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Abstract In this paper, we investigate the uniform convergence of the Schwarz alter-
nating method for unconstrained elliptic optimal control problems in one dimension.
We derive the convergence factor of the method and find that the convergence factor
of the method can be uniformly bounded by a factor (< 1) associated with that for
the state equation. We also observe that the local error propagation operators of
the method under a standard choice of energy norms in the robust analysis of opti-
mal control problems are nonexpansive. These observations indicate that the existing
convergence analysis frameworks of domain decomposition methods for PDEs based
on the standard choice of energy norms are not straightforwardly applicable to that
for optimal control problems.

1 Introduction

Domain decomposition methods (DDM for short) have been widely used to solve
problems in modern science and engineering. The essential parallel ability makes
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them attractive in applications. They have been successfully used to construct fast
solvers for partial differential equations and optimal control problems. For more
details on the design and the convergence analysis of DDM for the equations, we
refer to the monograph [11], the review papers [12, 14] and the references cited
therein. As to the design of DDM for nonselfadjoint or indefinite problems, we refer
to [2, 3, 13] and the references therein.

Although numerous numerical experiments in the literature have illustrated the
efficiency and robustness of DDM for optimal control problems, there are few
theoretical results, especially regarding their uniform convergence. In [7], the author
discussed a two-level overlapping method for the optimal control problem following
the standard framework for two level methods in [2, 3, 13]. The convergence results
were obtained under the condition that the coarse mesh size H is sufficiently small.
The analysis indicates H < Hy = O(af%) under the full regularity assumption of the
solutions. However, the numerical results in [7] and [10] indicate that the requirement
H < Hy= O(CX%) is unnecessary. The main challenge comes from the saddle point
structure of the problem.

In this paper, we will explore the convergence properties of DDM for optimal
control problems. We will focus on the Schwarz alternating method (which is the
origin of various DDM) and the following one-dimensional unconstrained elliptic
distributed optimal control problem

. 1 2 @, 2
(i JOsu) = 51y = yallpa gy + 5 lullz q) (D
subject to

-y =f+u inQ and y=0 ondQ, (2)

where Q = (0, 1), u € L*(Q) is the control variable, y; € L?(Q) is the desired state
or observation and @ > 0 is the regularization parameter.

We will derive the exact convergence factor of the method in this case and
highlight the fact that the convergence factor of the method for the state equation
gives a uniform upper bound of that for the optimal control problem, which has been
further developed in an upcoming paper of ours. We also show that the local error
propagation operators of the method is not always nonexpansive under a standard
choice of energy norms in robust analysis of optimal control problems (cf. Section
4), which makes it impossible to rely on existing frameworks of DDM based on
nonexpansive operators for PDEs directly to analyze the uniform convergence of
DDM for optimal control problems.

2 The Schwarz alternating method for unconstrained elliptic
optimal control problems

Since the optimal control problem (1)-(2) is a convex optimization problem, the
solution can be characterized by the following reduced first-order optimality system
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’ . (3)
-p'=y—-yqs inQ, p=0 ondQ,

{_y” =f-a'pinQ y=0 ondQ,
where p is the adjoint state and we eliminate u by the equation au + p = 0 in the
first order optimality system.

LetQ; =(0,s),Q = (r,1) with0 < r < s < 1. The Schwarz alternating method
for the state equation and the optimal control problem is given by

Algorithm 1. 1. Initialization: choose y*) € Hé (Q).
2. Fork =0,1,---, solving the following problem on Q; (i = 1,2) alternatively:

_(y(2k+i))u =f inQ, y(2k+i) = y(2k+i—1) on 6Q;,
{ ykti) = ChH=1 O\ Q.

and

Algorithm 2. 1. Initialization: choose y*, p(®) € Hé (Q).
2. Fork =0,1,---, solving the following problem on Q; (i = 1,2) alternatively:

_(y(2k+i))// — f _ aflp(2k+i) in Qi, y(2k+i) — y(2k+i71) on agi’
_(p(2k+i))u — y(2k+i) - Ya inQ;, p(2k+i) — p(2k+i—1) on 6%,

y(2k+i) — y(2k+i—1)’ p(2k+i) — p(2k+i—l) mﬁ\g

3 Convergence analysis

In this part, we give an explicit formulation of the convergence rate of the Schwarz
alternating method in the one-dimensional case. One can also refer to [9] for details
of the calculation. The main technique lies in solving fourth order ODEs in the
variable p after elimination of y from the homogeneous version of (3).

It is easy to derive that the convergence factor of that for Algorithm 1 is p, =

;8::; < 1,since 0 < r < s < 1. Now we focus on Algorithm 2.

Let e(yk) = y(’.‘) —yand ei,k) =p®) —pfork =0,1,.... The error systems of
the method are given by

_ e;2k+l))// _ —a"eifk”) in (0, s), e§2k+')(0) =0, e;2k+]) (s) = e;Zk) (s), w
_ (e§3k+1)),/ _ e;2k+l) in (0, 5), e§,2k+l)(0) -0, e},zk”)(s) _ e;)Zk) (s)
and
_ (e;zmz)),/ _ _a71e;)2k+2) in (r, 1), e§2k+2)(r) _ e§2k+1)(r)’ e;2k+2)(1) =0, (5)
B (e;;’zk+2))// _ e§2k+2) in (r, 1), e]()2k+2) (r) = e§3k+1) ). e]()2k+2) (1) =0.

A direct calculation shows that the solutions of (4) and (5) satisfy
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(e )2+ a7 (e ()2 = Lix,s) (e ()2 + a7 (e ()2 x € [0.51,

(e ()2 + @™ (e ()7 = R(r,x) (e ()24 @7 (e (1)) x € [ 1],

where ., .
Lix.s) = S{nhz(yx) +s%n2(7x) xe[0.s].
sinh” (ys) + sin“(ys) ©)
12 2
R(r.x) = sinh” (y (1 — x)) +sin” (y (1 — x)) xelrl.

sinh?(y(1 = r)) +sin®(y(1 — r))

andy = ‘/ga_%. Since

g(z) =sinh?(z) +sin*(z) = %(cosh(2z) - cos(2z))

is positive, strictly convex, strictly increasing in (0, c0) and lim g(z) = +oo, we
Z—+0o0

have

max ((e7 (x))? + a7 (e (1))2) = (P ()2 + a7 (M (9))2,

x€[0,1]
xren[%xl] ((e;2k+2) (x))2 + a_l (622k+2) (x))z) _ (e;ZkH) (r))2 " a/_l (e;,Zk“) (r))z_
Hence

max ((e§,2k+2) ()c))2 +a! (eﬁ,zkﬂ) (x))z) = p. max ((e;,zk) (x))2 +a’! (eE,Zk) (x))z) s
x€[0,1] x€(0,1]

where k = 0,1,2,..., p. = L(r,s)R(r, s) is the convergence factor. By the con-
vexity of g(z), g(0) = 0 and the fact 0 < r < s, we have

cosh(2yr) —cos(2yr) = cosh(2ys£) - cos(2ys£) < C(cosh(Zys) —cos(2ys)),
s s s

which implies p. < p. < 1.

Furthermore, for given 0 < r < 5 < 1, p, is strictly increasing with respect to «,
r2(1-s)?
s2(1-r)2

which implies that p. (@) < lim p.(a) = = p2 for any a > 0.
a—+o0o

4 Convergence analysis based on energy norms

We provide some observations on the convergence analysis based on energy norms.
These observations indicate that the existing convergence analysis frameworks of
the domain decomposition methods for PDEs based on a standard choice of energy
norms in the robust analysis of optimal control problems are not straightforwardly
applicable to optimal control problems. It is worth noting that numerical results
show the uniform convergence of the method with a convergence factor under this
standard energy norm.

Let V be a Hilbert space and s(-, -) be a bilinear form on V. Denote by (-, -) the
inner product of V and || - || be the induced norm. We consider the following problem:
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Find Z € V such that
s(Zw)=(f,w) YweV

for f € V’ with V’ being the dual space of V. We also assume that

s(z,w) < Cs|z|||lw]| and 1nf sup ———= s@w) f s(zw)
Vey llzllllwll — wev ey [lzllllwl|

LetV =Vi+V,and V; (i = 1, 2) be two closed subspaces of V. We define 7; : V — V;
by
s(Tiz,w;) =s(z,w;)) VzeV,Vuw; €V,

Then the local error propagation operators of the Schwarz alternating method based
on the decomposition V = V| + V, are given by I — T; (i = 1,2) and the global error
propagation operator is given by

E=(-T)(-T).

One crucial assumption in the convergence analysis of the method under the norm
|| - || is that I —T; (i = 1,2) are nonexpansive (which was also used originally in P.-L.
Lions [6]; see also [4] for further details.) or more generally (cf. [15, Assumption

(A2)D

IT;v]|> < w(T;v,v), Yo € V for some constant w € (0,2). @)

Now, we investigate the local error propagation operators of the Schwarz alter-
nating method for optimal control problems. We will illustrate that the assumption
(7) fails in the OCP case for the simple one dimensional problem. This indicates that

the local error propagation operators are expansive in this case.

The convergence of the Schwarz alternating method for the optimal control prob-
lem is equivalent to the convergence for the following coupled equation (after proper
scaling or changing of variables)

—a'?p”"-$=0inQ, =0 ondQ, ®
—a'’3"+p=0inQ, p=0ondQ,

which is equivalent to (cf. [1, 5])

s((7,5), (9,4) =0V (¢, ¢) € Hy(Q) x Hy(Q),
where s((y, p), (¢, 9)) = @' [, p'¢’dx — ' [ y'¢'dx = [, ypdx - [, ppdx.
For the bilinear form s(-, -) defined above, we have (cf. [8, 10, 1, 5])
Boll v Pl < sup AL Bl O

0%, ¢) € H) (Q)x HL () @ ) lla

for any (y, p) € H(l)(Q) X HO1 (€2), where By > 0, 81 > 0 are independent of & and

1 @12 = @' Pl o)+ 19122 ) + @ 21012 o) + 1612 g, (10)
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It is worth noting that the norm || - ||, has been successfully used to construct
robust methods for optimal control problems, such as multigrid methods (e.g. [8, 1]),
preconditioned MINRES methods (e.g. [10]) and adaptive finite element methods
(e.g. [5]). In order to obtain robust convergence results of the Schwarz alternating
method, which has been observed numerically, we also use this norm here. How-
ever, our examples below show that the local error propagation operators are not
nonexpansive under this norm.

Remark 1 One can certainly consider another (possibly more sophisticated) norm
for the space of solutions, but whether such a norm would lead to a satisfactory
convergence analysis remains an open question.

Let 75, be a uniform partition of Q = (0, 1) and the mesh size is denoted by 4. In the
following, we consider the cases where the problem is discretized by finite difference
methods and finite element methods. We first give a nonoverlapping decomposition
of Q and then add several layers to each subdomain to generate the overlapping
decomposition. We consider the case where one layer is added (cf. Figure 1).

Q

Fig. 1 Mesh and decomposition of Q = (0, 1).

We continue now for the case of two different discretization techniques. Without
loss of generality, we only focus on the three nodes related to the overlapping part in
each case.

4.1 The finite difference case

We discretize the problem (8) by the central difference method. The matrix related
to the discrete problem is given by

2210 100
Clz(i?; __til), Ar=|-12-1| and B =[010],
P 0-12 001

where ¢ = @!/?h=2 > 0. The proper inner product related to C; on R3 x R3 is

((v,w), (u, 7)) =0T Ayu+ o Biu+tw’ Air +w' Bir YV (v, w), (u,r) € R> xR>.
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,

Therefore, we have Bo||Y|l; <  sup % < BillYlle, VY € R? x R3, where
0#Z eRIXR? !

Il - |l is the norm induced by the inner product (-, -); given above and Sy, B are the

same constants as in (9).
For given (v, w) € R3 X R3, (v1,w;) = T} (v, w) can be computed as follows.

(1) Compute F = (f1, fo, f3. far f5. fo)T by F = Cy (Z))
(2) Set Fy = (fl,fz,f4,f5)T and solve

U1 _tAz -B> ur\ _ _ 2 -1 _10
Cz(wl)_(—Bz —tAz) (wl)—F], where Az—(_1 2) and Bz—(O]).

If we take (v, w) = (0,0,0),0,0,w?)), we have
F=(0,-0¥,200® —w®,0,10®, —0® — 2037,

12683 +5t> +2r + 1)
(9t* +10£2 + 1)

171 (v, w) ||? = ()2 + (w?)?]

and

203312 + 1)
(9t* +10¢2 + 1)
Therefore, for t > 0 and (v, w) # 0, we have

(Ti (v, w), (v, w)), = [(03)2 + (wP)?].

_ In@wl; 6 +52+21+1
T T w), (w), 2032 +1)

This means that the assumption (7) does not hold uniformly for all & and #.

4.2 The finite element case

As in the finite difference case, we can do a similar analysis for the finite element
case. We use the linear Lagrange finite element method to discretize the problem. In
this setting, we have

410

. S (41 . (A, -B ~ _(iAy -B,
B = éﬂ’ 32‘(14)’ Cl‘(—él —fAl)’ Cz_(—Bz—fAz)

with 7 = 6a'/2h~2 > 0 and the proper inner product related to C; on R? x R3 is
((v,w), (u,r)); = A+ o Biu+iw" Air+w’ Bir vV (v, w), (u,r) € R> xR>.
As in the previous part, we take (v, w) = (0,0, v3,0,0,w®), we have

F=(0,-® —w® 2003 —40® 0, -0® +7w®, 40 — 2737,
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2(F3 + 472 + 77 + 10)
Ty (v, w)||2 = 32 4 ()2
171wl = == g 1)+ @]
and

2(F = 1) (72 = 2) (72 +5)
3(F2+1)(F2 +25)

(T1 (v, w), (v, w)); = [(07)*+ (w?)?].

Especially, for 1 < 7 < V2, we have (T} (v, w), (v, w)); < O.

For (7 — 1)(7* = 2) # 0 and (v, w) # 0, we have

1T (v, w)||? (P AP+ 7T+ 10) (2 + 1)
(Ti(v,w), (v, w));  (F=1)(F2=2)(2+5)

7=

This also means that the assumption (7) does not hold uniformly for all & and h.
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