac{\partial f_1}{\partial x_2}(\mathbf{x}^0) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}^0) \\ \frac{\partial f_2}{\partial x_1}(\mathbf{x}^0) & \frac{\partial f_2}{\partial x_2}(\mathbf{x}^0) & \cdots & \frac{\partial f_2}{\partial x_n}(\mathbf{x}^0) \\ \vdots & \vdots & \vdots \\ \frac{\partial f_n}{\partial x_1}(\mathbf{x}^0) & \frac{\partial f_n}{\partial x_2}(\mathbf{x}^0) & \cdots & \frac{\partial f_n}{\partial x_n}(\mathbf{x}^0) \end{bmatrix}$$

Newton's method starts with an initial guess \mathbf{x}^0 and generates the next iterate \mathbf{x}^1 as follows :

1. Approximate $F(\mathbf{x})$ by a first order Taylor expansion about the point \mathbf{x}^0 :

$$F(\mathbf{x}) \approx F(\mathbf{x}^0) + F'(\mathbf{x}^0)(\mathbf{x} - \mathbf{x}^0) + O(\|\mathbf{x} - \mathbf{x}^0\|^2).$$

2. Find the root of the *linearized* equation and call it \mathbf{x}^1 :

$$0 = F(\mathbf{x}^0) + F'(\mathbf{x}^0)(\mathbf{x}^1 - \mathbf{x}^0) \implies \mathbf{x}^1 = \mathbf{x}^0 - (F'(\mathbf{x}^0))^{-1}F(\mathbf{x}^0).$$

Newton's method starts with an initial guess \mathbf{x}^0 and generates the next iterate \mathbf{x}^1 as follows :

1. Approximate $F(\mathbf{x})$ by a first order Taylor expansion about the point \mathbf{x}^0 :

$$F(\mathbf{x}) \approx F(\mathbf{x}^0) + F'(\mathbf{x}^0)(\mathbf{x} - \mathbf{x}^0) + O(\|\mathbf{x} - \mathbf{x}^0\|^2).$$

2. Find the root of the *linearized* equation and call it \mathbf{x}^1 :

$$0 = F(\mathbf{x}^0) + F'(\mathbf{x}^0)(\mathbf{x}^1 - \mathbf{x}^0) \implies \mathbf{x}^1 = \mathbf{x}^0 - (F'(\mathbf{x}^0))^{-1}F(\mathbf{x}^0).$$

3. Repeat the process using the newly calculated point :

$$\mathbf{x}^{k+1} = \mathbf{x}^k - (F'(\mathbf{x}^k))^{-1}F(\mathbf{x}^k), \qquad k = 1, 2, \dots$$

Newton's method starts with an initial guess \mathbf{x}^0 and generates the next iterate \mathbf{x}^1 as follows :

1. Approximate $F(\mathbf{x})$ by a first order Taylor expansion about the point \mathbf{x}^0 :

$$F(\mathbf{x}) \approx F(\mathbf{x}^0) + F'(\mathbf{x}^0)(\mathbf{x} - \mathbf{x}^0) + O(\|\mathbf{x} - \mathbf{x}^0\|^2).$$

2. Find the root of the *linearized* equation and call it \mathbf{x}^1 :

$$0 = F(\mathbf{x}^0) + F'(\mathbf{x}^0)(\mathbf{x}^1 - \mathbf{x}^0) \implies \mathbf{x}^1 = \mathbf{x}^0 - (F'(\mathbf{x}^0))^{-1}F(\mathbf{x}^0).$$

3. Repeat the process using the newly calculated point :

$$\mathbf{x}^{k+1} = \mathbf{x}^k - (F'(\mathbf{x}^k))^{-1}F(\mathbf{x}^k), \qquad k = 1, 2, \dots$$

4. Stop when \mathbf{x}^k and \mathbf{x}^{k+1} are very close (or when $||F(\mathbf{x}^k)||$ is very small, or both).

Apply Newton's method to the real and imaginary parts of the equation $z^3 - 1 = 0$ for z = x + iy:

$$F(x,y) = \begin{bmatrix} f_1(x,y) \\ f_2(x,y) \end{bmatrix} = \begin{bmatrix} x^3 - 3xy^2 - 1 \\ 3x^2y - y^3 \end{bmatrix} = 0$$

500 600

700 -800 -900 -

Newton attraction basins

Newton's method – remarks

- Instead of computing the matrix inverse in $\mathbf{x}^{k+1} = \mathbf{x}^k (F'(\mathbf{x}^k))^{-1}F(\mathbf{x}^k)$ the Newton step is usually implemented as follows :
 - 1. Solve $F'(\mathbf{x}^k)\mathbf{z} = F(\mathbf{x}^k)$ for \mathbf{z} using an appropriate linear solver;

2. Update
$$\mathbf{x}^{k+1} = \mathbf{x}^k - \mathbf{z}$$
.

A good linear solver for F' is therefore crucial !

- Newton's method can diverge or stagnate when \mathbf{x}_0 is too far from the solution !
- Jacobian evaluation is expensive; one could freeze the Jacobian at the initial guess (or update every few iterations) to obtain

$$\mathbf{x}^{k+1} = \mathbf{x}^k - (F'(\mathbf{x}^0))^{-1}F(\mathbf{x}^k), \qquad k = 0, 1, 2, \dots$$

This is known as the simplified Newton method.

• Fixed point methods

• Newton's method can be written in the general form $\mathbf{x}^{k+1} = G(\mathbf{x}^k)$, where $G: D \subset \mathbb{R}^n \to \mathbb{R}^n$ is the **fixed point map**. For Newton, we have

$$G(\mathbf{x}) = \mathbf{x} - (F'(\mathbf{x}))^{-1}F(\mathbf{x}).$$

• If a fixed point method converges and G is continuous, then the limit point \mathbf{x}^* satisfies

$$\mathbf{x}^* = \lim_{k \to \infty} \mathbf{x}^k = \lim_{k \to \infty} G(\mathbf{x}^{k-1}) = G\left(\lim_{k \to \infty} \mathbf{x}^{k-1}\right) = G(x^*).$$

The method therefore converges to a **fixed point** of G.

• Example : the fixed point for Newton's method is

$$\mathbf{x}^* = G(\mathbf{x}^*) = \mathbf{x}^* - (F'(\mathbf{x}^*))^{-1} \mathcal{F}(\mathbf{x}^*) \implies (F'(\mathbf{x}^*))^{-1} F(\mathbf{x}^*) = 0.$$

If $F'(\mathbf{x}^*)$ is non-singular, then $F(\mathbf{x}^*) = 0 \implies \mathbf{x}^*$ is a solution to the nonlinear system.

• Convergence of fixed point methods

Definition : Let \mathbf{x}^* be a fixed point of G and let $\mathbf{x}^0, \mathbf{x}^1, \ldots$ be iterates that satisfy $\mathbf{x}^{k+1} = G(\mathbf{x}^k)$, $k = 0, 1, 2, \ldots$ Then the **error** of the kth iterate is defined as

$$\mathbf{e}^k := \mathbf{x}^k - \mathbf{x}^*.$$

To understand how the error behaves as a function of k, we calculate

$$\begin{aligned} \mathbf{e}^{k+1} &= \mathbf{x}^{k+1} - \mathbf{x}^* \\ &= G(\mathbf{x}^k) - G(\mathbf{x}^*) \\ &= G(\mathbf{x}^*) + G'(\mathbf{x}^*)(\mathbf{x}^k - \mathbf{x}^*) + O(\|\mathbf{x}^k - \mathbf{x}^*\|^2) - G(\mathbf{x}^*) \\ &= G'(\mathbf{x}^*)\mathbf{e}^k + O(\|\mathbf{e}^k\|^2). \end{aligned}$$

• Example 1

To find one of the roots of $x^3 - 3x + 1 = 0$, we start with $x_0 = 0$ and consider the method

$$x^{k+1} = \frac{1}{3}((x^k)^3 + 1).$$

Then $G(x) = \frac{1}{3}(x^3+1)$, $G'(x) = x^2$. For the fixed point $x^* \approx 0.3473$, we have $G'(x^*) \approx 0.1206$, so for x^k close to x^* , we have

 $e^{k+1} \approx 0.1206 \, e^k + O((e^k)^2),$

so the error is reduced by about a factor of $\boldsymbol{8}$ with each additional iteration.

k	x^k	e^k	e^{k+1}/e^k
0	0	-0.347296355333861	0.040204919476061
1	0. <mark>3</mark> 33333333333333333333333333333333333	-0.013963022000527	0.115830440439082
2	0. <mark>34</mark> 5679012345679	-0.001617342988182	0.120053933035803
3	0. <mark>347</mark> 102186947062	-0.000194168386799	0.120547337021927
4	0. <mark>3472</mark> 72948851898	-0.000023406481962	0.120606629621737
5	0. <mark>34729</mark> 3532356960	-0.000002822976901	0.120613778000051
6	0. <mark>347296</mark> 014843951	-0.000000340489909	0.120614640035547
7	0. <mark>3472963</mark> 14265793	-0.000000041068068	0.120614743217285
8	0. <mark>34729635</mark> 0380446	-0.000000004953414	0.120614753443415
9	0. <mark>34729635</mark> 4736406	-0.000000000597455	0.120614636167759
10	0. <mark>347296355</mark> 261799	-0.00000000072062	-

• What about Newton's method?

In one dimension :

$$G(x) = x - \frac{f(x)}{f'(x)}$$

$$G'(x) = 1 - \frac{f'(x) \cdot f'(x) - f(x)f''(x)}{(f'(x))^2} = \frac{f(x)f''(x)}{(f'(x))^2}$$

• If x^* is a root of f(x) such that $f'(x^*) \neq 0$ (i.e., a simple root), then

$$G'(x^*) = \frac{0 \cdot f''(x^*)}{(f'(x^*))^2} = 0.$$

So for $|x^k - x^*|$ small, we have

$$e^{k+1} = G'(x^*)e^k + O(|e^k|^2) = O(|e^k|^2)$$

Thus, we have quadratic convergence !

To solve $x^3 - 3x + 1 = 0$ using Newton's method, we write

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)} = x^k - \frac{(x^k)^3 - 3x^k + 1}{3(x^k)^2 - 3}$$

The number of correct digits **doubles** after every iteration \implies quadratic convergence

k	x^k	e^k	$e^{k+1}/(e^k)^2$
0	0	-0.347296355333861	-0.115765451777953
1	0. <mark>3</mark> 33333333333333333333333333333333333	-0.013963022000527	-0.380236133250081
2	0. <mark>3472</mark> 222222222222	-0.000074133111638	-0.394851507080994
3	0. <mark>34729635</mark> 3163868	-0.000000002169993	0
4	0.347296355333861	0	_

Some problems with Newton

• Recall :

$$e^{k+1} = G'(x^*)e^k + O(|e^k|^2) = O(|e^k|^2)$$

If $|e^k|$ is large, then

$$|e^{k+1}| \approx C |e^k|^2 > |e^k| \qquad \text{if } |Ce^k| > 1.$$

So Newton's method may not converge in this case; it may cycle or diverge.

• If x^* is a **double root** of f, i.e., if $f(x^*) = f'(x^*) = 0$ (but $f''(x^*) \neq 0$), then

$$\lim_{x \to x^*} G'(x) = \lim_{x \to x^*} f''(x) \frac{f(x)}{(f'(x))^2} = f''(x^*) \lim_{x \to x^*} \frac{f'(x)}{2f'(x)f''(x)} = \frac{1}{2}.$$

So Newton converges **linearly** with 1/2 as the asymptotic contraction factor.

• A more involved analysis leads to analogous results for higher dimensions

O Problems with Newton : some fixes

- Line search :
 - Instead of using the full Newton correction $\mathbf{x}^{k+1} = \mathbf{x}_k (F'(\mathbf{x}^k))^{-1}F(\mathbf{x}^k)$, make a shorter step

$$\mathbf{x}^{k+1} = \mathbf{x}_k - \boldsymbol{\alpha}(F'(\mathbf{x}^k))^{-1}F(\mathbf{x}^k), \qquad 0 < \alpha < 1$$

- α is chosen to ensure $\|F(\mathbf{x}^{k+1})\| < \|F(\mathbf{x}^k)\|$
- Under some hypotheses, one can show convergence to a solution $F(\mathbf{x}^*) = 0$.
- Preconditioning : transform F(x) = 0 to some equivalent problem H(x) = 0 with the same solution \mathbf{x}^* , but which is easier to solve for Newton (e.g., closer to a linear function)
- Continuation : If the problem depends continuously on a parameter $\alpha,$ i.e.,

$$F(x(\alpha);\alpha) = 0,$$

start with an "easy" α and vary α step by step, using the solution from the previous step as an initial guess

Iterative methods for linear problems

Suppose we want to solve the linear system

$$\begin{bmatrix} 2 & -1 & & 0 \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ 0 & & & -1 & 2 \end{bmatrix} \mathbf{x} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ \vdots \\ f_n \end{bmatrix}.$$

Instead of eliminating unknowns, Jacobi (1845) has the following idea :

- 1. Make some initial guess $\mathbf{x}^0 = (x_1^0, x_2^0, \dots, x_n^0)^T$
- 2. Use the *i*th equation to solve for the new x_i using the previous data :

$$-x_{i-1} + 2x_i - x_{i+1} = f_i \implies x_i^{k+1} = \frac{1}{2}(x_{i-1}^k + x_{i+1}^k + f_i), \qquad k = 1, \dots, n$$

3. Iterate until convergence (?!).

● Gauss-Seidel method

Make a programming mistake :

• Jacobi :

$$x_i^{k+1} = \frac{1}{2}(x_{i-1}^k + x_{i+1}^k + f_i), \qquad i = 1, \dots, n$$

• Gauss-Seidel :

$$x_i^{k+1} = \frac{1}{2}(x_{i-1}^{k+1} + x_{i+1}^k + f_i), \qquad i = 1, \dots, n$$

Gauss explained in a letter in 1823 how to use this method to solve a least squares problem :

"I recommend this method to you for imitation. You will hardly ever again eliminate directly, at least not when you have more than 2 unknowns. The indirect procedure can be done while half asleep, or while thinking about other things."

\bigcirc Gauss-Seidel method, n = 10

\bigcirc Gauss-Seidel method, n = 10

Stationary iterative method : General form

The Jacobi and Gauss-Seidel methods for solving $A\mathbf{x} = \mathbf{f}$ can be rewritten in the general form

$$M\mathbf{x}^{k+1} = N\mathbf{x}^k + \mathbf{f},$$

where M is a non-singular matrix, and N = M - A.

• Jacobi :
$$M = D = \text{diag}(a_{11}, a_{22}, \dots, a_{nn})$$

• Gauss-Seidel :
$$M = L + D = \begin{bmatrix} a_{11} & & \\ a_{21} & a_{22} & \\ \vdots & \ddots & \\ a_{n1} & \cdots & \cdots & a_{nn} \end{bmatrix}$$
, i.e., the lower triangular part of A

• Other choices are possible, as long as systems involving M are cheap to solve. Note that we need N = M - A so that the fixed point $\mathbf{x}^* = \lim \mathbf{x}^k$ satisfies

$$M\mathbf{x}^* = N\mathbf{x}^* + \mathbf{f} \iff (M - N)\mathbf{x}^* = \mathbf{f} \iff A\mathbf{x}^* = \mathbf{f}.$$

$$M\mathbf{x}^{k+1} = N\mathbf{x}^k + \mathbf{f}$$

• This is a fixed point method, because we can write it in terms of a fixed point map $\mathcal{G}(\mathbf{x})$:

$$\mathbf{x}^{k+1} = M^{-1}N\mathbf{x}^k + M^{-1}\mathbf{f} =: \mathcal{G}(\mathbf{x}^k),$$

• Another way to write this is in terms of the **residual** $\mathbf{r}^k = \mathbf{f} - A\mathbf{x}^k$:

$$M\mathbf{x}^{k+1} = (M-A)\mathbf{x}^k + \mathbf{f} = M\mathbf{x}^k + \mathbf{r}^k \implies \mathbf{x}^{k+1} = \mathbf{x}^k + M^{-1}\mathbf{r}^k,$$

so the method will keep updating \mathbf{x}^{k+1} as long as $\mathbf{r}^k \neq 0$.

• A stopping criterion is usually needed to decide when the solution \mathbf{x}^k is "close enough". Some options are $\|\mathbf{r}^k\|$, $\|\mathbf{x}^{k+1} - \mathbf{x}^k\|$, or some other norm of the error/residual.

O Direct vs iterative method

- $\bullet~\mbox{Recall}$: cost of direct methods depends heavily on the density of LU factors
- Iterative methods can be matrix free, with much lower cost per iteration
- But : speed of convergence is paramount !

• Convergence of a stationary iterative method

$$M\mathbf{x}^{k+1} = N\mathbf{x}^k + \mathbf{f} \tag{(*)}$$

- Define the error $\mathbf{e}^k = \mathbf{x}^k \mathbf{x}^*$.
- Subtracting the above from (*) gives

$$M(\mathbf{x}^{k+1} - \mathbf{x}^*) = N(\mathbf{x}^k - \mathbf{x}^*) \implies M\mathbf{e}^{k+1} = N\mathbf{e}^k.$$

• Therefore, we have

$$e^{k+1} = Ge^k$$
, where $G = M^{-1}N = I - M^{-1}A$.

• Applying the above relation several times yields

$$\mathbf{e}^{k} = G\mathbf{e}^{k-1} = G(G\mathbf{e}^{k-2}) = G^{2}(G\mathbf{e}^{k-3}) = \dots = G^{k}\mathbf{e}^{0},$$

where $e^0 = x^0 - x^*$ is the initial error (generally unknown).

Let $e^0 \neq 0$ be an **eigenvector** of G, i.e., $Ge^0 = \lambda e^0$ for some λ (which may be complex). Then

$$\mathbf{e}^{k} = G^{k} \mathbf{e}^{0} = \lambda G^{k-1} \mathbf{e}^{0} = \dots = \lambda^{k} \mathbf{e}^{0} \implies \|\mathbf{e}^{k}\| = |\lambda|^{k} \|\mathbf{e}^{0}\|$$

Several cases :

- If $|\lambda| < 1$, then $|\lambda|^k \to 0$ as $k \to \infty \implies ||\mathbf{e}^k|| \to 0$, i.e., convergence !
- If $|\lambda| > 1$, then $|\lambda|^k \to \infty \implies \|\mathbf{e}^k\| \to \infty$, i.e., divergence.
- If $|\lambda| = 1$, then $\|\mathbf{e}^k\| = \|\mathbf{e}^0\|$ for all $k \implies$ no convergence to \mathbf{x}^* .

In general, e^0 is a (usually unknown) linear combination of eigenvectors of G.

Theorem : A stationary iterative method $M\mathbf{x}^{k+1} = N\mathbf{x}^k + \mathbf{f}$ converges to the unique solution $\mathbf{x}^* = \mathbf{A}^{-1}\mathbf{f}$ for all initial guess \mathbf{x}^0 if and only if **all** the eigenvalues of $G = M^{-1}N$ have modulus strictly less than 1.

Onvergence rate

 ${\rm Definition}: {\rm The \ spectral \ radius}\ \rho(G)$ of a matrix G is defined as the maximum modulus of all the eigenvalues, i.e.,

$$p(G) = \max_{1 \le i \le n} |\lambda_i|,$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of G.

Let $\rho(G) < 1$, so that the stationary method converges. If G is diagonalizable with eigenvectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$, then we have

$$\mathbf{e}^{0} = \sum_{i=1}^{n} c_{i} \mathbf{v}_{i} \implies \mathbf{e}^{k} = G^{k} \mathbf{e}^{0} = \sum_{i=1}^{n} c_{i} \lambda_{i}^{k} \mathbf{v}_{i}$$
$$|\mathbf{e}^{k}|| \leq \sum_{i=1}^{n} |c_{i}| |\lambda_{i}|^{k} ||\mathbf{v}_{i}|| \leq C(\rho(G))^{k}$$

Therefore, the error norm is multiplied by roughly $\rho(G)$ at each iteration.

$$\|\mathbf{e}^k\| \leq C(\rho(G))^k$$

- $\rho(G)$ gives the contraction factor of the method :
 - $\bullet \ \rho(G) \ll 1 \implies {\rm fast \ convergence}$
 - $\rho(G) \approx 1 \implies$ slow convergence
- The "best" method is when $\rho(G) = 0$, which happens when G = 0:

$$G = I - M^{-1}A = 0 \iff M^{-1}A = I \iff M = A.$$

But solving with M would be just as expensive as solving with A !

- Designing a good method involves a tradeoff :
 - *M* is a "good" approximation of *A* (in some sense)
 - Systems involving M are cheap(er) to solve than those involving A

Sexample : Jacobi and Gauss-Seidel

Consider the 10×10 system

$$\begin{bmatrix} a & -1 & & \\ -1 & a & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & a & -1 \\ & & & -1 & a \end{bmatrix} \mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ \vdots \\ 1 \end{bmatrix}$$

for a = 2 and a = 4.

Example : Jacobi, a = 2

A tenfold reduction in error requires $\rho^k = 0.1 \implies k = 55.68$ iterations !

\bigcirc Example : Jacobi, a = 4

A tenfold reduction in error requires $\rho^k = 0.1 \implies k = 3.13$ iterations !

Solution Example : Gauss-Seidel, a = 2

A tenfold reduction in error requires $\rho^k = 0.1 \implies k = 27.84$ iterations !

\bigcirc Example : Gauss-Seidel, a = 4

A tenfold reduction in error requires $\rho^k = 0.1 \implies k = 1.57$ iterations!

Theorem : Let A be strictly diagonally dominant, i.e., the diagonal element in each row is greater than the sum of the off-diagonal entries (in absolute value) in that row. Then the Jacobi and Gauss-Seidel methods, applied to $A\mathbf{x} = \mathbf{f}$, both converge for all initial guess.

Theorem : Let A be symmetric positive definite. Then the Gauss-Seidel method, applied to $A\mathbf{x} = \mathbf{f}$, converges for all initial guess.

Note : for the matrices in our example, it can be shown that the eigenvalues of the Gauss-Seidel matrix are the **squares** of the eigenvalues of the Jacobi matrix. Thus, Gauss-Seidel converges twice as fast as Jacobi in those examples.

Block methods

Suppose we have a coupled multiphysics problem :

$$\begin{cases} F(\mathbf{u}, \mathbf{v}) = 0, \\ G(\mathbf{u}, \mathbf{v}) = 0. \end{cases}$$

If we solve this problem by Newton's method, we need to solve linear systems of the form

$$\underbrace{\begin{bmatrix} F_{\mathbf{u}}(\mathbf{u}^{j},\mathbf{v}^{j}) & F_{\mathbf{v}}(\mathbf{u}^{j},\mathbf{v}^{j}) \\ G_{\mathbf{u}}(\mathbf{u}^{j},\mathbf{v}^{j}) & G_{\mathbf{v}}(\mathbf{u}^{j},\mathbf{v}^{j}) \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} \mathbf{u}^{j+1} - \mathbf{u}^{j} \\ \mathbf{v}^{j+1} - \mathbf{v}^{j} \end{bmatrix}}_{\mathbf{x}} = \underbrace{- \begin{bmatrix} F(\mathbf{u}^{j},\mathbf{v}^{j}) \\ G(\mathbf{u}^{j},\mathbf{v}^{j}) \end{bmatrix}}_{\mathbf{f}}.$$

Block Jacobi is defined as $M\mathbf{x}^{k+1} = N\mathbf{x}^k + \mathbf{f}$, where M contains only a single "physics" :

$$M := \begin{bmatrix} F_{\mathbf{u}}(\mathbf{u}^j, \mathbf{v}^j) & 0\\ 0 & G_{\mathbf{v}}(\mathbf{u}^j, \mathbf{v}^j) \end{bmatrix}.$$

In other words, within each Newton step j, we solve for k = 0, 1, 2, ...

$$\begin{split} F_{\mathbf{u}}(\mathbf{u}^{j},\mathbf{v}^{j})(\mathbf{u}^{j+1,k+1}-\mathbf{u}^{j}) &= -F(\mathbf{u}^{j},\mathbf{v}^{j}) - F_{\mathbf{v}}(\mathbf{u}^{j},\mathbf{v}^{j})(\mathbf{v}^{j+1,k}-\mathbf{v}^{j}),\\ G_{\mathbf{v}}(\mathbf{u}^{j},\mathbf{v}^{j})(\mathbf{v}^{j+1,k+1}-\mathbf{v}^{j}) &= -G(\mathbf{u}^{j},\mathbf{v}^{j}) - G_{\mathbf{u}}(\mathbf{u}^{j},\mathbf{v}^{j})(\mathbf{u}^{j+1,k}-\mathbf{u}^{j}). \end{split}$$

One can also use block Gauss-Seidel to maintain some coupling by keeping one off-diagonal block :

$$M := \begin{bmatrix} F_{\mathbf{u}}(\mathbf{u}, \mathbf{v}) & 0\\ G_{\mathbf{u}}(\mathbf{u}, \mathbf{v}) & G_{\mathbf{v}}(\mathbf{u}, \mathbf{v}) \end{bmatrix}.$$

Of course, one could also consider a **nonlinear** block Jacobi or Gauss-Seidel fixed-point iteration by solving directly the nonlinear problems

$$F(\mathbf{u}^{k+1}, \mathbf{v}^k) = 0,$$

 $G(\mathbf{u}^k, \mathbf{v}^{k+1}) = 0,$ $k = 0, 1, 2, ...$

Example : CPR method (Wallace et al., 1985)

To solve the Jacobian systems arising from two-phase flow equations :

$$\begin{split} \text{Water}: & \quad \frac{\partial}{\partial t}(\phi\rho_wS) = \nabla \cdot (K(\mathbf{x})\rho_w\lambda_w(S)\,\nabla p) + q_w, \\ \text{Oil}: & \quad \frac{\partial}{\partial t}(\phi\rho_o(1-S)) = \nabla \cdot (K(\mathbf{x})\rho_o\lambda_o(S)\,\nabla p) + q_o, \end{split}$$

1. Add the two equations to obtain the discrete pressure equation

$$-\nabla \cdot (K_T(\mathbf{x}, S)\nabla p) = \tilde{q},$$

- 2. Use e.g. algebraic multigrid to solve the pressure equation.
- 3. Compute the new velocity field \mathbf{v}_T .
- 4. Solve local, 2×2 systems to update the saturation S, in decreasing order of pressure, or using an incomplete LU factorization.
- 5. Iterate to convergence.

• Example : cooling by fluids

Momentum :	$\nabla \cdot (2\eta \nabla^s \mathbf{v}) - \rho_f(\mathbf{v} \cdot \nabla) \mathbf{v} - \nabla p = 0$	in Ω_f ,
Mass :	$ abla \cdot (ho_f \mathbf{v}) = 0$	in Ω_f ,
Heat :	$-\nabla \cdot (K_f \nabla T) + \nabla \cdot (\mathbf{v} \rho_f C_f T) = 0$	in Ω_f ,
Heat :	$-\nabla \cdot (K_s \nabla T) = q$	in Ω_s ,
Coupling :	$K_s \nabla T \cdot \mathbf{n}_s + K_f \nabla T \cdot \mathbf{n}_f = 0$	on Γ .

Apply block Jacobi/Gauss-Seidel to sub-problems :

- Solve Navier-Stokes for (\mathbf{v},p) at fixed temperature, and heat equations at fixed \mathbf{v}
- Further split Navier-Stokes into a momentum equation and a pressure equation
- Split the heat equation into two subproblems based on the material

Performance depends on "coupling strength", which depends on ρ , \mathbf{v} , ...

Implementation

- In the exercise session on Tuesday, you will simulate the cooling problem in MEF++, the finite element software developed by GIREF at Université Laval.
- MEF++ uses $PETSc^1$ to handle solution to linear problems arising from Newton's method
- PETSc offers block preconditioners under the FieldSplit option. Preconditioners available :
 - Additive Schwarz (Block Jacobi + overlap)
 - Multiplicative Schwarz (Block Gauss-Seidel + overlap)
 - Symmetric Multiplicative Schwarz (Forward + backward Gauss-Seidel)
 - Schur complement preconditioning (Eliminate (1,1)block exactly)
- Try different configurations to see what works best for your problem !

¹ https://www.mcs.anl.gov/petsc/