
CONVERGENCE OF PARAOPT FOR GENERAL RUNGE-KUTTA TIME
DISCRETIZATIONS∗

FELIX KWOK† , JULIEN SALOMON‡ , AND DJAHOU N. TOGNON ‡

Abstract. ParaOpt is a time parallel method based on Parareal for solving optimality systems arising in optimal
control problems. The method was presented in [M.J. Gander, F. Kwok and J. Salomon, SIAM J. Sci. Comput.,
42 (2020), A2773–A2802] together with a convergence analysis in the case where implicit Euler is used to discretize
the differential equations governing the system dynamics. However, its convergence behaviour for higher order
time discretizations has not been considered. In this paper, we use an operator norm analysis to prove that the
convergence rate of ParaOpt applied to a linear-quadratic optimal control problem has the same order as the Runge-
Kutta time integration method used, provided that a few auxiliary order conditions are satisfied. We illustrate our
theoretical results with numerical examples, before showing an additional test case not covered by our analysis,
namely, a nonlinear optimal control problem involving a Schrödinger type system.
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1. Introduction. Time parallelization algorithms for solving ordinary differential equations
(ODEs) or partial differential equations (PDEs) have reached a certain maturity since their emer-
gence in the early 2000s [11, 29]. Current research on this class of algorithms mainly focuses
on their use in conjunction with other types of procedures, such as data assimilation [9, 30, 7],
multi-grid [18, 10, 35, 32, 15, 4], or control [25, 1, 34, 28, 21, 2, 5, 23, 27, 26].

In the recent paper [14], the authors introduced ParaOpt, a way of parallelizing the solving of
the discrete Euler-Lagrange equations arising from an optimal control problem. The strategy con-
sists of dividing the time interval into several sub-intervals, on which subdomain control problems
can be defined. The original “global problem” is then equivalent to the continuity of the state and
adjoint variables across time interval boundaries, and these continuity conditions can be expressed
in terms of the subdomain solution operators. The algorithm is essentially a multiple shooting
method and has the dual advantage of reducing the number of primary degrees of freedom to those
of the state and adjoint at a few time points, while allowing the sub-interval problems to be solved
in parallel. The main drawback is that even when linearized, the resulting Jacobian matrix is
expensive to calculate explicitly and to solve by factorization. The idea of ParaOpt, inspired by
Parareal [24, 12] for initial value problems, is to replace the expensive solve by a cheaper one that
uses a coarser discretization in time. For an implicit Euler discretization, [14] contains a theoretical
convergence analysis of the algorithm for linear dissipative problems: the convergence rate is found
to be essentially an affine function of ∆t, the time-step size for the coarse approximation. This
first analysis of convergence of ParaOpt is based on a study of an eigenvalue problem. However,
additional numerical results have shown the efficiency of ParaOpt for problems that are not of the
dissipative type.

The goal of this paper is to investigate what happens to the convergence rate of ParaOpt
when higher order discretizations is used for the optimal control problem. Unlike previous works
which are mainly based on eigenvalues problems, our approach is based on operator analysis. Our
framework is that of Runge-Kutta methods, where the approximation orders are central parame-
ters. We will see that under appropriate assumptions, ParaOpt converges with a contraction factor
proportional to ∆tk, where ∆t and k are the time step and order of the coarser of the two time
integration methods involved in the ParaOpt. In other words, ParaOpt performs better as an
iterative method when higher order discretizations are used.

Our approach is strongly inspired by works dealing with the time discretization of optimality
systems. In this field, an early work by Hager [16] on the convergence rate of discrete controls
towards the continuous one showed the importance of using the same integrator for the objective
function and the ODE under consideration. Otherwise, difficulties can arise if the discrete objective
function is “incompatible” with the ODE method, as reported in [8], where a second-order approach
is detailed. A more general analysis is presented in [17], where higher order Runge-Kutta methods
are studied. In these works, a higher order discretization is required for the objective function
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Canada,(felix.kwok@mat.ulaval.ca)
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to obtain solutions as accurate as can be expected when using Runge-Kutta. This introduces
additional degrees of freedom to the control, which makes the discrete problem even larger and
computationally more expensive to solve. Parallelization strategies, as the one of this paper, are
therefore a must. Beyond accuracy, in some cases it is necessary to use specific Runge–Kutta
methods to ensure that optimization leads to a physically correct solution. An example is given by
the control of Schrödinger-type equations (such as discussed in Subsection 5.3) or transport-type
equations (see [22]), for which a norm is preserved at the continuous level. If this norm is not
preserved at the discrete level, the optimization method can take advantage of this property to
artificially decrease or increase the norm in order to optimize the functional under consideration.
This leads to non-physical solutions or numerical explosion and prevents the problem from being
solved. One can overcome this issue by choosing a numerical scheme that preserves the norm, such
as Crank-Nicolson. Having a sufficiently wide choice of numerical schemes is therefore a crucial
property for the numerical coupling of solvers.

Our paper is organized as follows. In Section 2, we introduce our optimal control problem
together with a corresponding general Runge-Kutta time discretization. Section 3 provides a
detailed exposition of the ParaOpt procedure in this discrete framework. In Section 4, our main
results are stated and proved. We conclude in Section 5 with some numerical experiments which
include a nonlinear example.

2. Optimal control problem and its discretization. We consider the linear-quadratic
optimal control problem associated with the following cost functional

(2.1) J(ν) =
1

2
∥y(T )− ytg∥2 +

α

2

∫ T

0

∥ν(t)∥2dt,

where α is a regularization parameter, ytg is a target state and ν : [0, T ] −→ Rm (m is a positive
integer) the control, which is assumed to be in L2([0, T ],Rm). The evolution of the state function
y : [0, T ] −→ Rr (r is a positive integer) is described by the system of ordinary differential equations
(ODEs):

(2.2) ẏ(t) = Ly(t) + Bν(t)

with initial condition y(0) = yin where L ∈ Rr×r and B ∈ Rr×m. The ODEs system (2.2) may
arise from a semi-discretization in space of a time-dependent partial differential equation (PDE)
and ∥·∥ is derived from the standard inner product ⟨·, ·⟩ of Rr. It is well known (cf. [33, Ch. 4])
that for any initial state yin, the problem of minimizing J(ν) subject to (2.2) and y(0) = yin has a
unique solution ν∗ ∈ L2([0, T ],Rm), with the corresponding optimal trajectory y∗ ∈ H1([0, T ],Rr)
and therefore absolutely continuous. Moreover, the unique optimal control ν∗ is characterized by
first order optimality conditions that can be obtained formally from the Euler-Lagrange equations.
To write them, we introduce the Langrangian

L(y, λ, ν) = J(ν)−
∫ T

0

⟨λ(t), ẏ(t)− Ly(t)− Bν(t)⟩ dt,

where λ is the adjoint state function. Differentiating with respect to ν and setting the derivative
to zero leads to the relation

(2.3) ν∗(t) = − 1

α
BTλ(t),

where λ∗ is a solution of the adjoint equation

λ̇(t) = −LTλ(t), t ∈ (0, T )

λ(T ) = y∗(T )− ytg.

The adjoint λ∗ is therefore a C∞ function in t, and so is ν∗ thanks to the relation (2.3). This in
turn implies y∗ ∈ C∞([0, T ],Rr). These smoothness properties motivate the use of higher order
Runge-Kutta discretizations, which we will present in the next section.

Substituting the optimal control (2.3) into (2.2) leads to the following reduced optimality
system

ẏ(t) = Ly(t)− 1

α
BBTλ(t), λ̇(t) = −LTλ(t), t ∈ (0, T )

y(0) = yin, λ(T ) = y(T )− ytg.
(2.4)
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2.1. Time discretization. Given M0 ∈ N, M0 > 0, the time interval [0, T ] is discretized by
M0+1 grid points t0 = 0, . . . , tM0

= T with δt = T/M0 and tn = nδt. We follow [17] and augment
the ODE system ẏ = Ly + Bν to include the integral term in the objective function J as follows:
we define Y : [0, T ] −→ Rr+1, Y = (y0, y1, . . . , yr)T , such that

(2.5)


ẏ0(t) =

α

2
∥ν(t)∥2, y0(0) = 0,ẏ1(t)

...
ẏr(t)

 = L

y1

...
yr

+ Bν(t),

y1(0)
...

yr(0)

 = yin.

Then yi(t) = yi(t) for i ≥ 1, and minimizing J is equivalent to minimizing C(Y(T )), where

C(Y(t)) =
1

2
∥y1:r(t)− ytg∥2 + y0(t).

From now on, we identify y1:r(t) with y(t) to lighten the notation. We now apply an s-stage
Runge-Kutta method of order p ≥ 1 to the augmented system (2.5). Suppose its Butcher table is
given by

(RK)
c A

bT
;

with coefficients A = [ai,j ]
s
i,j=1, b = (bj)

s
j=1 and c = (cj)

s
j=1. Concretely, by applying this Runge-

Kutta method to (2.5), we obtain the following discrete optimal control problem:

minimize
1

2
∥yM0 − ytg∥2 + y0M0

(2.6a)

subject to kn,i = L

yn + δt

s∑
j=1

aijkn,j

+ Bνn,i, i = 1, . . . , s,(2.6b)

y0n+1 = y0n +
αδt

2

s∑
i=1

bi∥νn,i∥2, n = 0, . . . ,M0 − 1,(2.6c)

yn+1 = yn + δt

s∑
i=1

bikn,i, n = 0, . . . ,M0 − 1.(2.6d)

Note that since the stage equations for the zeroth component y0n are particularly simple, we have
written the recurrence relation for this component separately in (2.6c). From (2.6a) and (2.6c), we
see that the discrete objective function to be minimized can be written as

(2.7) Jδt(ν) =
1

2
∥yM0

− ytg∥2 +
αδt

2

M0−1∑
n=0

s∑
j=1

bj∥νn,j∥2.

We have thus discretized the integral in (2.1) in a way that is consistent with the Runge-Kutta
method. Moreover, one can express the kn,i in (2.6b) as the solution of a linear system. Substituting
this solution into (2.6d), we obtain

yn+1 = yn + δt
(
b1I b2I · · · bsI

)
(I − δtA⊗ L)−1

 Lyn + Bνn,1
...

Lyn + Bνn,s

 ,

and where I and I are identity matrices of Rr×r and Rr·s×r·s respectively. Then, denoting by W
and Wj the matrices

(2.8) Wj :=

s∑
i=1

biZi,j , W :=

s∑
j=1

Wj ,

where the matrices Zi,j are the blocks of the inverse of I − δtA⊗ L, we get

(2.9) yn+1 = (I + δtWL)yn + δt

s∑
j=1

WjBνn,j .
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Table 1
Order conditions for Runge-Kutta methods for optimal control. We assume ci =

∑s
j=1 aij , dj =

∑s
i=1 biaij .

Order IVP conditions Optimal control conditions

1
∑s

i=1 bi = 1

2
∑s

i=1 di =
1
2

3
∑s

i=1 cidi =
1
6
,

∑s
i=1 bic

2
i = 1

3

∑s
i=1 d

2
i /bi =

1
3

4
∑s

i=1 bic
3
i = 1

4
,

∑s
i,j=1 biciaijcj = 1

8
,

∑s
i=1 d

3
i /b

2
i = 1

4
,

∑s
i,j=1 diaijdj/bj = 1

8
,∑s

i=1 dic
2
i = 1

12
,

∑s
i,j=1 diaijcj = 1

24

∑s
i=1 cid

2
i /bi =

1
12
,

∑s
i,j=1 biciaijdj/bj = 5

24

To obtain the first-order optimality conditions, let us introduce the discrete Lagrangian

Lδt(y, λ, ν) = Jδt(ν)−
M0−1∑
n=0

⟨λn+1, yn+1 − (I + δtWL)yn − δt

s∑
j=1

WjBνn,j⟩.

The discrete Euler-Lagrange equations then become

yn+1 = (I + δtWL)yn + δt

s∑
j=1

WjBνn,j ,

λn = (I + δtWL)Tλn+1,(2.10)

λM0
= yM0

− ytg,

αbjνn,j = −BTWT
j λn+1.

We now use the last equation to eliminate the control and to obtain the following discrete version
of the reduced optimality system (2.4):

yn+1 = (I + δtWL)yn − δt

α

 s∑
j=1

1

bj
WjBBTWT

j

λn+1(2.11)

λn = (I + δtWL)Tλn+1,(2.12)

with the initial and final conditions y0 = yin and λM0
= yM0

− ytg respectively.
For any given (not necessarily optimal) control function ν ∈ C∞([0, T ],Rr), if we let νn,j =

ν(tn+cjδt) in (2.6b), then the implicit function theorem implies that the system (2.6b) has a unique
solution (kn,i)1≤i≤s for δt sufficiently small, and the initial-value problem (IVP) order conditions
(see Table 1) imply that Yn converges to Y (tn) with order p. However, if one is free to choose
the values νn,j to minimize (2.7) in the discrete sense, it does not automatically follow that yn
and νn,j converge to y∗(tn) and ν∗(tn + cjδt) with order p. Indeed, Hager showed in [17] that
additional order conditions are required for convergence of the the discrete state and adjoint at the
correct order. We therefore assume that our Runge-Kutta method satisfies all the order conditions
in Table 1 up to order p, both in the IVP and in the optimal control sense. In section 4, we will
adapt Hager’s proof of consistency in [17] to our linear-quadratic problem in order to bound the
norms of certain matrices, which in turn will allow us to estimate the convergence rate of ParaOpt
for these higher order discretizations.

3. Time Parallelization using ParaOpt. The solution of the coupled forward-backward
system (2.11)–(2.12) can be parallelized using the ParaOpt method [14]. A simplified version for
the discrete linear-quadratic control problem is given below. Let us consider the subdivision of
[0, T ] into L sub-intervals [Tℓ, Tℓ+1] with uniform length ∆T that satisfies Tℓ = ℓ∆T , ℓ = 0, . . . , L,
and ∆T = Mδt, These quantities are illustrated (among others that will be introduced later)
on Figure 1.

We start by eliminating interior unknowns in [Tℓ, Tℓ+1], i.e., the unknowns that are not located
at T0, T1, . . . , TL. For 0 ≤ n1 ≤ n2 ≤ M , (2.12) implies that

(3.1) λn2−n = [(I + δtWL)T ]nλn2
,

and combining (2.11) and (2.12), we obtain

(3.2) yn2 = (I + δtWL)n2−n1yn1 −
δt

α

n2−n1−1∑
n=0

(I + δtWL)n
 s∑

j=1

1

bj
WjBBTWT

j

λn2−n.
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Substituting (3.1) into (3.2) then leads to

(3.3)

yn2 =(I + δtWL)n2−n1yn1

− δt

α

n2−n1−1∑
n=0

(I + δtWL)n
 s∑

j=1

1

bj
WjBBTWT

j

 [(I + δtWL)T ]n
λn2

.

Furthermore, setting n1 = (ℓ − 1)M , n2 = ℓM and introducing the notation Yℓ := yℓM and
Λℓ := λℓM into (3.1) and (3.3) yields

Y0 = y0

−PδtYℓ−1 + Yℓ +
1

α
RδtΛℓ = 0, 1 ≤ ℓ ≤ L,(3.4)

Λℓ−1 − PT
δtΛℓ = 0, 2 ≤ ℓ ≤ L,(3.5)

−YL + ΛL = −ytg,(3.6)

where

Pδt := (I + δtWL)M ,(3.7)

Rδt := δt

M−1∑
n=0

(I + δtWL)n
 s∑

j=1

1

bj
WjBBTWT

j

 [(I + δtWL)T ]n.(3.8)

In matrix form, this system reads

(3.9) MδtX = f ,

with

Mδt :=



I 0

−Pδt
. . . Rδt/α

. . .
. . .

. . .
. . . 0

−Pδt I Rδt/α
I −PT

δt
. . .

. . .

. . . −PT
δt

−I I


, X :=



Y0

...

...
YL

Λ1

...

...
ΛL


, f :=



yin
0

...

0
−ytg


.

The matrix blocks Pδt and Rδt can be interpreted as follows.
• Pδt represents the forward propagator that maps Yi to the discrete Runge-Kutta approximation
of y(Ti+1) in the following initial value problem:

ẏ = Ly on [Ti, Ti+1], y(Ti) = Yi.

Note that this continuous problem can be solved explicitly to give

(3.10) y(t) = e(t−Ti)LYi =⇒ y(Ti+1) = e∆TLYi =: P0Yi,

where ∆T = Ti+1 − Ti. Here, the notation etL denotes the matrix exponential operator of tL,
so that etLYi is defined by

etL Yi =

∞∑
n=0

1

n!
(tL)nYi.

• PT
δt, the transpose of Pδt, can be interpreted as a discretization of the backward propagator

that maps the adjoint Λi+1 to the discrete Runge-Kutta approximation of λ(Ti) in the adjoint
problem

λ̇ = −LTλ on [Ti, Ti+1], λ(Ti+1) = Λi+1,

provided that the optimal control conditions in Table 1 are satisfied, see [17]. This continuous
problem has an exact solution given by

(3.11) λ(t) = e(Ti+1−t)LT

Λi+1 =⇒ λ(Ti) = e∆TLT

Λi+1 = PT
0 Λi+1.
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•
T0 = 0

•
TL = T

•
T1

•
Tℓ−1

•
Tℓ

∆T = N∆t, ∆T = Mδt

•
TL−1

CPU 1 CPU ℓ CPU L

•
Tℓ = tℓM

•
Tℓ+1 = t(ℓ+1)M

•

∆t

• •

∆t = N0δt

• •

∆t

• ••

δt

• •

δt

•

δt

Fig. 1. Hierarchy of the time parallel discretization: sub-intervals [Tℓ, Tℓ+1] of length ∆T , coarse grid with
time step ∆t and finally fine grid with time step δt.

• Rδt represents the backward-forward propagator that maps Λi+1, the adjoint at Ti+1, to the
discrete Runge-Kutta approximation of −y(Ti+1) in the following coupled forward-backward
problem:

ẏ = Ly − BBTλ on [Ti, Ti+1], y(Ti) = 0,

λ̇ = −LTλ on [Ti, Ti+1], λ(Ti+1) = Λi+1.

This problem is of the same form as (2.4), but constrained to the interval [Ti, Ti+1] and with
α = 1; since the problem is linear in Λi+1, an explicit division by α as in (3.4) brings us back
to the correct operator for the original problem. By substituting the exact solution for λ(t) in
(3.11), we can integrate the ODE in y to obtain

y(t) = −
∫ t

Ti

e(t−τ)LBBTλ(τ) dτ = −
∫ t−Ti

0

e(t−Ti−τ)LBBTλ(τ + Ti) dτ

which implies

(3.12) −y(Ti+1) =

(∫ ∆T

0

e(∆T−τ)LBBT e(∆T−τ)LT

dτ

)
Λi+1 =: R0Λi+1.

Note that R0 is symmetric positive semi-definite (and possibly positive definite), just like Rδt.
In order to solve (3.9) numerically, we consider another time step ∆t with ∆T = N∆t such

that δt ≤ ∆t ≤ ∆T as shown on Figure 1. Applying the ParaOpt (see [14]) to (3.9) gives the
following iterative linear solver

(3.13) M∆t

(
Xk+1 −Xk

)
= f −MδtX

k,

or equivalently

(3.14) Xk+1 = M−1
∆t (M∆t −Mδt)X

k +M−1
∆t f .

The matrix M∆t is defined the same way as Mδt, except that its constitutive blocks P∆t and R∆t

are obtained via a discretization with time step size ∆t instead of δt. If the iterative method (3.14)
converges to a vector X, then we have

X =
(
I −M−1

∆tMδt

)
X +M−1

∆t f ⇐⇒ M−1
∆tMδtX = M−1

∆t f ,

meaning that the matrix M∆t is a preconditioner for solving the linear system (3.9). Consequently,
when ∆t equals δt, we have M∆t = Mδt, and the iteration (3.14) becomes a direct solver for the
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linear system (3.9). In the more general case where δt < ∆t, a convergence analysis is presented
in section 4.

The computational cost of solving (3.14) at each iteration is, of course, affected by the numerical
method considered, in the expected sense, i.e., for a given δt, the numerical solution of the evolution
equations involved in the problem will be, for example, twice as costly for an second order Runge–
Kutta method as for an Euler method. A related question is whether one can exploit the structure
of specific discretizations to speed up the computation of the matrix-vector product with M∆t

or the construction of the preconditioner, using for example diagonalization or spectral deferred
correction techniques [13, 6]. However, this question goes beyond the scope of our article, since
the answer will depend specifically on the discretization scheme in consideration; a detailed study
will be the subject of future work.

4. Convergence factor analysis. In this section, we analyze of the convergence factor of
(3.14) by estimating the operator norm of the iteration matrix M−1

∆t (M∆t −Mδt). To do so, we
must first define the vector space on which this matrix acts, as well as the vector norm on this
space. Let us introduce the discrete vector spaces E0 and E1, defined by

Ei := {Y = (Yℓ)ℓ=i,...,L : Yℓ ∈ Rr, ∥Y ∥2∆T = ∆T

L∑
ℓ=i

∥Yℓ∥2} for i = 0 or 1.

We consider each element of Ei to be a block column vector and write E := E0 × E1. Given the
structure of the matrices Mδt and M∆t, one readily sees that the first and the last block rows of

the matrix M∆t −Mδt vanish. In other words, if X =

(
Y
Λ

)
∈ E lies in the range of M∆t −Mδt,

then its first and last block rows must vanish, meaning that Y0 = ΛL = 0. Thus, if we let Π be the

projector on E defined by Π

(
Y
Λ

)
:= (0, Y T

1 , . . . , Y T
L ,ΛT

1 , . . . ,Λ
T
L−1, 0)

T , we obtain

(4.1) M−1
∆t(M∆t −Mδt) = M−1

∆tΠ(M∆t −Mδt).

Let us endow the vector space E with the following weighted L2-norm ∥.∥∗

(4.2) ∥X∥2∗ = ∥Y ∥2∆T + α−2 ∥Λ∥2∆T = ∆T

(
L∑

ℓ=0

∥Yℓ∥2 + α−2
L∑

ℓ=1

∥Λℓ∥2
)
,

where the purpose of the α-dependent weighting will be apparent later. The corresponding matrix
norm is then given by

∥M∆t∥∗ = inf {σ ∈ R : ∥M∆tX∥∗ ≤ σ ∥X∥∗ ∀X ∈ E} .

Our convergence analysis will require the following two ingredients, whose derivation will be the
content of the next two subsections.
1. Truncation error estimates: We use the order conditions in Table 1 to obtain bounds on ∥Pδt−

P0∥ and ∥Rδt − R0∥ as a function of δt. We can then use the triangle inequality to estimate
∥∆P∥ and ∥∆R∥, where ∆P := P∆t −Pδt and ∆R := R∆t −Rδt. This in turn can be used to
estimate ∥M∆t −Mδt∥∗, since the only blocks that appear in this difference matrix are scalar
multiples of ∆P and ∆R.

2. Stability estimate: we first estimate
∥∥M−1

∆tΠ
∥∥
∗. Then from (4.1), we deduce that

∥M−1
∆t(M∆t −Mδt)∥∗ ≤

∥∥M−1
∆tΠ

∥∥
∗ ∥M∆t −Mδt∥∗ ,

which, when combined with step 1, immediately yields a convergence estimate for ParaOpt.

4.1. Truncation error estimates. Our first task is to estimate the local truncation errors
Pδt−P0 and Rδt−R0 as a function of δt. Our argument is essentially based on [17], but with two
major differences:
• In [17], Hager shows that the local truncation error is bounded by cδtp with a constant c that

depends on the exact solution and its derivatives, without explicitly specifying these dependen-
cies. Here, we show explicitly how the truncation error depends on the initial data Yi or final
data Λi+1, which enables us to bound the operator norms of Pδt − P0 and Rδt −R0.

• In [17], Hager considers a general problem of convex minimization under nonlinear ODE con-
straints, so additional assumptions are needed to ensure well-posedness and regularity of the
solution. Here, we exploit the linear-quadratic structure of the problem, so these assumptions
are automatically satisfied. Moreover, we have explicit formulas for the exact solution, which
further simplify our proof.
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Theorem 4.1. Let T > 0. For any ∆T ∈ (0, T ], let Pδt, Rδt, P0 and R0 be defined as in
(3.7), (3.8), (3.10) and (3.12) respectively. If the Runge-Kutta method (RK) satisfies both the IVP
and optimal control order conditions in Table 1 up to order p, then there exist constants cP > 0
and cR > 0, which are independent of δt and ∆T (but can depend on T , L, etc.), such that

(4.3) ∥Pδt − P0∥ ≤ cPδt
p and ∥Rδt −R0∥ ≤ cRδtp,

where ∥ · ∥ denotes the spectral norm, i.e., the operator norm associated with the Euclidean norm
in Rr.

Proof. Since the ODE system is time-invariant, we can assume without loss of generality that
we are working with the time sub-interval [0,∆T ], where ∆T = Mδt. For given Y0,Λ∆T ∈ Rr, we
define

y∗(t) = etLY0 −
(∫ t

0

e(t−τ)LBBT e(∆T−τ)LT

dτ

)
Λ∆T ,

λ∗(t) = e(∆T−t)LT

Λ∆T ,

so that

y∗(∆T ) =

{
P0Y0 if Λ∆T = 0,

−R0Λ∆T if Y0 = 0.

Then z(t) :=

(
y∗(t)
λ∗(t)

)
is the solution of the initial value problem

(4.4) ż(t) =

[
L −BBT

0 −LT

]
z(t), z(0) =

(
Y0

e∆TLT

Λ∆T

)
.

Let tk = kδt. By [17, §3], the Runge-Kutta method (2.11), (2.12) can be written in the form

zk+1 = zk + δt

s∑
i=1

bigi(tk, zk, δt),

where gi is the ith stage of the Runge-Kutta method; note that each gi is linear in zk, since the
problem (4.4) is linear. We now define

ζk(δt) := z(tk) + δt

s∑
i=1

bigi(tk, z(tk), δt),

so that the local truncation error can be written as

τk(δt) :=
1

δt
(z(tk+1)− ζk(δt)).

A standard argument (cf. [19, §II.3]) then gives the error estimate

∥z(tk)− zk∥ ≤ eK∆T

(
∥z(0)− z0∥+∆T max

0≤ℓ≤k−1
∥τℓ(δt)∥

)
≤ eKT

(
∥z(0)− z0∥+ T max

0≤ℓ≤k−1
∥τℓ(δt)∥

)
,

(4.5)

where K > 0 is a Lipschitz constant for the gi with respect to the second argument, which is
independent of z(0) in our case because the problem (4.4) is linear. It remains to show that

(4.6) ∥τk(δt)∥ ≤ δtp(C1∥Y0∥+ C2∥Λ∆T ∥) for all 0 ≤ k ≤ ∆T/δt = N0,

from which we immediately deduce the bounds (4.3) by letting Λ∆T = 0 and Y0 = 0 respectively.
To prove (4.6), we compare the Taylor expansions

z(tk+1) = z(tk + δt) = z(tk) + δtz′(tk) + · · ·+ δtp

p!
z(p)(tk) + · · · ,

ζk(δt) = ζk(0) + δtζ ′k(0) + · · ·+ δtp

p!
ζ
(p)
k (0) + · · · .
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Since τk = O(δtp) by the order conditions, we deduce that z(q)(tk) = ζ(q)(0) for q = 0, 1, . . . , p. By
expanding δtτk(δt) = z(tk+1)− ζk(δt) up to order p− 1 and writing the pth order remainder term
in integral form, we deduce that

∥τk(δt)∥ =
∥z(tk + δt)− ζk(δt)∥

δt
=

1

δt

∥∥∥∥∥
∫ δt

0

z(p)(tk + η)− ζ
(p)
k (η)

(p− 1)!
(δt− η)p−1 dη

∥∥∥∥∥
≤ δtp−2

(p− 1)!

∫ δt

0

∥z(p)(tk + η)− ζ(p)(η)∥ dη

≤ δtp−2

(p− 1)!

(∫ δt

0

∥z(p)(tk + η)− z(p)(tk)∥ dη +

∫ δt

0

∥ζ(p)(η)− ζ(p)(0)∥ dη

)
.(4.7)

Let A be the matrix that multiplies z(t) in (4.4). Then for any integer q ≥ 0, we can write

z(q)(tk + η) = Aqz(tk + η) = Aqe(tk+η)Az(0).

By letting q = p+1, we see that z(p)(tk + η) is differentiable, and therefore Lipschitz with respect
to η, so there exists K1 > 0 such that ∥z(p)(tk + η) − z(p)(tk)∥ ≤ K1η∥z(0)∥ for all 0 ≤ η ≤ δt.

Similarly, when δt is small enough, ζ
(p)
k (η) is a rational function of η, since ζk(δt) is the solution

of a linear system of the form (2.6b), with δt entering linearly into the coefficients of the linear

system. Moreover, ζ
(p)
k (η) is defined everywhere on [0, δt], and is thus Lipschitz there; it is also

linear in z(tk), so there exists K2 > 0 such that ∥ζ(p)(η)−ζ(p)(0)∥ ≤ K2η∥z(tk)∥ = K2η∥etkAz(0)∥
for all 0 ≤ η ≤ δt. Substituting these inequalities into (4.7) leads to the required inequality

∥τk(δt)∥ ≤ Cδtp∥z(0)∥ ≤ δtp(C1∥Y0∥+ C2∥Λ∆T ∥),

where C1 and C2 can be made independent of ∆T by taking the maximum over all ∆T ∈ (0, T ].
Finally, to bound ∥z(0)− z0∥, we note that since the first component of z0 is exact, we have

∥z(0)− z0∥ = ∥e∆TLT

Λ∆T − λ0∥,

where λ0 is obtained by a pth order Runge-Kutta method applied to the backward linear ODE
λ̇ = −LTλ, λ(∆T ) = Λ∆T . It follows that λ0 is linear in Λ∆T , and since we use exact final
conditions to compute λ0, a similar argument to the above shows that

∥e∆TLT

Λ∆T − λ0∥ ≤ C3δt
p∥Λ∆T ∥

for some C3 > 0, where we can again make C3 independent of ∆T (but still dependent on T ).
Substituting this and (4.7) into (4.5) with k = M yields∥∥∥∥(y∗(∆T )− yM

λ∗(∆T )− λM

)∥∥∥∥ = ∥z(tM )− zM∥ ≤ δtp
(
eK∆TC1∆T∥Y0∥+ eK∆T (C2∆T + C3)∥Λ∆T ∥

)
≤ δtp

(
eKTC1T︸ ︷︷ ︸

cP

∥Y0∥+ eKT (C2T + C3)︸ ︷︷ ︸
cR

∥Λ∆T ∥
)
,

with cP and cR independent of ∆T . We finally obtain the bounds (4.3) by letting either Y0 = 0
or Λ∆T = 0.

Next, we define the operators

∆P := P∆t − Pδt, and ∆R := R∆t −Rδt,

which appear as subblocks of the matrix Mδt −M∆t. We recall that δt and ∆t are the fine and
coarse time steps and that ∆t = N0δt for some integer N0 ≥ 2, so that the fine grid can be viewed
as a refinement of the coarse grid. Then by the triangle inequality, we have

(4.8) ∥∆P∥ ≤ ∥P∆t − P0∥+ ∥Pδt − P0∥ ≤ cP(∆tp + δtp) ≤ 2cP∆tp,

and similarly for ∥∆R∥. The following theorem allows us to bound the norm of Mδt −M∆t.

Theorem 4.2. Let ∆T be fixed. Let M∆t and Mδt be the ParaOpt matrices (3.9) obtained
from the system (3.4)–(3.8) with time steps ∆t and δt respectively. Then there exists cM > 0
independent of ∆t and N0 such that

∥M∆t −Mδt∥∗ ≤ cM∆tp.
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Proof. Let X,E ∈ E with

X =

(
Y
Λ

)
and E =

(
F
G

)
,

for some F ∈ Rr(L+1) and G ∈ RrL such that (M∆t −Mδt)X = E. We will bound ∥E∥∗ in terms
of ∥X∥∗. Writing the block rows of (M∆t − Mδt)X = E explicitly leads to the componentwise
system

F0 = 0,

−∆PYℓ−1 +
1

α
∆RΛℓ = Fℓ, ℓ = 1, . . . , L,(4.9)

−∆PTΛℓ+1 = Gℓ, ℓ = 1, . . . , L− 1,(4.10)

GL = 0.

Taking norms in (4.10) and using the definition of matrix norms immediately yields

(4.11) ∥Gℓ∥2 ≤ ∥∆P∥2 ∥Λℓ+1∥2 , ℓ = 1, . . . , L− 1.

Doing the same for (4.9) and applying the triangle inequality, we get, for ℓ = 1, . . . , L,

∥Fℓ∥ ≤ ∥∆P∥ ∥Yℓ−1∥+ α−1 ∥∆R∥∥Λℓ∥ .

Taking squares on both sides then yields

∥Fℓ∥2 ≤ ∥∆P∥2 ∥Yℓ−1∥2 + α−2 ∥∆R∥2 ∥Λℓ∥2 + 2α−1 ∥∆P∥ ∥∆R∥∥Yℓ−1∥ ∥Λℓ∥ .

We now bound the last term on the right hand side using the arithmetic-geometric mean inequality

2α−1 ∥∆P∥ ∥∆R∥∥Yℓ−1∥ ∥Λℓ∥ ≤ ∥∆R∥2 ∥Yℓ−1∥2 + α−2 ∥∆P∥2 ∥Λℓ∥2

in order to obtain

(4.12) ∥Fℓ∥2 ≤
(
∥∆P∥2 + ∥∆R∥2

)(
∥Yℓ−1∥2 + α−2 ∥Λℓ∥2

)
.

We now have all the ingredients for bounding ∥E∥2∗, which by definition (4.2) is given by

∥E∥2∗ = ∥F∥2∆T + α−2∥G∥2∆T = ∆T

(
L∑

ℓ=0

∥Fℓ∥2 + α−2
L∑

ℓ=1

∥Gℓ∥2
)
.

The terms in F can be bounded using (4.12):

L∑
ℓ=1

∥Fℓ∥2 ≤
(
∥∆P∥2 + ∥∆R∥2

) L∑
ℓ=1

(
∥Yℓ−1∥2 + α−2 ∥Λℓ∥2

)
,

which, together with F0 = 0, implies that
(4.13)

∥F∥2∆T ≤ ∆T
(
∥∆P∥2 + ∥∆R∥2

)( L∑
ℓ=0

∥Yℓ∥2 + α−2
L∑

ℓ=1

∥Λℓ∥2
)

=
(
∥∆P∥2 + ∥∆R∥2

)
∥X∥2∗.

Similarly, we can bound the terms in G using (4.11) and the fact that GL = 0:

(4.14) ∥G∥2∆T ≤ ∥∆P∥2 ∆T

L−1∑
ℓ=1

∥Λℓ+1∥2 ≤ ∥∆P∥2 ∆T

L∑
ℓ=1

∥Λℓ∥2 = ∥∆P∥2 ∥Λ∥2∆T .

Combining (4.13) and (4.14) therefore leads to

∥E∥2∗ = ∥F∥2∆T + α−2 ∥G∥2∆T

≤
(
∥∆P∥2 + ∥∆R∥2

)
∥X∥2∗ + α−2 ∥∆P∥2 ∥Λ∥2∆T

≤
(
2 ∥∆P∥2 + ∥∆R∥2

)
∥X∥2∗ .

But thanks to Theorem 4.1 and the triangle inequality, we know that (cf. (4.8))

∥∆P∥ ≤ 2cP∆tp, ∥∆R∥ ≤ 2cR∆tp.

Hence, by defining cM =
√
8c2P + 4c2R, we can write

∥E∥∗ = ∥(M∆t −Mδt)X∥∗ ≤ cM∆tp∥X∥∗

which finally leads us to conclude that ∥(M∆t −Mδt)∥∗ ≤ cM∆tp, as required.
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4.2. Stability estimate. We keep the notation of the previous section and now turn our
attention to bounding

∥∥M−1
∆tΠ

∥∥
∗. Let X = M−1

∆tΠE, where X,E ∈ E satisfy

X =

(
Y
Λ

)
and ΠE =

(
F
G

)
with F0 = GL = 0.

In other words, we have M∆tX = ΠE, and we wish to bound ∥X∥∗ in terms of ∥ΠE∥∗, which is
always less than or equal to ∥E∥∗. Using the definition of M∆t in (3.9), we can write down the
block rows of M∆tX = ΠE explicitly to obtain the componentwise system

Y0 = 0,(4.15)

−P∆tYℓ−1 + Yℓ + α−1R∆tΛℓ = Fℓ, ℓ = 1, . . . , L,(4.16)

Λℓ−1 − PT
∆tΛℓ = Gℓ−1, ℓ = 2, . . . , L,(4.17)

ΛL − YL = 0.(4.18)

We first show that one can transform (4.15)–(4.18) into an equivalent system involving YL as the
only unknown.

Lemma 4.3. Let (Yℓ)
L
ℓ=0 and (Λℓ)

L
ℓ=1 satisfy (4.15)–(4.18). Then for ℓ = 1, . . . , L, we have

Λℓ =
(
PT
∆t

)L−ℓ
YL +

L−1∑
j=ℓ

(
PT
∆t

)j−ℓ
Gj ,(4.19)

Yℓ =
ℓ∑

j=1

Pℓ−j
∆t

Fj − α−1R∆t

(PT
∆t

)L−j
YL +

L−1∑
k=j

(
PT
∆t

)k−j
Gk

 ,(4.20)

where YL satisfies the equation (I + α−1U)YL = S with

U =

L∑
ℓ=1

PL−ℓ
∆t R∆t(PT

∆t)
L−ℓ, S =

L∑
ℓ=1

PL−ℓ
∆t

Fℓ − α−1
L−1∑
j=ℓ

R∆t

(
PT
∆t

)j−ℓ
Gj

 .(4.21)

Moreover, we have ∥YL∥ ≤ ∥S∥.
Proof. The recurrence (4.17) can be unrolled to obtain

ΛL−1 = GL−1 + PT
∆tΛL

ΛL−2 = GL−2 + PT
∆t(GL−1 + PT

∆tΛL)

...

Λℓ = (PT
∆t)

L−ℓΛL +

L−1∑
j=ℓ

(PT
∆t)

j−ℓGj , ℓ = 1, . . . , L− 1.

Replacing ΛL in the above by YL, which is equal to ΛL by (4.18), yields the expression (4.19),
which is also valid for ℓ = L because the sum would be empty in this case. Next, we solve the
forward recurrence (4.16) starting from Y0 = 0 to obtain

(4.22) Yℓ =

ℓ∑
j=1

Pℓ−j
∆t (Fj − α−1R∆tΛj), ℓ = 1, . . . , L.

Substituting the expression of Λj from (4.19) into the above leads to (4.20). In particular, when
ℓ = L, we get

YL =

L∑
j=1

PL−j
∆t

Fj − α−1R∆t

(PT
∆t

)L−j
YL +

L−1∑
k=j

(
PT
∆t

)k−j
Gk

 .

Moving all terms containing YL to the left-hand side leads to the system (I+α−1U)YL = S, with U
and S as defined in (4.21). Finally, since R∆t is symmetric positive semi-definite (see the sentence
immediately after (3.12)), so is U ; we thus have

∥YL∥2 ≤ ⟨YL, YL⟩+ α−1⟨YL,UYL⟩ = ⟨YL, S⟩ ≤ ∥YL∥ ∥S∥.

Dividing both sides by ∥YL∥ leads to ∥YL∥ ≤ ∥S∥, as required.
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We will also need the following lemma.

Lemma 4.4. Let T > 0 be fixed. Then for all 0 ≤ ∆T ≤ T and ∆t > 0 small enough, there
exist positive constants C1, C2 independent of ∆T (but which can depend on T ) such that

(4.23) ∥P∆t∥ ≤ 1 + C1∆T and ∥R∆t∥ ≤ C2∆T .

Proof. We start by proving that there exists C0 > 0 such that ∥P0∥ ≤ 1 + C0∆T . Indeed, by
Definition (3.10), we have P0y0 = y(∆T ), where y(t) is the solution of ẏ = Ly, y(0) = y0. We
therefore have

P0y0 = y0 +

∫ ∆T

0

ẏ(t) dt = y0 +

∫ ∆T

0

Ly(t) dt.

But y(t) = etLy0, so ∥Ly(t)∥ can be bounded uniformly by C0∥y0∥ with C0 = maxt∈[0,T ] ∥LetL∥.
We therefore have

∥P0y0∥ ≤ ∥y0∥+ C0∆T∥y0∥,
which implies ∥P0∥ ≤ 1+C0∆T . In fact, by replacing ∆T with a general t in P0 = e∆TL, we have
actually shown that ∥etL∥ ≤ 1 + C0t for all 0 ≤ t ≤ T (where C0 depends on T ), a fact that will
be used to bound ∥R∆t∥ later.

We now recall the result of Theorem 4.1, which asserts that ∥P∆t − P0∥ ≤ cP∆tp for some
constant cP . By choosing ∆t small enough such that cP∆tp ≤ C0∆T , we obtain

∥P∆t∥ ≤ ∥P0∥+ ∥P∆t − P0∥ ≤ 1 + 2C0∆T ,

which is the first bound in (4.23) with C1 = 2C0. For the bound on ∥R∆t∥, we again go through
∥R0∥, which by Definition (3.12) is given by

R0 =

∫ ∆T

0

e(∆T−τ)LBBT e(∆T−τ)LT

dτ =

∫ ∆T

0

eτLBBT eτL
T

dτ.

Having shown earlier that ∥etL∥ ≤ 1 + C0t for all 0 ≤ t ≤ T , we deduce

∥R0∥ ≤ ∥BBT ∥
∫ ∆T

0

(1 + C0t)
2 dτ

= ∥BBT ∥ · (1 + C0∆T )3 − 1

3C0
= ∆T∥BBT ∥

(
1 + C0∆T +

C2
0∆T 2

3

)
.

We therefore have ∥R0∥ ≤ K∆T with K = ∥BBT ∥
(
1 + C0T + 1

3C
2
0T

2
)
. Finally, we choose ∆t

small enough so that cR∆tp ≤ K∆T , where cR is defined in Theorem 4.1. This theorem then
allows us to conclude that

∥R∆t∥ ≤ ∥R0∥+ ∥R∆t −R0∥ ≤ 2K∆T ,

so the second bound in (4.23) holds with C2 = 2K.

We are now ready to state and prove the following theorem.

Theorem 4.5. Let ∆T = T/L and α > 0 be given. Then, there exists cM−1 > 0 independent
of ∆t such that ∥∥M−1

∆tΠ
∥∥
∗ ≤ cM−1

∆T
(1 + α−1).

Proof. The proof consists of three steps.

1. Estimation of ∥YL∥ in Lemma 4.3. By Lemma 4.3, it suffices to estimate ∥S∥ for the vector S
defined in (4.21). We first observe that S = S1 + α−1S2, where

S1 :=

L∑
ℓ=1

PL−ℓ
∆t Fℓ, and S2 := −

L∑
ℓ=1

L−1∑
j=ℓ

PL−ℓ
∆t R∆t

(
PT
∆t

)j−ℓ
Gj .

To bound ∥S1∥, we use the first inequality in (4.23) and then the Cauchy-Schwarz inequality to
obtain

∥S1∥ ≤
L∑

ℓ=1

∥P∆t∥L−ℓ ∥Fℓ∥

≤

(
L∑

ℓ=1

(1 + C1∆T )2(L−ℓ)

)1/2( L∑
ℓ=1

∥Fℓ∥2
)1/2

=

(
(1 + C1∆T )2L − 1

(1 + C1∆T )2 − 1

)1/2 ∥F∥∆T

∆T 1/2
.
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Applying the inequality 1 + C1∆T ≤ eC1∆T to the numerator, we deduce that

∥S1∥ ≤
(

e2C1L∆T − 1

2C1∆T 2 + C2
1∆T 3

)1/2

∥F∥∆T ≤ 1

∆T

(
e2C1T − 1

2C1

)1/2

∥F∥∆T .

We now bound S2 again using (4.23) and Cauchy-Schwarz:

∥S2∥ ≤ ∥R∆t∥
L∑

ℓ=1

L−1∑
j=ℓ

∥P∆t∥L−ℓ ∥∥PT
∆t

∥∥j−ℓ ∥Gj∥

≤ C2∆T

 L∑
ℓ=1

L−1∑
j=ℓ

(1 + C1∆T )2(L+j−2ℓ)

1/2 L∑
ℓ=1

L−1∑
j=ℓ

∥Gj∥2
1/2

≤ C2∆T

 L∑
ℓ=1

L∑
j=1

(1 + C1∆T )4(L−ℓ)

1/2 L∑
ℓ=1

L∑
j=1

∥Gj∥2
1/2

= C2∆TL

(
L∑

ℓ=1

(1 + C1∆T )4(L−ℓ)

)1/2
 L∑

j=1

∥Gj∥2
1/2

= C2T

(
(1 + C1∆T )4L − 1

(1 + C1∆T )4 − 1

)1/2 ∥G∥∆T

∆T 1/2

≤ C2T

∆T

(
e4C1T − 1

4C1

)1/2

∥G∥∆T .

Finally, combining the bounds for ∥S1∥ and ∥S2∥ yields

(4.24) ∥YL∥ ≤ ∥S∥ ≤ cS
∆T

(
∥F∥∆T + α−1 ∥G∥∆T

)
,

where cS = max

{(
e2C1T − 1

2C1

) 1
2

, C2T

(
e4C1T − 1

4C1

) 1
2

}
.

2. Estimation of ∥Λℓ∥ and ∥Yℓ∥ in Lemma 4.3. From (4.19), we get

∥Λℓ∥ ≤
∥∥PT

∆t

∥∥L−ℓ ∥YL∥+
L−1∑
j=ℓ

∥∥PT
∆t

∥∥j−ℓ ∥Gj∥

≤ (1 + C1∆T )L−ℓ∥YL∥+
L−1∑
j=ℓ

(1 + C1∆T )j−ℓ∥Gj∥

≤ (1 + C1∆T )L−ℓ∥YL∥+
L∑

j=1

(1 + C1∆T )L−ℓ∥Gj∥

(∗)
≤ (1 + C1∆T )L−ℓ

∥YL∥+ L1/2
( L∑
j=1

∥Gj∥2
)1/2

= (1 + C1∆T )L−ℓ

(
∥YL∥+

T 1/2

∆T
∥G∥∆T

)
,(4.25)

where the inequality (∗) is due to Cauchy-Schwarz. Likewise, from (4.22) we get

∥Yℓ∥ ≤
ℓ∑

j=1

∥∥PT
∆t

∥∥ℓ−j ∥Fj∥+ α−1 ∥R∆t∥
ℓ∑

j=1

∥∥PT
∆t

∥∥ℓ−j ∥Λj∥

≤
ℓ∑

j=1

(1 + C1∆T )ℓ−j ∥Fj∥+ α−1C2∆T

ℓ∑
j=1

(1 + C1∆T )L+ℓ−2j

(
∥YL∥+

T 1/2

∆T
∥G∥∆T

)

≤
L∑

j=1

(1 + C1∆T )L−j ∥Fj∥+ α−1C2∆T

(
∥YL∥+

T 1/2

∆T
∥G∥∆T

) L∑
j=1

(1 + C1∆T )2(L−j).
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Just as in the calculation for bounding ∥S1∥, we have

L∑
j=1

(1 + C1∆T )2(L−j) ≤ e2C1T − 1

2C1∆T
≤ cS

∆T
,

from which we deduce that

∥Yℓ∥ ≤
c
1/2
S
∆T

∥F∥∆T + α−1C2cS

(
∥YL∥+

T 1/2

∆T
∥G∥∆T

)
.

Applying the inequality (a+ b)2 ≤ 2(a2 + b2) then gives

(4.26) ∥Yℓ∥2 ≤ 2cS

∆T 2 ∥F∥2∆T + 2α−2C2
2c

2
S

(
∥YL∥+

T 1/2

∆T
∥G∥∆T

)2

.

3. Estimation of ∥X∥∗ =
∥∥M−1

∆tΠE
∥∥
∗. By the definition of ∥·∥∗, we have

∥X∥2∗ = ∥Y ∥2∆T + α−2∥Λ∥2∆T = ∆T

(
L∑

ℓ=0

∥Yℓ∥2 + α−2
L∑

ℓ=1

∥Λℓ∥2
)
.

Substituting (4.25) and (4.26) into the above leads to

∥X∥2∗ ≤ 2cSL

∆T
∥F∥2∆T +

(
∥YL∥+

T 1/2

∆T
∥G∥∆T

)2
(
2L∆Tα−2C2

2c
2
S + α−2∆T

L∑
ℓ=1

(1 + C1∆T )2(L−ℓ)

)

≤ 2TcS

∆T 2 ∥F∥2∆T + α−2

(
∥YL∥+

T 1/2

∆T
∥G∥∆T

)2

(2TC2
2c

2
S + cS).

Inserting the bound (4.24) into the above then gives

∥X∥2∗ ≤ 2TcS

∆T 2 ∥F∥2∆T + (2TC2
2c

2
S + cS)

(
α−1cS
∆T

∥F∥∆T +
α−1T 1/2 + α−2cS

∆T
∥G∥∆T

)2

Applying once more the inequality (a+ b)2 ≤ 2(a2 + b2) and simplifying, we obtain

∥X∥2∗ ≤ ∥F∥2∆T

∆T 2

(
2TcS + 2α−2c3S + 4α−2TC2

2c
4
S
)

+
α−2∥G∥2∆T

∆T 2

(
4TcS + 4α−2c3S + 8α−2TC2

2c
4
S + 8T 2C2

2c
2
S
)

≤ ∥F∥2∆T + α−2∥G∥2∆T

∆T 2 · 4cS(1 + 2TC2
2cS)

(
T + α−2c2S

)
≤ K2(T 1/2 + α−1cS)

2∥E∥2∗
∆T 2 ,

where K2 = 4cS(1 + 2TC2
2cS). Taking square roots finally yields

∥X∥∗ =
∥∥M−1

∆tΠE
∥∥
∗ ≤ cM−1

∆T
(1 + α−1) ∥E∥∗ ,

with cM−1 = max{KT 1/2,KcS}, as required.
The main theorem of this paper is now simply a consequence of the results proven above.

Theorem 4.6. Let α > 0 be fixed, and suppose that the interval [0, T ] is subdivided into L
subintervals of length ∆T , which is then further discretized with step sizes δt and ∆t that are
sufficiently small. If a Runge-Kutta method (RK) satisfying both the IVP and optimal control
conditions of order p is used to form the matrices M∆t and Mδt, then there exists a constant
cρ > 0 independent of δt, ∆t, ∆T and α such that the convergence factor ρ of the iteration matrix
M−1

∆t(M∆t −Mδt) satisfies

(4.27) ρ ≤ cρ(1 + α−1)

∆T
∆tp.
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Proof. Since the spectral radius is smaller than any operator norm, we have

ρ ≤ ∥M−1
∆t(M∆t −Mδt)∥∗ = ∥M−1

∆tΠ(M∆t −Mδt)∥∗ ≤ ∥M−1
∆tΠ∥∗∥M∆t −Mδt∥∗.

The result then follows directly from Theorems 4.2 and 4.5 if we define cρ := cMcM−1 .

Remark 4.7. Note that two different Runge-Kutta methods can be used for the coarse and
fine solvers. As an example, let us consider two different Runge-Kutta methods RK1 and RK2

(see (RK)) that satisfy both IVP and the optimal control conditions up to orders p and q, re-
spectively. Without loss of generality, we can use RK1 and RK2 to discretize the optimal control
problem (2.5) on the fine and coarse grids, respectively. As a result, (4.3) holds for each grid and,
for κ = min{p, q}, we derive the estimate corresponding to (4.8) as follows

∥∆P∥ ≤ ∥P∆t − P0∥+ ∥Pδt − P0∥ ≤ cP (∆tq + δtp) ≤ 2cP∆tκ,

similarly for ∥∆R∥. Consequently, the truncation error estimate of Theorem 4.2 becomes

(4.28) ∥M∆t −Mδt∥∗ ≤ cM∆tκ,

and the stability estimate of Theorem 4.5 continues to hold. Hence, under the assumptions of
Theorem 4.6, the convergence factor ρ of the iteration matrix M−1

∆t (M∆t −Mδt) satisfies

(4.29) ρ ≤ cρ(1 + α−1)

∆T
∆tκ.

Remark 4.8. In order to obtain good speedup in practical implementations, one should choose
a coarse discretization in time that is much cheaper to integrate than the fine discretization, so
as to reduce the cost of computing matrix-vector products with P∆t, PT

∆t and R∆t. This can
be done by either increasing the time step size ∆t, or by reducing the order of the integrator.
Moreoever, the preconditioning step requires solving a linear system with M∆t: this should not
be done by assembling and factoring the matrix explicitly, but by using an inner preconditioned
iteration instead, see for instance [3] for details.

Remark 4.9. The estimate (4.27) holds for an arbitrary choice of ∆t and δt, as long as δt ≤ ∆t.
In the specific but relatively common case of δt = ∆t/N0 with N0 ≥ 2, Theorem A.1 shows
that ∥∆P∥ ≤ cP(∆t − δt)∆tp−1 and ∥∆R∥ ≤ cR(∆t − δt)∆tp−1. Therefore, the error estimate
in Theorem 4.2 can be refined to give ∥M∆t −Mδt∥ ≤ cM(∆t − δt)∆tp−1, which leads to the
following tighter estimate of the convergence factor

(4.30) ρ ≤ cρ(1 + α−1)

∆T
(∆t− δt)∆tp−1.

One can derive a similar estimate for the case when different sets of coefficients in (RK) are used
for the fine and coarse grids.

Remark 4.10. Using arguments similar to the proof of Theorem 4.2 and Theorem 4.5, we
can show that the condition number of M∆t with respect to the norm ∥ · ∥∗ is bounded by
γ(1 + α−1)2/∆T , where γ is a constant that depends on L and T , but not on ∆t and ∆T . The
details of the proof can be found in Theorem A.2.

5. Numerical results. In this section, we investigate numerically the theoretical estimate
(4.27), i.e., the order of the convergence factor ρ with respect to ∆t. We perform these experiments
first on a linear ODE, then on a linear PDE discretized in space, and finally on a nonlinear control
problem associated with a Schrödinger-type equation. We use MATLAB R2021b as our numerical
computing environment.

5.1. Linear ODE example. We start by considering an academic example in which the
dynamics are given by (2.2). The matrix L and B are generated randomly as follows: we let
L = rd · rdT , where rd is a 10 × 10 random matrix with entries chosen uniformly in the interval
[0, 1]. Similarly, we define B to be a 10× 5 matrix with randomly generated entries following the
same distribution. We will discretize the ODE in time using the Runge-Kutta methods presented in
Table 2. Three of them satisfy both the IVP and optimal control conditions up to their respective
orders: RK2, then SDIRK (Singly Diagonal Implicit Runge-Kutta) with γ = (3+

√
3)/6 (see [20]),

and finally Gauss-Lobatto (see [19]). The fourth method, namely RK3, satisfies the IVP conditions
up to order 3, but the optimal control ones are only satisfied up to order 2.

For the parameters T = 10−2, α = 10−1, L = 10 and ∆T = T/L, we use the eig function in
Matlab to compute the spectral radius ρ of the iteration matrix M−1

∆t(M∆t −Mδt). We do this
for various ∆t in four different cases:
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Table 2
Butcher tables for various Runge-Kutta methods used in the linear ODE and PDE examples, with their re-

spective IVP orders p indicated.

RK2, p = 2 RK3, p = 3 SDIRK, p = 3 Gauss-Lobatto (GL), p = 4

0 0 0 0

1/2 1/2 0 0

1 0 1 0

1/4 1/2 1/4

0 0 0 0

1/2 1/2 0 0

3/4 0 3/4 0

2/9 1/3 4/9

γ γ 0

1− γ 1− 2γ γ

1/2 1/2

0 0 0 0

1/2 1/4 1/4 0

1 0 1 0

1/6 2/3 1/6

10
-4

10
-3

∆t

10
-12

10
-10

10
-8

10
-6

ρ

Fine and coarse grids: GL

(∆t, ρ)

ρ(∆t) = c ·∆t4.0, c ≈ 105.2

10
-5

10
-4

10
-3

∆t

10
-12

10
-10

10
-8

10
-6

10
-4

ρ

Fine and coarse grids: SDIRK

(∆t, ρ)

ρ(∆t) = c ·∆t2.9, c ≈ 104.5

10
-5

10
-4

10
-3

∆t

10
-8

10
-6

10
-4

10
-2

ρ

Fine and coarse grids: RK2

(∆t, ρ)

ρ(∆t) = c ·∆t2.0, c ≈ 102.5

10
-5

10
-4

10
-3

∆t

10
-8

10
-6

10
-4

10
-2

ρ

Fine and coarse grids: RK3

(∆t, ρ)

ρ(∆t) = c ·∆t2.0, c ≈ 103.0

Fig. 2. Convergence factor for various Runge-Kutta methods presented in Table 2 for a positive definite
operator L.

• we use Gauss-Lobatto with fixed δt = ∆T/210 and ∆t = ∆T/2k, k = 1, . . . , 4;
• we use SDIRK, RK2 and RK3 with fixed δt = ∆T/216 and ∆t = ∆T/2k, 1, . . . , 7.

The results are shown in Figure 2, where we plot ρ on a logarithmic scale as a function of ∆t in
blue, with its linear regression in red. We observe that for the three methods that satisfy both
the IVP and control order conditions, namely Gauss-Lobatto, SDIRK and RK2, ρ behaves like
∆tp for their respective orders p, which is consistent with (4.27). The behaviour is different for
RK3, which satisfies the IVP conditions up to order p = 3 but does not satisfy the optimal control
condition

∑
d2i /bi = 1/3 (see Table 1). The order of ρ with respect to ∆t is found by regression to

be 2, meaning that the optimal control conditions are necessary to get the third order behaviour.

5.2. A linear PDE example. In this test, we tackle the optimal control problem considered
in [14], where the dynamics (2.2) are governed by the heat equation

(5.1) ẏ −∆y = Bν,

with y = y(x, t) is defined on Ω = [0, 1] × [0, T ], periodic boundary conditions along ∂Ω, and
T = 10−2. We also set α = 10−1. The initial and target states are

yin =exp(−100(x− 1/2)2),

ytg =
1

2
exp(−100(x− 1/4)2) +

1

2
exp(−100(x− 3/4)2).

The operator B is the indicator function of the sub-interval Ωc = [1/3, 2/3] of Ω. We consider a
semi-discretization in space of (5.1) using second-order centered finite-difference with r = 50 grid
points.

We again let L = 10 and ∆T = T/L. We fix δt = ∆T/216 and vary ∆t while making sure
to satisfy the appropriate CFL condition whenever an explicit Runge-Kutta method is used. For
each of the four methods listed in Table 2, we again compute the convergence factor of ParaOpt,
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10
-6

10
-5

10
-4

10
-3

∆t

10
-10

10
-5

10
0

ρ

Fine and coarse grids: GL

(∆t, ρ)

ρ(∆t) = c ·∆t4.2, c ≈ 1011.4

10
-5

10
-4

10
-3

∆t

10
-6

10
-4

10
-2

ρ

Fine and coarse grids: SDIRK

(∆t, ρ)

ρ(∆t) = c ·∆t3.0, c ≈ 108.6

10
-6

10
-5

10
-4

∆t

10
-8

10
-6

10
-4

10
-2

ρ

Fine and coarse grids: RK2

(∆t, ρ)

ρ(∆t) = c ·∆t2.0, c ≈ 104.6

10
-6

10
-5

10
-4

∆t

10
-8

10
-6

10
-4

ρ

Fine and coarse grids: RK3

(∆t, ρ)

ρ(∆t) = c ·∆t2.2, c ≈ 105.0

Fig. 3. Order of the convergence factor ∆t for various Runge-Kutta methods presented in Table 2 for (5.1).

that is, the spectral radius ρ of the iteration matrix M−1
∆t (M∆t −Mδt) for the various ∆t shown

below:
• Gauss-Lobatto with ∆t = ∆T/2k, k = 2, . . . , 8,
• SDIRK with ∆t = ∆T/2k, k = 1, . . . , 6,
• RK2 with ∆t = ∆T/2k, k = 4, . . . , 10,
• RK3 with ∆t = ∆T/2k, k = 4, . . . , 10.

The results are shown in Figure 3. As in the previous section, we observe that since Gauss-Lobatto,
SDIRK, and RK2 satisfy both the IVP conditions and the optimal control conditions up to order
p, the observed order of convergence correspond to the predicted order. We also observe that this
is not the case with RK3, since the optimal control conditions are not satisfied.

Next, we use different Runge-Kutta methods in the fine and coarse grids to simulate (4.29).
For this instance, we consider three different test cases :

• we use SDIRK on the fine grid and implicit Euler (IE) on the coarse grid for ∆t =
∆T/2k, k = 3, . . . , 9,

• we use Gauss-Lobatto on the fine grid and explicit Euler (EE) on the coarse grid for
∆t = ∆T/2k, k = 3, . . . , 10,

• we use Gauss-Lobatto (GL) on the fine grid and RK2 on the coarse grid for ∆t =
∆T/2k, k = 2, . . . , 10.

The results are presented in Figure 4, where we observe that the order of ρ with respect to ∆t is
determined by the lower order method. Our experiments are therefore consistent with (4.29).

We finally consider a case which is not covered by our analysis. In this test, the quadrature
formula and the Runge-Kutta method (RK) used for discretizing the two ODE systems in (2.5)
are independent in the sense that the coefficient bj used in the Runge-Kutta method are different
from the ones used in the quadrature part of (2.7), i.e., the formulas (2.6c) and (2.6d) do not
use the same coefficients. We nonetheless assume that the quadrature nodes ci are located at the
same time points as the Runge-Kutta stages, since we would otherwise not be able to eliminate
the control from the discrete optimality system. The results are shown in Figure 5, where we use
RK2 for the quadrature formula and Gauss-Lobatto as (RK) to discretize the two ODE systems
in (2.5). We see that the order of ρ is the minimum of the orders of both methods. The analysis
for this case will be investigated in future work.

5.3. A nonlinear optimal control problem. In this section, we consider a nonlinear con-
trol problem involving the Schrödinger equation. More precisely, we minimize the following cost
functional

min
ν

J(ν) := −Re (⟨y(T ), ytg⟩) +
α

2

∫ T

0

ν(t)2dt,(5.2)

subject to ẏ(t) = −iH[ν(t)]y(t) on [0, T ], y(0) = yin.
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10
-6

10
-5

10
-4

10
-3

∆t

10
-4

10
-3

10
-2

10
-1

ρ

Fine grid: SDIRK/ coarse grid: IE

(∆t, ρ)

ρ(∆t) = c ·∆t1.0, c ≈ 102.4

10
-6

10
-5

10
-4

10
-3

∆t

10
-4

10
-3

10
-2

10
-1

ρ

Fine grid: GL / coarse grid: EE

(∆t, ρ)

ρ(∆t) = c ·∆t1.0, c ≈ 102.4

10
-6

10
-5

10
-4

10
-3

∆t

10
-8

10
-6

10
-4

10
-2

ρ

Fine grid: GL / coarse grid: RK2

(∆t, ρ)

ρ(∆t) = c ·∆t2.1, c ≈ 105.4

Fig. 4. Order of the convergence factor when one uses two different Runge-Kutta methods on the fine and
coarse grids for discretizing (2.5), where EE represents explicit Euler and IE represents implicit Euler

10
-6

10
-5

10
-4

10
-3

∆t

10
-8

10
-6

10
-4

ρ

Fine and coarse grids: GL & RK2

(∆t, ρ)

ρ(∆t) = c ·∆t2.1, c ≈ 104.0

Fig. 5. Order of the convergence factor when two different Runge-Kutta methods are used for discretizing
(2.1) and (2.2).

The dynamics involved in (5.2) are that of a system of coupled spin −1/2 particles. The complete
physical description can be found in [31]. The control ν consists of magnetic fields that act
independently on one spin. We choose to focus on the case of five coupled spins whose interaction
is encoded by the following Hamiltonian:

H[ν(t)] = L+

5∑
k=1

[
νkx(t)I

(k)
x + νky (t)I

(k)
y

]
where

L = 2πJp

(
I(1)z I(2)z + I(1)z I(3)z + I(2)z I(3)z + I(2)z I(5)z + I(3)z I(4)z

)
,

the operators I
(k)
x and I

(k)
y are (up to a factor) Pauli matrices which only act on the kth spin:

Ix =

(
0 1

2
1
2 0

)
, Iy =

(
0 − i

2
i
2 0

)
, Iz =

(
1
2 0
0 − 1

2

)
,

and Jp = 140 is the uniform coupling constant between the spin. The efficiency of ParaOpt in the
case of non-linear dynamics has been studied numerically in [14] in the case of the Lotka-Volterra
system. Here, we instead focus on the convergence behavior for a second order discretization of
(5.2).

We use the discretization setting of [0, T ] presented in Section 2.1. We use the Crank-Nicolson
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•
Tℓ−1

|•

Tℓ

Λℓ

Yℓ

•
Tℓ+1

y
ℓ−1
M

|
y
ℓ−1
M−2

×
λ
ℓ−1
M−1

|
y
ℓ−1
M−1

×
λ
ℓ−1
M

×
yℓ
1
|

λℓ
1

δt δt δt

Fig. 6. The stencil on the fine grids around Tℓ.

method to discretize both J and the constraint in (5.2), that is, we have

Jδt(ν) = −Re (⟨yM0
, ytg⟩) +

α

2
δt

M0−1∑
n=0

5∑
k=1

(
[νkx,n]

2 + [νky,n]
2
)
,

and
(I +H0(νn)) yn+1 = (I −H0(νn)) yn,

where H0(νn) =
i
2δtH(νn) and νn = ν(tn + δt/2). Introducing the Lagrange function

Lδt = Jδt(ν)− Re

(
M0−1∑
n=0

⟨λn+1, (I +H0(νn)) yn+1 − (I −H0(νn)) yn⟩

)
,

the Euler-Lagrange equations and elimination of the control give the following optimality system:
y(0) = yin and

[
I + H̃0(λn+1, yn+1, yn)

]
yn+1 =

[
I − H̃0(λn+1, yn+1, yn)

]
yn, n = 0, . . . ,M0 − 1,(5.3) [

I + H̃∗
0(λn, yn, yn−1)

]
λn =

[
I − H̃∗

0(λn+1, yn+1, yn)
]
λn+1, n = 1, . . . ,M0 − 1,(5.4) [

I + H̃∗
0(λM0

, yM0
, yM0−1)

]
λM0

=− ȳtg,(5.5)

where ȳtg is the complex conjugate of ytg and H̃∗
0 denote the adjoint matrix of H̃0 defined as

follows:

H̃0(λn+1, yn+1, yn) :=i
δt

2
L+ i

δt

4α

5∑
k=1

Im
(〈

λn+1, I
(k)
x (yn+1 + yn)

〉)
I(k)x

+ i
δt

4α

5∑
k=1

Im
(〈

λn+1, I
(k)
y (yn+1 + yn)

〉)
I(k)y .

With this discretization, λ is located in the middle of [tn, tn+1], which means the adjoint is not
defined at the interface Tℓ = tMℓ of the sub-intervals. We therefore need to extend the discrete
adjoint to the interface in a way that is consistent with the continuous propagator and with the
discrete equation (5.4). To do so, we add two equations, one for each sub-interval: for [Tℓ−1, Tℓ],
we add

(5.6) Λℓ =
[
I + H̃∗

0

(
λℓ−1
M , yℓ−1

M , yℓ−1
M−1

)]
λℓ−1
M ,

which describes the propagation of the adjoint from the final condition Λℓ over a distance of
δt/2 to yield λℓ−1

M . On [Tℓ, Tℓ+1], the adjoint at Tℓ is denoted by Q(Yℓ,Λℓ+1) and is obtained by
propagating λℓ

1 over a distance of δt/2. We therefore add the equation

(5.7) Q(Yℓ,Λℓ+1) =
[
I − H̃∗

0

(
λℓ
1, y

ℓ
1, Yℓ

)]
λℓ
1.

With these additions, we can now impose the matching condition

Λℓ −Q(Yℓ,Λℓ+1) = 0,

whose equivalence to (5.4) can be seen by substituting (5.6) and (5.7) into the above.

In this numerical test, we define yin and ytg as the first columns of I
(1)
x and I

(5)
x respectively.

We set T = 10/Jp, α = 1, L = 10, and fix the fine discretization step to δt = 1/80Jp. We show in
Figure 7 the convergence rate of the ParaOpt for various values of the ratio r = δt/∆t. The L∞

error is defined as the maximum of the difference between the state and adjoint values obtained
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Fig. 8. Order of the convergence factor of ParaOpt with respect to ∆t.

from a converged fine-grid solution, and the values obtained at each inexact Newton iteration using
the ParaOpt .

Fast convergence in two iterations has been observed for r = 1, since the ParaOpt actually
corresponds to the exact Newton method. When r ∈ { 1

2 ,
1
4 ,

1
8}, the approximation of the Jacobian

becomes coarser, which explains the slower convergence. Denoting by ar, kr the slope and the
number of iterations associated with the curve of ratio r on Figure 7 and by ρ the convergence

factor of ParaOpt applied to (5.2), we observe that |ar| ≈
(
c∆t2r

)kr
, where c is a positive real

constant. It follows that for ρkr
r = |ar|, we obtain ρr ≈ c∆t2r, that is, ρ is of order 2 (see Figure 8).

This order is equal to the one of the Crank-Nicolson method used to discretize both J and the
constraint in (5.2). This is consistent with the result of Theorem 4.6 for a linear case problem,
meaning that our results also hold in nonlinear cases.

L # Iter CPU time Parallel computing time Speedup Efficiency

1 2 571.2983 571.2947 1.0 100%
2 3 117.9937 117.9925 4.84 242%
4 7 42.4054 42.4046 13.47 336,75%
8 9 12.8253 12.8235 44.54 556.75%
16 13 7.6024 7.6020 75.15 469.7%

Table 3
Performance of ParaOpt algorithm: total computing time CPU time, parallel computing time only in seconds,

speedup (CPU time(L = 1)/CPU time(L)) and efficiency (100 × speedup/L).

We also study how well the ParaOpt algorithm scales for solving the control problem (5.2).
All computations were run in MATLAB R2021 on a Dell Precision 7780 laptop with 20 CPU cores
and an NVIDIA RTX 2000 Ada GPU. The results are shown in Table 3, where we report the total
computing time, the parallel computing time without communication, and the number of outer
Newton iterations required to reach a tolerance of 10−10. The total time corresponds to running
the code implementing the ParaOpt algorithm. The parallel computing time is the time required
to run the Newton method, where the local solves on the fine and coarse grids are performed in
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parallel using MATLAB’s parfor. Our tests show very good scalability: when we double the
number of processors, the total computing time is reduced by more than a factor of two. We
obtain such efficiency because, as L increases, the local parallel solver become much faster. These
results are similar to those presented in Table 2 of [14] for an optimal control problem involving
Lotka–Volterra dynamics, solved using the implicit Euler method.

Appendix A. Additional results.

Theorem A.1. Let ∆t and N0 ≥ 2 be fixed with δt = ∆t/N0. Then, there exist cP > 0 and
cR > 0 independent of ∆t and δt such that

∥∆P∥ ≤ cP(∆t− δt)∆tp−1 and ∥∆R∥ ≤ cR(∆t− δt)∆tp−1.

Proof. We consider the mapping φ : (0, 1)2 −→ (0,∞) defined as follows

(A.1) φ(∆t, δt) :=
∥∆P∥
∆t− δt

, for δt < ∆t.

The triangular inequality applied to the right-hand side of (A.1) leads to

φ(δt,∆t) ≤ 1

∆t− δt
(∥P∆t − P0∥+ ∥Pδt − P0∥) .

Using the inequalities in Theorem 4.1 on Pδt and P0 by replacing δt by ∆t , ∥P∆t − P0∥ ≤ c∆T∆tp,
so that,

φ(δt,∆t) ≤ cP
(∆t− δt)

(∆tp + δtp) ≤ 2cP
(∆t− δt)

∆tp.

Setting δt = ∆t/N0 for N0 ≥ 2 leads 1
∆t−δt =

N0

∆t(N0−1) ≤
2
∆t , so that,

(A.2) φ(δt,∆t) ≤ 4cP∆tp−1.

Substituting (A.1) into (A.2) gives rise to

∥∆P∥ ≤ 4(∆t− δt)cP∆tp−1.

Considering the inequalities in Theorem 4.1 on Rδt and R0 by replacing δt by ∆t, we can proceed
analogously to obtain

∥∆R∥ ≤ 4 (∆t− δt) cR∆tp−1.

And the proof is complete.

Theorem A.2. Let 0 < ∆t ≤ ∆T ≤ 1. Then there exists a constant γ > 0 depending on the
operator L and the time horizon T , but independent of ∆t, ∆T and α, such that the condition
number of M∆t with respect to the norm ∥ · ∥∗ is bounded by

cond(M∆t) = ∥M∆t∥∗∥M−1
∆t∥∗ ≤ γ(1 + α−1)2

∆T
.

Proof. To bound ∥M∆t∥∗, we proceed like in Theorem 4.2: we consider X =

(
Y
Λ

)
and

E =

(
F
G

)
such that E = M∆tX and bound ∥E∥∗ in terms of ∥X∥∗. From the definition of the

matrix M∆t, we see that E = X +∆E, where ∆E =

(
∆F
∆G

)
satisfies

∆F0 = 0,

∆Fℓ = −P∆tYℓ−1 +
1

α
R∆tΛℓ, ℓ = 1, . . . , L,

∆Gℓ = −PT
ℓ Λℓ+1, ℓ = 1, . . . , L− 1,

∆GL = −YL.

These are almost the same equations as in Theorem 4.2, except we replaced ∆P and ∆R by P∆t

and R∆t, and that ∆GL = −YL instead of 0. Therefore, the same calculation as in the theorem
shows that

∥∆F∥2∆T ≤ (∥P∥2∆T + ∥R∥2∆T )∥X∥2∗,
∥∆G∥2∆T ≤ ∥P∆T ∥2∥Λ∥2∆T +∆T∥YL∥2.
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Combining the above inequalities gives

∥∆E∥2∗ ≤
(
2∥P∆t∥2 + ∥R2

∆t∥
)
∥X∥2∗ + α−2∆T∥YL∥2

≤
(
2∥P∆t∥2 + ∥R∆t∥2 + α−2

)
∥X∥2∗

≤ (c1 + α−1)2∥X∥2∗,

where c21 = 2∥P∆t∥2 + ∥R∆t∥2 ≤ 3 + c′1∆T ≤ 3 + c′1T is obtained using the estimates (4.23) on
P∆t and R∆t. Therefore, ∥E∥∗ ≤ (1 + c1 + α−1)∥X∥∗, which implies ∥M∆t∥∗ ≤ γ1(1 + α−1) for
some constant γ1 > 0 depending on C1, C2 and T , but not on ∆t and ∆T .

We now bound ∥M−1
∆t∥∗. Since M

−1
∆t = M−1

∆tΠ+M−1
∆t(I−Π) and we already have an estimate

of ∥M−1
∆tΠ∥∗ from Theorem 4.5, it suffices to estimate ∥M−1

∆t(I −Π)∥∗. Let X = M−1
∆t(I −Π)E,

i.e., M∆tX = (I −Π)E. Then the blocks of E and X satisfy the recurrence

Y0 = F0,

−P∆tYℓ−1 + Yℓ + α−1R∆tΛℓ = 0, ℓ = 1, . . . , L,

Λℓ−1 − PT
∆tΛℓ = 0, ℓ = 2, . . . , L,

ΛL − YL = GL.

Solving this recurrence using the same techniques as in Lemma 4.3, we deduce for ℓ = 1, . . . , L− 1
that

(A.3) Λℓ = (PT
∆t)

L−ℓΛL and Yℓ = PℓF0 − α−1
ℓ∑

k=1

Pℓ−k
∆t R∆t(PT

∆t)
L−kΛL,

where ΛL satisfies the reduced system

(I + α−1U)ΛL = PL
∆tF0 +GL,

where U is the same matrix as in (4.21). Therefore, we have by Lemma 4.3 and inequality (4.23)

(A.4) ∥ΛL∥ ≤ ∥PL
∆tF0 +GL∥ ≤ (1 + C1∆T )L∥F0∥+ ∥GL∥ ≤ eC1T ∥F0∥+ ∥GL∥.

We now take norms on the equations in (A.3) and use the estimates for ∥P∆t∥ and ∥R∆t∥ in (4.23)
to get

∥Λℓ∥ ≤ (1 + C1∆T )L−ℓ∥ΛL∥,

∥Yℓ∥ ≤ (1 + C1∆T )ℓ∥F0∥+ α−1C2∆T

ℓ∑
k=1

(1 + C1∆T )2L−ℓ−k∥ΛL∥

≤ (1 + C1∆T )ℓ∥F0∥+ α−1C2T (1 + C1∆T )2L−ℓ∥ΛL∥,

where we used (1 + C1∆T )−k ≤ 1 and ℓ∆T ≤ T to obtain the last inequality. The definition of
the norm ∥ · ∥∗ finally gives

∥X∥2∗ = ∆T

L∑
ℓ=0

∥Yℓ∥2 + α−2∆T

L∑
ℓ=1

∥Λℓ∥2

≤ ∆T∥F0∥2 + 2∆T

L∑
ℓ=1

(1 + C1∆T )2ℓ∥F0∥2

+ 2(C2T )
2α−2∆T

L∑
ℓ=1

(1 + C1∆T )4L−2ℓ∥ΛL∥2 + α−2∆T

L∑
ℓ=1

(1 + C1∆T )2L−2ℓ∥ΛL∥2

≤
(
1 +

2(e2C1T − 1)

∆T

)
∆T∥F0∥2 + α−2∆T (1 + 2(C2T )

2e2C1T )
e2C1T − 1

(1 + C2∆T )2 − 1
∥ΛL∥2.

Combining the above with (A.4), we deduce that

∥X∥∗ ≤ γ2(1 + α−1)√
∆T

∥E∥∗
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for a constant γ2 > 0 that depends on C1, C2 and T , but not on ∆t and ∆T . This implies

∥M−1
∆t(I −Π)∥∗ ≤ γ2(1 + α−1)√

∆T
.

Together with the result ∥M−1
∆tΠ∥∗ ≤ cM−1

∆T (1+α−1) from Theorem 4.5, we deduce that ∥M−1
∆t∥∗ ≤

γ3(1+α−1)
∆T for some constant γ3 ≥ 0, which finally allows us to conclude that

∥M∆t∥∗∥M−1
∆t∥∗ ≤ γ(1 + α−1)2

∆T

with γ = γ1γ3.
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