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1 Introduction

In this paper, we consider the following nonlinear elliptic equation,{
ηu − ∇ · (a(x,u,∇u)∇u) = f in Ω,

Bu = h on ∂Ω, (1)

where η ≥ 0, a(x,u,∇u) is a positive scalar function uniformly bounded away from
zero, and Bu represents boundary conditions (e.g. Dirichlet or Neumann) such that
the problem is well posed. This type of equation often arises from the implicit
discretization of a time-dependent problem or from a steady state calculation, for
example the Forchheimer equation [5] in porous media flow.

Once the problem (1) is discretized, there are many ways to solve the large non-
linear algebraic problem by domain decomposition methods. A classical approach
is to use the Newton-Krylov-Schwarz method [1]: the problem is first attacked
by Newton’s method, and within each Newton iteration, the linearized problem is
solved using a Krylovmethodwith a Schwarz domain decomposition preconditioner.
Alternative approaches consist of applying these components in a different order.
One such possibility, known as the Nested Iteration approach, was formulated in
[7, 8] for nonlinear parabolic PDEs: the solution (in space and time) is first rewritten
as the fixed point of a parallel Schwarz waveform relaxation iteration. Next, using the
interface values as primary unknowns, one derives the fixed point equation, which
is then solved using Newton’s method. Within each Newton iteraiton, the Jacobian
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systems are solved by a Krylov method, where each matrix-vector multiplication
corresponds to the solution of a linear parabolic problem.

For elliptic problems, the authors of [3] introduced the Restricted Additive
Schwarz Preconditioned Exact Newton (RASPEN) method, which can be regar-
ded as the Newton-accelerated version of the Restricted Additive Schwarz (RAS)
method with classical (Dirichlet) transmission conditions. Similar to Nested Itera-
tion, the RAS method is first written in fixed point form, and the resulting fixed point
equation is solved by Newton’s method, using a Krylov method as linear solver for
calculating the Newton step. Unlike the ASPIN method [2], which uses approximate
Jacobians, RASPEN uses exact Jacobians: it was shown in [3] that the product of the
exact Jacobian matrix with an arbitrary vector can be obtained using components
already computed during the subdomain solves, so the Newton corrections can be
calculated cheaply. Thus, RASPEN is a true Newton method and converges qua-
dratically close to the solution. Nonetheless, the Krylov solver within each Newton
iteration converges relatively slowly, which is typical of classical RAS methods with
Dirichlet transmission conditions. In this paper, we propose an optimized RASPEN
(ORASPEN) method, where a zeroth order optimized (i.e. Robin) transmission con-
dition is used to communicate information across subdomain interfaces. This allows
us to take advantage of the extra Robin parameter to obtain faster convergence in the
Krylov solver, just like in optimized Schwarz methods for linear problems.

2 The ORASPEN method

In this section, we derive the ORASPEN method and explain how the matrix-vector
multiplication by the Jacobian can be performed by reusing components from the
subdomain solves. We first recall the RASPEN method with classical transmisison
conditions, as defined in [3]. Assume that the physical domainΩ is decomposed into
overlapping subdomains Ω =

⋃K
i=1Ωi . Then given the n-th iterate un, the restricted

Additive Schwarz (RAS) method first calculates un+1
i = Gi(un), i = 1,2, . . . ,K ,

where Gi is the local solution operator which produces solutions to local subdomain
problems by freezing degrees of freedom outside Ωi . More concretely, suppose we
use a finite element discretization of (1) to obtain for the `-th degree of freedom

F`(u) =
∫
Ω

(ηuφ` + a(x,u,∇u)∇u · ∇φ`) dx −
∫
Ω

f φ` dx = 0, (2)

where φ` ∈ H1
0 (Ω) denotes the `-th finite element basis function. Let F(u) =

(F1(u),F2(u), . . .)T be the set of all such equations, so that the global nonlinear
problem has the form F(u) = 0. If un is a finite element function whose trace on
∂Ωi is used as Dirichlet values for the subdomain solve on Ωi , then the subdomain
solution un+1

i = Gi(un) ∈ Vi can be obtained by solving the equation

RiF(PiGi(un) + (I − PiRi)un) = 0 (3)
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for the unknown Gi(un), where Ri is the restriction operator from the finite element
space V ⊂ H1

0 (Ω) to the subspace Vi = V ∩H1
0 (Ωi), and Pi = RT

i is the prolongation
operator. Note that the subdomain solution un+1

i is none other than the solution to
the following problem when we apply the parallel classical Schwarz method for (1):

ηun+1
i − ∇ · (a(x,un+1

i ,∇un+1
i )∇un+1

i ) = f in Ωi,
Bun+1

i = h on ∂Ωi ∩ ∂Ω,
un+1
i = un

j on ∂Ωi ∩ Ω̄j , j ∈ Ii,
(4)

where Ii is the collection of all indices of subdomains that have overlap with Ωi .
Once the Gi(un) are calculated for each i, the new global iterate is formed using

the relation

un+1 =

K∑
i=1

P̃iGi(un). (5)

Here, P̃i is the restricted prolongation operator, formed from the Pi above and a
partition of unity, so that the relation

∑K
i=1 P̃iRi = I holds; see detailed definitions

in [3]. When the iteration (5) converges, it does so linearly in general. The RASPEN
idea consists of forming the fixed point equation

F̃ (u) =
K∑
i=1

P̃iGi(u) − u = 0 (6)

and applying Newton’s method to solve (6). This requires calculating the Jacobian
F̃ ′(u), which in turn requires the derivative G′i(u). The latter can be obtained by
differentiating (3).

We now derive the ORASPEN algorithm by showing how to incorporate opti-
mized transmission conditions. In the ORASPEN algorithm, we still solve (6) by
Newton, except that the underlying fixed point iteration (5) is replaced by the optimi-
zed RAS method of [9], so the local solution operator Gi(u) is now based on Robin
transmission conditions rather than Dirichlet.

Let u∗i = Riu∗ be the restriction of u∗ to Ωi , u∗ being the solution to (1). Given
a set of initial guesses (u0

i )
K
i=1, the parallel optimized Schwarz method generates a

sequence (un
i )

K
i=1, n = 0,1, . . . , that approximate (ui)Ki=1 by

ηun+1
i − ∇ · (a(x,un+1

i ,∇un+1
i )∇un+1

i ) = f in Ωi,
Bun+1

i = h on ∂Ωi ∩ ∂Ω,

a(x,un+1
i ,∇un+1

i )
∂un+1

i

∂ni
+ pun+1

i = a(x,un
j , ∇un

j )
∂un

j

∂ni
+ pun

j on ∂Ωi ∩ Ω̄j , j ∈ Ii,
(7)

where p is the Robin parameter and ni is the unit outward-pointing normal vector. If
finite elements are used to discretize (7), then for each basis function φi

`
with support

in Ωi , the corresponding residual function becomes

Fi
` (u

n+1
i ) = Ai

`(u
n+1
i ) −

∫
Ωi

f φi` dx −
∫
Γi

gφi` ds, (8)
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where g =
(
a(un

j ,∇un
j )

∂
∂ni
+ p

)
(un

j ), Γi = ∂Ωi \ ∂Ω, and

Ai
`(ui) =

∫
Ωi

(ηuiφi` + a(x,ui,∇ui)∇ui · ∇φi`) dx +
∫
Γi

puiφi` ds.

The evaluation of g, which involves Robin traces and must be taken in the weak
sense, is non-trivial. Therefore, we mimic the approach in [4] for the linear case and
exploit the equivalence between optimized parallel Schwarz and optimized RAS: we
update the local solution via the full approximation scheme

Ai(un+1
i ) − Ai(Riun) = −RiF(un), (9)

where Ai(ui) = (Ai
1(ui), A

i
2(ui), . . .)

T , and F(un) = (F1(un),F2(un), . . .)T is the global
residual as defined in (2). Under the usual coercivity assumptions, (9) defines a
mapping Gi : un 7→ un+1

i . The fixed point iteration is completed by the update
formula un+1 =

∑K
i=1 P̃iGi(un), as in (5). It is clear from (9) that if un = u∗ is the

exact solution of F(u) = 0, then un+1
i = Riun, so the exact solution is a fixed point

of the iteration. Thus, the ORASPEN approach consists of solving (6), but with the
Gi now defined by (9) instead of (3).

To calculate the Newton steps necessary for the solution of (6), one must solve
linear systems involving the Jacobian matrix F̃ ′(u). Since (O)RASPEN uses Krylov
methods for solving such linear systems, we need to know how to multiply F̃ ′(u) by
an arbitrary vector v. Differentiating (6) with respect to u and multiplying the result
by v gives

F̃ ′(un)v =

K∑
i=1

P̃iG′i(u
n)v − v. (10)

To evaluate G′i(u
n)v, we let un+1

i = Gi(un) in (9) and differentiate implicitly to obtain

∂Ai

∂u
(un+1

i )G
′
i(u

n) −
∂Ai

∂u
(Riun)Ri = −RiF ′(un).

Isolating G′i(u
n) in the above and substituting into (10) yields

F̃ ′(un)v =

K∑
i=1

P̃i

(
∂Ai

∂u
(un+1

i )

)−1 (
∂Ai

∂u
(Riun)Riv − RiF ′(un)v

)
− v. (11)

Note that ∂Ai

∂u (u
n+1
i ) is none other than the Jacobian matrix for the subdomain

problem (9). If Newton’s method was used to solve these subdomain problems,
this Jacobian would have already been formed and factored during the calculation of
un+1
i , so themultiplication by

(
∂Ai

∂u (u
n+1
i )

)−1 in (11) requires only a forward-backward
substitution involving the precomputed LU factors. Thus, the Krylov iterations have
relatively low computational cost.

To understand the convergence of the Krylov method, it is instructive to consider
the linear case, when a(x,u,∇u) ≡ a(x) is independent of u, and ∂Ai

∂u =: Ji is
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independent of un+1
i . In that case, (11) simplifies to

F̃ ′(un)v = −

K∑
i=1

P̃i J−1
i RiF ′(un)v,

which is identical to the preconditioned matrix for optimized RAS [9]. Therefore,
for well-chosen Robin parameters, we expect ORASPEN to exhibit much faster con-
vergence than classical RASPEN in terms of inner Krylov iterations, even when the
number of outer Newton iterations remains similar. This will be verified experimen-
tally in the next section.

3 Numerical Results

In this section, we illustrate the behaviour of ORASPEN by comparing it with
classical one-level RASPEN, as defined in [3], for two model problems. All tests in
this section are discretized using the P1 (conforming piecewise linear) finite element
method. In the first test, we show results for the nonlinear diffusion problem

−∇ · ((1 + u2)∇u) = x sin(y) in Ω = [0,1] × [0,1],
u = 1 on x = 1,
∂u
∂n = 0 elsewhere,

(12)

with the initial guess u0 = 1.
We compare the linear and nonlinear iteration counts needed by ORASPEN with

those needed by RASPEN for the 4 × 4 subdomain test case, using different Robin
parameters p and mesh ratios H/h. In Table 1, we report the following numbers:

• Nits, the number of outer Newton iterations required for convergence to within a
tolerance of 10−8;

• Lits, the number of linearized subdomain problems that must be solved. This
number includes (i) all linear solves within the subdomain problems, and (ii) all
multiplications by the matrix (∂Ai/∂u)−1 within GMRES due to Equation (11);

• Avg Lits, the average number of linear iterations per Neweton step; and
• p, the Robin parameter that leads to the lowest iteration counts for each mesh

ratio H/h.

We also include the number of unpreconditioned classical Newton iterations re-
quired for convergence. Although one cannot use these numbers to directly compare
classical Newton with (O)RASPEN (we must also consider which preconditioner to
use, and how many preconditioned GMRES iterations are required by the Jacobian
solves within each Newton step), such numbers are useful for determining the dif-
ficulty of the unpreconditioned problem. Here, we observe that ORASPEN always
require the fewest nonlinear iterations, compared to classical Newton and RASPEN.
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Fig. 1 Numerical results for nonlinear diffusion problem. Left: Newton iteration counts for 4 × 4
subdomain test case with H/h = 10, H being the diameter of the subdomain. Right: Total linear
iteration counts for 4 × 4 subdomain test case with different Robin parameters and mesh sizes.

We show in Figure 1 the linear and nonlinear iteration counts as a function of
the Robin parameter p for different ratios H/h. We can see that the Robin parameter
p has a large impact on the linear and nonlinear iteration counts. Observe that
when ORASPEN is used with the optimal Robin parameter, the average number of
linear iterations per Newton becomes much lower for ORASPEN than for RASPEN,
and this number does not grow as quickly as for RASPEN when we refine the
mesh. Moreover, with the optimal Robin parameter p, ORASPEN converges in
two Newton iterations, which is slightly better than the three iterations required by
RASPEN. Note that these extra savings are tolerance dependent: if we change TOL
in the stopping criterion from 10−8 to 10−10, then it will take at least three Newton
iterations for ORASPEN to converge. Nevertheless, since ORASPEN needs fewer
linear iterations per Newton step than RASPEN, ORASPEN will still outperform
RASPEN, even when both methods take three Newton iterations to converge.

Table 1 Linear and nonlinear iteration counts for 4× 4 subdomain test case for nonlinear diffusion
problem with different mesh sizes. An overlap of 4-cell widths and a stopping criterion of 10−8 are
used for all tests.

H/h
Classical Newton RASPEN ORASPEN

Nits Nits Lits Avg Lits p Nits Lits Avg Lits
10 4 3 113 37.67 22 2 51 25.50
20 4 3 152 50.67 23 2 57 28.50
40 4 3 208 69.33 25 2 66 33.00

Table 2 Linear and nonlinear iteration counts for different numbers of subdomains for nonlinear
diffusion problem with fixed ratio H/h = 10. An overlap of 4-cell widths and a stopping criterion
of 10−8 are used for all tests.

N × N
Classical Newton RASPEN ORASPEN

Nits Nits Lits Avg Lits p Nits Lits Avg Lits
2 × 2 4 3 59 19.67 12 2 34 17.00
4 × 4 4 3 113 37.67 22 2 51 25.50
8 × 8 4 3 211 70.33 28 3 133 44.33

16 × 16 4 3 418 139.33 31 3 247 82.33
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Next, we fix the ratio H/h and vary the number of subdomains; see results in Table
2. We observe that ORASPEN again requires fewer linear iteration to converge than
RASPEN, which is consistent with the linear case [6]. However, the iteration counts
for both methods grow with the number of subdomains, as the inner subdomains
move farther and farther away from the physical boundary.

For the second set of tests, we consider the same Forchheimer problem as in [3]:
−∇ · q = 0 in Ω = [0,1] × [0,1],

q · n = 0 on ∂Ω \ (Γd0 ∪ Γd1),
u = 0 on Γd0, u = 1 on Γd1,

(13)

where
q =

2Λ(x, y)∇u

1 +
√

1 + 4β |Λ(x, y)∇u|
,

Γd0 = {(x, y) ∈ ∂Ω; x + y < 0.2} and Γd1 = {(x, y) ∈ ∂Ω; x + y > 1.8}. The
permeability Λ(x, y) is equal to 1000 except in the two inclusions [0,0.5] × [0.2,0.4]
and [0.5,1] × [0.6,0.8], where it equals 1. The nonlinearity of the Forchheimer
equation is much stronger than in the first test problem, due to the appearance of
∇u in the denominator of q and the large contrast in Λ(x, y). Therefore, we adopt
the continuation approach, where we solve (13) first for β = 0 (which is a linear
problem), then for β = 0.1 and β = 1, using the solution for the previous β as the
initial guess for the next one. (Without continuation, classical Newton takes 15–20
iterations to converge, whereas (O)RASPEN takes only 4–8 in our examples.) For
the fixed fine mesh shown in Figure 2, we vary the number of subdomains and
show the iteration counts for ORASPEN and RASPEN in Table 3. We again observe
significantly lower linear iteration counts in ORASPEN than in classical RASPEN.
Finally, we remark that the performance of ORASPEN is sensitive to the Robin
parameter p, as can be seen from Figure 3. A poor choice of the Robin parameter
may lead to a higher number of nonlinear iterations compared to classical RASPEN,
negating the benefits of faster linear convergence. A good parameter choice for this
problem, and more generally for ORASPEN, is therefore the subject of ongoing
work.

NONLINEAR SCHWARZ PRECONDITIONING A21

Table 4499

Numerical results with one- and two-level RASPEN and ASPIN for the nonlinear diffusion
problem.

500

501

One-level Two-level

N ×N n lsGn lsinn lsmin
n LSn lsGn lsinn lsmin

n LSn

2 × 2 1 15(20) 4(4) 3(3) 13(23) 4(4) 3(3)

2 17(23) 3(3) 3(3) 59(78) 15(26) 3(3) 3(3) 54(86)

3 18(26) 2(2) 2(2) 17(28) 2(2) 2(2)

4 × 4 1 32(37) 3(3) 3(3) 18(33) 3(3) 3(3)

2 35(41) 3(3) 2(2) 113(132) 22(39) 3(3) 2(2) 74(126)

3 38(46) 2(2) 2(2) 26(46) 2(2) 2(2)

8 × 8 1 62(71) 3(3) 2(2) 18(35) 3(3) 3(2)

2 67(77) 3(3) 2(2) 211(240) 23(44) 3(3) 2(2) 77(139)

3 74(84) 2(2) 1(2) 28(53) 2(2) 2(1)

16 × 16 1 125(141) 3(3) 2(2) 18(35) 3(3) 3(2)

2 136(155) 2(2) 2(2) 418(471) 23(44) 2(2) 2(2) 75(140)

3 150(167) 2(2) 1(1) 27(54) 2(2) 2(1)

Fig. 9. Left: Fine grid for the 4 × 4 subdomain test case. The orange and black inclusions
correspond to low-permeability regions. Middle: Coarse grid used for two-level methods. Right:
Exact solution for the discretized 2D Forchheimer problem for the grid shown on the left.

502

503

504

Table 5513

Number of nonlinear iterations required for convergence by various algorithms for the 2D Forch-
heimer problem, as a function of problem size. Divergence of the method is indicated by “div”.

514

515

β = 0.1 β = 1
2 × 2 4 × 4 8 × 8 2 × 2 4 × 4 8 × 8

Newton 19 19 19 38 44 48
ASPIN 6 div. div. 6 div. div.
ASPIN2 5 6 7 6 7 9
RASPEN 5 4 4 5 5 5
RASPEN2 4 4 4 5 5 6

degrees of freedom per subdomain is approximately constant in each case. Neighboring507

subdomains have an overlap of one mesh size h. For the two-level methods, the coarse508

function F0 consists of a P1 discretization of the problem over the coarse grid shown509

in the middle panel of Figure 9. In all our experiments, we report the number of iter-510

ations required for convergence to the discrete fine grid solution to within a tolerance511

of 10−8.512

To measure the difficulty of this problem, we run our nonlinear algorithms (stan-519

dard Newton, one- and two-level ASPIN, one- and two-level RASPEN) on the problem520

Fig. 2 Fixed grid for the 2 × 2, 4 × 4 and 8 × 8 subdomain test cases, and the solution profile for
the Forchheimer problem.
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Fig. 3 Newton and linear iteration counts for the Forchheimer problem as a function of p.

Table 3 Linear and nonlinear iteration counts for the Forchheimer problem, with a continuation
sequence of β = 0, 0.1, 1. An overlap of 4-cell widths and a stopping criterion of 10−8 are used for
all tests.

β N × N
Classical Newton RASPEN ORASPEN

Nits Nits Lits Avg Lits p Nits Lits Avg Lits

0.1

2 × 2 5 3 112 37.33 1800 3 70 23.33
4 × 4 5 3 158 52.67 2000 3 103 34.33
8 × 8 5 3 236 78.67 2200 4 218 54.50

1.0

2 × 2 4 3 109 36.33 200 2 43 21.50
4 × 4 4 2 101 50.50 950 2 69 34.50
8 × 8 4 3 232 77.33 1050 3 161 53.67
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