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Abstrat. The history of onstrained optimization spans nearly three

enturies. The prinipal warhorse, Lagrange multipliers, was disovered

by Lagrange in the Statis setion of his famous book on Mehanis

from 1788, by applying the idea of virtual veloities to problems in stat-

is with onstraints. The idea of virtual veloities, in turn, goes bak to a

letter of Johann Bernoulli from 1715 to Varignon, in whih he announed

a very simple rule for solving hundreds of Varignon's problems in the

blink of an eye. Varignon then explains this rule in his book published

in 1725. Half a entury later, Bernoulli's rule was hosen by Lagrange

as the general priniple for the foundation of his mehanis, with the

multipliers as the main tool for treating mehanial onstraints. In the

seond edition of his mehanis, published in 1811, Lagrange stressed

the importane of his multipliers also for onstrained optimization. In

partiular, they provide spetaular simpli�ations of entire hapters of

Euler's treatise on Variational Calulus from 1744. Lagrange multipli-

ers is however a muh farther reahing onept; we show how one an

disover the important primal and dual equations in optimal ontrol

and the famous maximum priniple of Pontryagin using only Lagrange

multipliers. Pontryagin and his group, however, did not disover the

maximum priniple this way, sine they were oming from a ompletely

di�erent area of mathematis. We �nally give the omplete formulation

of PDE onstrained optimization based on duality introdued by Lions,

and onlude with an outlook on more reent appliations.

Mathematis Subjet Classi�ation (2010). Primary 01-02 ; Seondary

49-03, 65K10.

Keywords. Variational Methods, Constrained Optimization, Optimal

Control, PDE Constrained Optimization.

The authors aknowledge support by the European Siene Foundation, the Swiss National

Siene Foundation and the Centro Stefano Fransini.

∗
Our intention is not to write a full historial paper, but to highlight the parts of the

historial development we �nd interesting as mathematiians. For full details on the history

of onstrained optimization with omplete referenes, see [45℄ and [46℄.



2 M.J. Gander, F. Kwok and G. Wanner

Contents

1. Lagrange Multipliers Originating from Mehanis 2

1.1. Arhimedes' Proof for the Lever 3

1.2. Virtual Veloities and Joh. Bernoulli's �Regle� 3

1.3. The disovery of the multiplier method 8

2. Problems of Maximum and Minimum 9

2.1. Variational Problems 10

2.2. Variational Problems with Constraints 11

2.3. Solving Optimal Control Problems with Lagrange multipliers 13

3. Optimal Control and the Maximum Priniple 14

3.1. Invention of Lagrange Multipliers in Matrix Notation 15

3.2. Lagrange Multipliers for Optimal Control Problems 18

3.3. Early non-lassial optimal ontrol problems 21

3.4. Invention of the Maximum Priniple 23

3.5. General formulation of the Maximum Priniple 32

3.6. Example of an ODE Control Problem 35

3.7. Caratheodory 37

4. PDE Constrained Optimization 38

4.1. Early Work 39

4.2. Lions 40

4.3. Derivation by Lagrange Multipliers 43

4.4. Later developments 44

Referenes 46

1. Lagrange Multipliers Originating from Mehanis

�Le Traité de Dynamique de M. d'Alembert, ... parut en 1743, ... Cette

méthode réduit toutes les loix du mouvement des orps à elles de leur

équilibre, & ramene ainsi la Dynamique à la Statique� (Lagrange 1788,

Seonde Partie, p. 179)

Lagrange's method of multipliers originates from Lagrange's researh in me-

hanis, more preisely his Méanique analytique [33℄, �rst published in 1788,

with a seond, improved edition [34℄ in 1811/15. In his long introdutions,

Lagrange traes the following history for his work:

1. Arhimedes, Pappus, Varignon: For nearly 2000 years, researh in meha-

nis onerned mainly Statis, beginning with the disovery of the law of the

lever by Arhimedes. Then, mainly by researhers as Pappus, Stevin, Rober-

val and Desartes, theories for the equilibria of ever more ompliated �ma-

hines� were developed, ulminating in the Nouvelle Méanique by Varignon.

2. Galilei, Newton, Leibniz, the Bernoulli brothers, Euler : The next period

then onentrated on the Dynamis of inreasingly omplex mehanial sys-

tems (mass points, liquids, rigid bodies) with more and more analytial meth-

ods (di�erential equations).
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3. Lagrange: Finally, the �priniple of d'Alembert� from 1743 redues prob-

lems in dynamis bak to problems in statis (see quotation), so that La-

grange'sMéanique analytique again started with an extensive �première par-

tie� on statis, omprising nearly 200 pages, as a foundation for the now-alled

Lagrangian mehanis in the seond part. The main idea there was the Prin-

iple of Virtual Veloities, whih �rst appeared in a letter of Joh. Bernoulli

from 1715 to Varignon. The extension of this idea to onstrained mehanial

problems then led to the invention of Lagrange multipliers.

1.1. Arhimedes' Proof for the Lever

The very �rst great disovery in Statis was made by Arhimedes with the

law of the lever: two bodies are in equilibrium if their weights are inversely

proportional to their arm lengths (see Fig. 1 and [1℄).

(Opera, printed 1615 in Paris, BGE Ka459)

2 5E ∆
Prop. 6 (rat.) and 7 (irrat.)

Figure 1. Arhimedes' law for the lever

The proof of Arhimedes is very beautiful: He started from the axiom

that equal weights at equal distanes are in equilibrium (see Fig. 2).

(Opera 1615 (Paris BGE Ka459)

a a

Figure 2. Arhimedes' hypothesis

Then, after more axioms, several preliminary propositions and orollar-

ies, he proved his Proposition 6, valid for rational ratios of weights, in two

pages of Greek text. His idea was to distribute the weight units left and right

in a symmetri way to obtain an overall symmetri on�guration (see Fig. 3

for an illustration in the ase of a 5 : 2 lever). Fig. 4 shows the orresponding

proposition and �gure for the ratio 3 : 2, whih appear in the 1615 edition of

Arhimedes' Opera (observe that the letters L,E,C,G,D,K of the Latinized

version orrespond to Arhimedes' Λ, E,Γ, H,∆,K).

1.2. Virtual Veloities and Joh. Bernoulli's �Regle�

�... il n'y a pas un seul as d'equilibre dans toute la mehanique tant des

�uides que des solides, qui ne puisse etre expliqué par ette regle ... J'ay
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Λ E
Γ

H ∆ K

Figure 3. Arhimedes' proof of his Prop. 6

(Opera 1615 (Paris BGE Ka459)

Figure 4. Arhimedes' Prop. 6 with �gure from the 1615 edition

don raison d'appeller le grand et le premier prinipe de statique sur

lequel j'ay fondé ma regle ...� (Joh. Bernoulli in his letter to Varignon,

1715)

�... je rois pouvoir avaner que tous les prinipes généraux qu'on pour-

rait peut-être enore déouvrir dans la siene de l'équilibre ne seront

que le même prinipe des vitesses virtuelles, envisagé di�éremment, et

dont ils ne di�éreront que dans l'expression.� (Lagrange 1811, Setion

I, �17)

All the e�orts during the enturies after Arhimedes in generalizing this result

to more and more ompliated situations ulminated in the work of Pierre

Varignon, who elaborated during many deades his Nouvelle Méanique [51℄,

onsisting of two heavy volumes published posthumously in 1725

1
, with

hundreds of results illustrated on 64 plates of �gures (see Fig. 5).

1
on the frontispiee is written �Dont le projet fut donné en M.DC.LXXXVII�.



Constrained Optimization 5

Figure 5. Six out of the 64 �gure plates from Varignon

(1725); (the upper left �gure of the upper left plate explains

the priniple of virtual veloities as in Fig. 1.5 below)

When this work was nearly ompleted, Joh. Bernoulli explained in a

letter to Mr. le Chev. Renau, with a opy to Varignon, his �regle� based

on the Virtual Veloities, whih allowed one to replae all suh �gures by

one general equation. Varignon had some di�ulty in admitting that all his

work over deades was delared to be an �easy game�

2
and ontested the

general truth of this rule. Bernoulli then got angry

3
and explained his ideas in

more detail, written in a seond letter, dated Feb. 26, 1715

4
. Varignon then

inluded Bernoulli's �regle� as �Theoreme XL� in �Setion IX� (�Corollaire

2
�Votre projet d'une nouvelle mehanique fourmille d'un grand nombre d'exemples, dont

quelques uns à en juger par les �gures paroissent assez ompliqués; mais je vous de�e de

m'en proposer un à votre hoix, que je ne resolve sur le hamp et omme en jouant par ma

dite regle.�

3
�... ependant permettez moy que je vous reprohe ii une nonhalane qui vous est arrivé

assez souvent en e que vous portez quelques fois votre jugement un peu à la legere, sans

examiner, si e que vous royez etre une objetion en est veritablement une ; ... 'est don

pour une autre fois que je vous donne et avertissement à �n que vous soyez à l'avenir sur

vos gardes, quand il s'agit de juger...�

4
Varignon gave in his book the wrong date 1717, whih was also opied by Lagrange.
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general de la Théorie préedente�) of his book, by saying that, unfortunately,

it was too late to rewrite all the rest of the book (see Fig. 6).

Figure 6. Bernoulli's �regle� as published by Varignon

(1725, Vol. II, p. 176)

We now desribe the derivation of Benoulli's �regle� following the text

of Lagrange (Lagrange [33℄, 1788, Prem.Partie, Setion II). However we do

not follow the style of Lagrange, who proudly avoided the use of any �gures.

We start with a system ontaining two fores P and Q, illustrated here

by a lever (see Fig. 7, left) attahed at O with arm lengths a and b. We then

suppose that the system reeives a virtual veloity during an in�nitely small

interval of time, suh that the lever arms reeive in�nitely small displaements

dp and dq proportional to a and b. Arhimedes' law then tells us that for

equilibrium to our, the virtual veloities and the fores must be inversely

proportional. Thus, if we pay attention to the signs of the displaements, we

obtain

P

Q
= −

dq

dp
or Pdp+Qdq = 0.

a b−dp dq

P Q

O a b c
d

−dp dq −dr

P

Q

Q′
Q′′ R

O O′

Figure 7. The Lever (left); Composed levers (right)

Let us now make the system more ompliated by onsidering three

fores P , Q and R instead of two (Fig 7, right). We deompose the fore Q as

sum Q = Q′ +Q′′
in suh a way that both subsystems to the left and right

are in equilibrium, i.e., suh that

Pdp+Q′dq = 0 and Q′′dq +Rdr = 0,
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so we get Pdp +Qdq + Rdr = 0 as ondition for an equilibrium. By adding

more and more fores to the system, we obtain

Pdp+Qdq +Rdr + . . . = 0 (1.1)

for an equilibrium. This equation, expressed in words and not in formulas,

was preisely Joh. Bernoulli's �regle� of Fig. 6. The terms Pdp,Qdq, . . . were
alled �Energies� by Bernoulli. Lagrange alls them �moments� of the fores

and alls (1.1) �la formule générale de l'équilibre� (see Fig. 8).

Figure 8. Bernoulli's rule as published by Lagrange 1788

p

q

r

P
Q

R

−dp

dq
−dr

(a,b,c)

(f,g,h)

(l,m,n)

P Q

R

dx

dy

(a,b,c)

(f,g,h)

(l,m,n)

L=0

Figure 9. A point attahed by three fores (left); as on-

strained problem (right)

Example. The �rst example Lagrange onsiders in detail (in Setion V) is a

mass point attahed by several fores P,Q,R to �xed points with Cartesian

oordinates (a, b, c), (f, g, h), (l,m, n) (see Fig. 9, left). Inserting

p =
√

(x−a)2 + (y−b)2 + (z−c)2, dp =
1

p
·((x−a)dx+(y−b)dy+(z−c)dz) ,

and similarly for dq, dr, formula (1.1) beomes

Xdx+ Y dy + Zdz = 0 (1.2)

where X = P x−a
p + Qx−f

q + Rx−l
r , Y = P y−b

p + Q y−g
q + R y−m

r and Z =

P z−c
p +Q z−h

q + R z−n
r . Sine, at the moment, our mass point is ompletely

free, dx, dy and dz are independent

5
, and the ondition for equilibrium is

X = 0 , Y = 0 and Z = 0 . (1.3)

5dp, dq, dr are not independent at the equilibrium point.
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In the ase where the fores P,Q,R are equal (or proportional) to the dis-

tanes p, q, r, this formula simpli�es onsiderably and the equilibrium position

beomes the baryenter of the triangle spanned by the three �xed points (or

of a pyramid in the ase of four fores, a result whih Lagrange attributes to

Leibniz).

1.3. The disovery of the multiplier method

Suppose now (see Fig. 9, right) that the mass point is restrited to a surfae

L = 0, so that in (1.2) the displaements dx, dy, dz are not independent, but
are restrited to the tangent spae of L = 0, i.e. they must satisfy

dL =
∂L

∂x
dx+

∂L

∂y
dy +

∂L

∂z
dz = 0 . (1.4)

This means geometrially that, whenever (1.4) holds, i.e. the vetor (dx, dy, dz)
is orthogonal to (∂L∂x ,

∂L
∂y ,

∂L
∂z ), we must satisfy (1.2) as well, i.e. the vetor

(dx, dy, dz) must also be orthogonal to (X,Y, Z). As a onsequene, both

vetors must be parallel so that there exists a onstant λ suh that

X + λ
∂L

∂x
= 0 , Y + λ

∂L

∂y
= 0 and Z + λ

∂L

∂z
= 0 . (1.5)

However, vetors and salar produts were not yet familiar onepts to La-

grange, so he argued di�erently (�Il n'est pas di�ile de prouver par la théorie

de l'élimination des équations linéaires...�): we eliminate one of the unknowns,

say dz, by multiplying (1.4) with a suitable onstant, whih is λ = −Z/∂L
∂z ,

and add it to (1.2), whih gives

(

X + λ
∂L

∂x

)

· dx+

(

X + λ
∂L

∂y

)

· dy = 0 , Z + λ
∂L

∂z
= 0 .

Here, dx and dy are independent and equations (1.5) must be satis�ed, the

last one being the formula for λ.
Condition (1.5) just means that we have applied the virtual veloity

argument, without onstraints, to the system

Xdx+ Y dy + Zdz + λdL = 0 . (1.6)

Lagrange realizes that this �multiplier� λ, whose invention originated

from the theory of linear equations, also has a physial meaning: it represents

the onstant whih, when multiplied with the vetor (∂L∂x ,
∂L
∂y ,

∂L
∂z ), yields the

fore that holds the partile onto the surfae L = 0.

Figure 10. Lagrange's �équation générale� for ALL prob-

lems of equilibria

To inlude an additional onstraint M = 0, we see from linear algebra

that we an simply add another term µdM , and so on. Finally, one an
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generalize (1.1) to any system with any number of onstraints by writing

Pdp+Qdq +Rdr + . . .+ λdL+ µdM + νdN + . . . = 0 (1.7)

(see Fig. 10). This disovery was alled �Méthode très-simple� in Setion IV of

the �rst edition from 1788. Twenty-three years later, in [34℄, Lagrange stressed

the importane of this idea by giving it the partiular name �Méthode des

Multipliateurs� (see Fig. 11).

Figure 11. Heading of �1 in Setion IV of Lagrange (1811)

2. Problems of Maximum and Minimum

The above problems of virtual veloities are losely related to problems of

maximizing or minimizing a funtion. This onnetion is mentioned brie�y

in Lagrange (1788), but it was only in the seond edition from 1811 that

Lagrange stresses this important fat by an entire paragraph (see Fig. 12). If

U(x, y, z) is a �potential� funtion6 satisfying ∂U
∂x = X ,

∂U
∂y = Y and

∂U
∂z = Z,

where X , Y and Z are as in (1.2), then the onditions (1.3) mean nothing

else than

U(x, y, z) −→ min or max. (2.1)

Similarly, in the ase where we have to minimize or maximize a funtion

U(x, y, z) under a onstraint L(x, y, z) = 0, the orresponding equations (1.5)
and (1.6) would mean that we have to minimize or maximize

U(x, y, z) + λL(x, y, z) −→ min or max (2.2)

without onstraints. This is the Lagrange multiplier method for onstrained

optimization. The geometri meaning of the term λL(x, y, z) is the following:
it twists the funtion U(x, y, z), without hanging its values on the surfae

L = 0, suh that U+λL beomes �at in all diretions at the minimal position.

For additional onstraints, we add additional multipliers, and for higher

dimensions, we add additional variables.

Figure 12. Heading of �3 in Setion IV of Lagrange (1811)

6
Up to now, we have preserved all letters exatly as they appear in Lagrange, but we have

hanged this potential, denoted Π by Lagrange, to U , as it is usual now.
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Example: The Catenary. One of the examples Lagrange disusses in detail

(Part I, Set. V) is a hain of partiles attahed by ords of onstant length

in an arbitrary fore �eld. If we assume the fores to be onstant downwards,

we have the situation as in Fig. 13, for whih (1.7) beomes

dy1+dy2+ ...+λ0 ·d((x0 −x1)
2+(y0− y1)

2− ℓ2)+λ1 ·d(...)+ ... = 0. (2.3)

Di�erentiating the onstraints and olleting the oe�ients of, say, dx2, dy2,
we obtain

λ2(x2 − x3) = λ1(x1 − x2)
λ2(y2 − y3) = λ1(y1 − y2)− 1

⇒
y2 − y3
x2 − x3

=
y1 − y2
x1 − x2

+ onst.,

whih means that the slope is a linear funtion of the ar length. This fat is

in aordane with �... les formules onnues de la hainette�.

ℓ

ℓ

ℓ

(x0,y0)

(x1,y1)

(x2,y2)

(x3,y3)

(x0 − x1)
2 + (y0 − y1)

2 − ℓ2 = 0
(x1 − x2)

2 + (y1 − y2)
2 − ℓ2 = 0

(x2 − x3)
2 + (y2 − y3)

2 − ℓ2 = 0
. . .

Figure 13. The Catenary as a onstrained mehanial system

The Catenary as optimization problem. If we ask for the hain with y1+ y2+
y3 + . . . −→ min under the same onstraints as in Fig. 13, i.e. if we seek the

hain with the lowest enter of gravity, (2.2) beomes

y1+ y2+ ...+λ0 · ((x0−x1)
2+(y0− y1)

2 − ℓ2)+λ1 · (...)+ ... −→ min. (2.4)

This equation, when di�erentiated, gives preisely the formula (2.3). We thus

see that the atenary is the urve with the lowest enter of gravity for a

given ar length, a result Euler ([20℄ 1744, Chap.V) found in a muh more

ompliated way, as we will see below.

2.1. Variational Problems

Variational problems are optimization problems where not only some values,

but an entire funtion y(x), is unknown, for example

J =

∫ b

a

Z(x, y, p) dx −→ min or max, where p =
dy

dx
(2.5)

and Z(x, y, p) is a given funtion. We refer to Gander-Wanner ([28℄ SIREV

2013, formula (1.3), (1.4) and Setion 9.1) to see how Euler ([20℄ 1744,

Chap. 2) turned this problem into a di�erential equation

N −
d

dx
P = 0 where N =

∂Z

∂y
, P =

∂Z

∂p
, (2.6)
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and, in the ase where Z(y, p) is independent of x, how this equation an be

simpli�ed to

Z − p ·
∂Z

∂p
= Const. (2.7)

2.2. Variational Problems with Constraints

y

g(y)
max !

L

B

C

E

T

a

M

N

Figure 14. The isoperimetri problem of Jakob (left, the

drawing is for g(y) = y2); the same piture in Johann'sOpera

Omnia from 1742, vol. 2, p. 270 (right)

The oldest problem of this type, the so-alled �isoperimetri problem�,

was a hallenge from Jakob Bernoulli to his brother Johann in 1697: Given

two points B and C (see Fig. 14), �nd a urve BaC of a given length L suh

that the area BMETNB is maximal; here, for any distane aN = y, the
distane MN = g(y) is a given funtion of y. In formulas, this means

∫ T

B

g(y(x)) dx −→ max subjet to

∫ T

B

√

1 + p2 dx = L . (2.8)

Figure 15. Euler's solution of variational problems; unon-

strained (left), onstrained (right)
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Solution. Johann, who had aumulated suess after suess in the years

before, thought that he ould solve this seemingly simple problem in �three

minutes�. The three minutes turned into deades until Johann Bernoulli pub-

lished an extensive paper in 1718 (Mémoires de l'Aad. Roy. des Sienes de

Paris, p. 100). The olletion of all the solutions of Jakob and himself �lls

more than 50 pages in Johann's Opera Omnia ([4℄ vol. 2, p. 214� 269). Fi-

nally, Euler ([20℄ 1744, in Chap. 5 of E65) developed his general theory for

suh onstrained problems. While in Chap. 2, Euler arrived at (2.6) by �vir-

tual� displaements of the funtion values of the unknown funtion one-by-one

(see Fig. 15, left), he was unable to displae the funtion values independently

for onstrained problems of the type (1.4). Instead, he varied the values two

by two n 7→ ν, o 7→ ω (see Fig. 15, right) and had to build an entirely new

theory (16 pages; �1 through �39 of Chap. 5).

As Lagrange demonstrates proudly in many examples (in Setion V), the

idea of using multipliers to deal with onstraints extends straightforwardly

to these new problems. For the historial example (2.8), this turns into (for

B = 0, T = 1)

J =

∫ 1

0

(

g(y) + λ
(

√

1 + p2 − L
)

)

dx −→ max. (2.9)

For this problem, ondition (2.7) beomes, after simpli�ation,

g(y) +
λ

√

1 + p2
= C + λL .

We set C+λL = −K, solve for p = dy
dx and separate the variables. This gives

the solution (ompared to the one from Johann's Opera Omnia, vol. 2, p. 244)

∫

g(y) +K
√

λ2 − (g(y) +K)2
dy = x+ c .

(2.10)

This integral only has an elementary solution for g(y) = y, i.e. the problem of

�nding the maximal area surrounded by a urve of presribed length. As Euler

shows in �41 of [20℄ E65, Caput V, the integral then leads, not surprisingly,

to a irular solution (quae est aequatio generalis pro Cirulo). The drawing

for g(y) = y2 in Fig. 14 (left) has been produed by numerial integrations.

An Example with two onstraints. For problems with two onstraints (�Pluribus

Proprietatibus�), Euler developed again an entirely new theory (E65, Chap.VI).

With Lagrange, we just have to add a seond multiplier. We demonstrate this

on Euler's very last example (�24 in Chap. 6): We seek a urve y(x) (the urve
DMAMD in Fig. 16, right) of a given length L, as well as a onstant a (the

distane CQ), suh that the area of NDMAMDNQN has a given value M ,

and the enter of gravity of this �gure should be as low as possible. Expressed

in formulas we have (we hoose C as origin and take the urve upside down)

∫ 1

−1

√

1 + p2 dx = L ,

∫ 1

−1

(y+a) dx =M ,

∫ 1

−1

(y+a) ·
y − a

2
dx −→ max.
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0 x

y

a
D

M

D

NN

A

Figure 16. Euler's problem from E65 with two onstraints

Here, we introdue two multipliers λ and µ and get

J =

∫ 1

−1

(

(y2 − a2)+λ
(

√

1 + p2 −L
)

+µ
(

(y+ a)−M
)

)

dx −→ min or max.

Sine we have two unknowns y and a here, we annot work with the simpli�ed

equation (2.7). Instead, we have to use (2.6) for eah of them:

for y: 2y + µ−
d

dx

(

λ
p

√

1 + p2

)

= 0,

for a: −2a+ µ = 0 ⇒ µ = 2a .

This, inserted into the �rst equation, gives

d

dx

( p
√

1 + p2

)

= k(y + a) .

If we think of a water basin, this result expresses the fat that the urvature

of the basin is proportional to the water pressure.

2.3. Solving Optimal Control Problems with Lagrange multipliers

Before explaining the invention of the maximum priniple for ontrol prob-

lems in the next setion, we �rst show that the idea of Lagrange multipliers

provides an elegant entry point to the treatment of ertain lasses of suh

problems. Let us look at a problem of the type

∫ b

a

k(x, y, u) dx −→ min or max, (2.11)

subjet to

dy

dx
= f(x, y, u), y(a)=A, y(b)=B.

Here we have two types of funtions to �nd: the values of yi(x), whih are

de�ned via a system of di�erential equations, and the so-alled ontrols uj(x),
whih ontrol the movement of the y's and with the help of whih the ost

funtion k(x, y, u), when integrated over the interval [a, b], is to be optimized.

Idea: sine the di�erential equations in (2.11) represent an in�nite num-

ber of onstraints as x varies, we introdue Lagrange multipliers λi(x) as
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funtions multiplying the onstraints y′i − fi(x, y, u) = 0. Inserting this into

the integral, we thus obtain

∫ b

a

{

k(x, y, u) + [pT − fT (x, y, u)] · λ(x)
}

dx −→ min or max. (2.12)

This is now an unonstrained variational problem with a �ost funtion�

Z(x, λ, y, p, u). Here we have three sets of unknowns, the Lagrange multipliers

λi(x), the di�erential equation solutions yi(x) together with their derivatives

pi(x), and the ontrol funtions uj(x). For eah of these, we apply Euler's

equation (2.6):

∂Z
∂λ = 0 : y′(x) = f(x, y, u)

∂Z
∂y − d

dx
∂Z
∂p = 0 : λ′(x) = ∂k

∂y (x, y, u)−
∂f
∂y

T
(x, y, u) · λ(x)

∂Z
∂u = 0 : 0 = ∂k

∂u (x, y, u)−
∂f
∂u

T
(x, y, u) · λ(x)

(2.13)

This is a system of di�erential algebrai equations (DAEs). The �rst set

of equations are the desired onstraints, the seond set of equations is the

so-alled adjoint system, whose geometri meaning will be disussed below,

and the third set onsists of algebrai equations that determine the ontrols

for every value of x.

Example. A body gliding in R2
without frition should reeive a new diretion

with the help of fores (u1(t), u2(t)), 0 ≤ t ≤ T in suh a way that this ontrol

uses as little energy as possible:

∫ T

0
1
2 (u

2
1 + u22) dt −→ min.

Solution. With y1, y2 as the positions of the body and y3, y4 as veloities, the
equations of motion together with the equations in (2.13) beome

ẏ1 = y3
ẏ2 = y4
ẏ3 = u1
ẏ4 = u2

λ̇1 = 0

λ̇2 = 0

λ̇3 = −λ1
λ̇4 = −λ2

u1 − λ3 = 0
u2 − λ4 = 0

We see that λ1, λ2 are onstants, λ3 = u1, λ4 = u2 are linear, y3, y4 quadrati,
and thus y1, y2 ubi; the solution urves are thus, not surprisingly, ubi

splines. The time length T an be freely hosen. In the piture above, T is

hosen to be that of a uniform irular movement, but the optimal solution

is slightly di�erent.

3. Optimal Control and the Maximum Priniple

An important ase in appliations is the one in whih Ω [ontaining the

ontrols℄ is a losed region [. . . ℄. In the ase that Ω is an open set [. . . ℄,
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the variational problem formulated here turns out to be a speial ase

of the problem of Lagrange. (Pontryagin 1959 [47℄)

In the �eld of optimal ontrol, there were historially two approahes: in the

western world, researhers tried to takle these problems using variational

alulus and Lagrange multipliers, as we have already seen for a �rst example

in Subsetion 2.3. In Russia, a group of researhers led by Pontryagin tried

to solve these problems using diret analysis and geometri arguments, with

a partiular emphasis on handling the important ase of losed and bounded

ontrol sets. Their approah led to the invention of the maximum priniple

in 1956; they only later notied the relation to Lagrange multipliers, see the

quote above. To explain these two approahes historially, we �rst present the

invention of Lagrange from Setion 1.3 again, but now using matrix notation

in preparation for its use in optimal ontrol problems.

3.1. Invention of Lagrange Multipliers in Matrix Notation

Lagrange, in his book from 1797: �Théorie des fontions analytiques,

ontenant les prinipes du alul di�érentiel, dégagés de toute onsid-

ération d'in�niment petits, d'évanouissans, de limites ou de �uxions, et

réduits à l'analyse algébrique des quantités �nies�

Lagrange, who in his youth made his greatest triumphs by free and mas-

terful manipulations of di�erentials, later in his life ondemned them vigor-

ously by replaing �di�erentials� by �derivatives� and �integrals� by �primi-

tives�, see the quote above. Under the in�uene of Cayley's matrix notation,

the above theory subsequently took a di�erent shape, the one we are used

to seeing today: we �rst onsider a �nite dimensional optimization problem

with onstraints, and show how the Lagrange multipliers are none other than

multipliers like in Gaussian elimination, but without using the notation of dif-

ferentials that were essential in their invention, as we have seen earlier. This

will also reveal a further advantage over the diret solution of the omplete

optimality system in the presene of onstraints, sine the system obtained

with Lagrange multipliers is muh smaller. Suppose we wish to solve the

onstrained optimization problem

f(x) −→ min, g(x) = 0, (3.1)

where f : R
n → R is the objetive funtion and g : R

n → R
m

are the

onstraints, m < n. To eliminate the onstraints, we partition the vetor x

into x = (y,u), y ∈ R
m
, u ∈ R

n−m
, and invoke the impliit funtion theorem

to obtain y = y(u) from the onstraint g(x) = 0. Substituting this into the

objetive funtion, we obtain the unonstrained optimization problem

f(y(u),u) −→ min . (3.2)

A neessary ondition for a loal minimum is therefore

df

du
=
∂f

∂y
·
∂y

∂u
+
∂f

∂u
:= (Y T

u ∇yf +∇uf)
T = 0, (3.3)
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where Yu : R
n−m → R

m×(n−m)
is the Jaobian of the impliit funtion

y(u), and ∇yf = fT
y and ∇uf = fT

u are the gradients (olumn vetors) of

the objetive funtion with respet to the variables y and u. The neessary

optimality ondition (3.3) is a small system involving the n −m unknowns

in the vetor u only. However, only in very simple situations it is atually

possibe to expliitly form the funtion y(u) and di�erentiate it to obtain Yu.
In general, the Jaobian matrix Yu is also unknown and depends impliitly

on the solution y, whih must also be alulated. To obtain equations for y,

one an diretly use the onstraint g(y,u) = 0, and for the Jaobian, one

an write the total derivative with respet to u of g(y(u),u) = 0. This leads
to the omplete optimality system

Y T
u ∇yf +∇uf = 0, (3.4)

Y T
u G

T
y +GT

u = 0, (3.5)

g = 0, (3.6)

where Gy : R
n → R

m×m
is the Jaobian matrix of g with respet to y,

and Gu : Rn → R
m×(n−m)

is the Jaobian matrix of g with respet to u.

Equation (3.4) ontains n −m equations, (3.5) is a matrix equation for the

Jaobian matrix Yu and ontains a total of m(n − m) equations, and (3.6)

ontains m equations from the onstraints. This gives a total of n+m(n−m)
equations for the n unknowns in y and u ombined, and the m(n − m)
unknowns in the Jaobian Yu, a very big system. The key idea of Lagrange in

this setting is that one an eliminate many of these equations using Gaussian

elimination to arrive at a smaller, but equivalent system. If the Jaobian

Gy is invertible, then multiplying the matrix-valued equation (3.5) by the

vetor-valued multiplier λ := −G−T
y ∇yf from the right yields

Y T
u Gyλ +GT

uλ = −Y T
u G

T
yG

−T
y ∇yf +GT

uλ = −Y T
u ∇yf +GT

uλ = 0. (3.7)

Adding this equation to (3.4), the umbersome term with the large Jaobian

matrix anels and we obtain the smaller but equivalent optimality system

∇uf +GT
uλ = 0, (3.8)

∇yf +GT
y λ = 0, (3.9)

g = 0, (3.10)

whih now ontains (n−m) +m+m = n+m equations for the n unknowns

y and u ombined, plus the m Lagrange multipliers λ. The system (3.8�

3.10) is equivalent to (3.4�3.6), and therefore represents the same neessary

ondition for a minimum of the original onstraint problem (3.1), but it

has the advantage of having many fewer unknowns to solve for. The key

observation of Lagrange now was that this simpler neessary ondition for

optimality an be easily obtained from the funtion

L(u,y,λ) := f(y,u) + g(y,u)Tλ, (3.11)

by simply taking derivatives with respet to its arguments. The funtion in

(3.11), now known as the Lagrange funtion or the Lagrangian in honor of
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its inventor, is obtained by simply adding to the objetive funtion the sum

of the onstraints, eah multiplied by a Lagrange multiplier.

The new formulation, however, introdues an important di�ulty when

the remaining u variables are not allowed to vary freely, but are onstrained

to be in a losed set U . This is often the ase in optimal ontrol problems,

sine the ontrols may not be arbitrarily large. Then the neessary ondition

(3.3) for a minimum solution of (3.2) is only relevant if the minimum is in the

interior of U ; when the minimum ours on the boundary, whih often hap-

pens in pratie, the ondition (3.3) need not be satis�ed, i.e., the variation

of the Lagrangian with respet to u in (3.8) need not vanish. One possibility

in that ase is to revert to the minimization ondition of the Lagrangian with

respet to u, whih leads to the neessary onditions for optimality

L(y,u,λ) −→ min with respet to u (3.12)

∇yf +GT
y λ = 0, (3.13)

g = 0. (3.14)

Sine the onstraint g = 0 must be satis�ed at the optimum, we have

L(y,u,λ) = f(y,u) there, so (3.12) is equivalent to saying that

f(y,u) −→ min with respet to u. (3.15)

In this ase, however, the equation (3.13) for the Lagrange multipliers is no

longer needed, sine they are not used anywhere in the system; if we remove

it, we just get bak the original problem formulation (3.1), exept that one

now sees expliitly that the minimization is only possible with respet the

remaining �ontrol� variables u, sine the other variables y are determined by

the onstraints. Nevertheless, the observation to replae the derivative on-

dition again by the minimization ondition points in the diretion of results

obtained by Pontryagin and his group and leads to the maximum priniple

for optimal ontrol problems. We will see later that they hose a di�erent

funtion, a Hamiltonian, whih has the same stationary points in u as the

Lagrangian

7
.

A di�erent way of haraterizing minima on a losed set of ontrols U is

to ensure that whenever the minimum ours on the boundary, any variation

in u that moves the point away from the boundary into the interior of the

losed set must lead to an inrease in the objetive funtion, i.e.

(∇uf +GT
uλ)

T δu ≥ 0, (3.16)

∇yf +GT
y λ = 0, (3.17)

g = 0, (3.18)

for all admissible variations δu suh that u + δu remains in the losed set

of the admissible ontrols U . This approah beame known under the name

Karush�Kuhn�Tuker (KKT) onditions, whih we will see again in Setion

4.2

7
See also Carathéodory [16℄ for a general study of equivalent formulations.
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3.2. Lagrange Multipliers for Optimal Control Problems

Using what I had learned at Columbia about �ights of airplanes, I set

out to formulate this problem as a variational problem. I found that the

usual variational formulation did not �t very well. It was too lumsy.

And so I reformulated the Problem of Bolza so that it ould be applied

easily to the time-optimal problem at hand. It turns out that I had

formulated what is now known as the general optimal ontrol problem.

I wrote it up as a RAND report [31℄ and it was widely irulated among

engineers. (Hestenes, in a letter to Saunders Ma Lane, see [39℄)

Optimal ontrol problems were beoming important with the invention of

moving high-teh mehanial devies, espeially in the ontext of war. A typ-

ial example is to guide an airplane along an optimal trajetory to reah

a target, and this was preisely the problem onsidered by Hestenes in his

famous RAND report [31℄, see also the quote above. Hestenes, who had ob-

tained his PhD on the alulus of variations under the diretion of Bliss, was

a young professor in Chiago during the Seond World War and moved to

UCLA afterward. He was also doing researh for RAND, a nonpro�t institu-

tion with the goal of improving poliy and deision-making through researh

and analysis, whih still exists today (www.rand.org). In his report, he for-

mulated the problem of guiding an airplane in an optimal way from an initial

position to a �nal position as an optimization problem with a onstraint given

by a di�erential equation. In modern notation, the problem reads

∫ T

0

f(y, u)dt −→ min, (3.19)

ẏ = g(y,u), (3.20)

y(0) = y0, (3.21)

y(T ) = yT , (3.22)

where the vetor y(t) ontains the position and veloity vetors of the air-

plane, and the vetor u(t) ontains the angles of the ontrol vanes of the

airplane and the thrust of the engines. Comparing this optimal ontrol prob-

lem with the general onstrained minimization problem (3.1), Hestenes no-

tied the striking similarity, so he applied the Lagrange multiplier tehnique

we saw in Subsetion 2.3 to obtain a neessary ondition for optimality: he

introdued the Lagrangian as in (3.11),

L(y,u,λ) :=

∫ T

0

f(y, u)dt+

∫ T

0

(ẏ − g(y,u))T λdt, (3.23)

where all the variables now depend on time, y = y(t), u = u(t), λ = λ(t)
(this is preisely equation (2.12) in the new notation). In order to obtain

neessary onditions for optimality, he omputed the derivatives with respet

to the variables y, u, and λ using variational alulus (as Euler did in E420,

see [28℄): if y is an optimum, then for an arbitrary variation y + εz, the
derivative of L(y+εz,u,λ) with respet to ε must vanish at ε = 0, regardless
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of what the variation z is. Thus, we obtain as the �rst neessary ondition

d

dε
L(y + εz,u,λ)|ε=0 =

∫ T

0

∇yf
T (y, u)zdt+

∫ T

0

(ż −Gy(y,u)z)
T
λdt

=

∫ T

0

(∇yf(y, u)− λ̇−GT
y (y,u)λ)

Tzdt+ λTz|T0 = 0,

where we used integration by parts to fator out the arbitrary variation z,

and the fat that

(Gyz)
Tλ = zTGT

y λ = (zTGT
y λ)

T = λTGyz = (GT
y λ)

Tz.

Now the variation z(t) must be zero for t = 0 and t = T , sine the values

of y are �xed there, see (3.21) and (3.22); thus, we have z(0) = z(T ) = 0,

so the boundary terms λTz|T0 in (3.24) must vanish as well. However, apart

from the initial and �nal onditions, the variation z(t) is otherwise arbitrary,
and hene from (3.24), the term multiplying z(t) under the integral must be

zero. This leads to a di�erential equation for λ, namely

λ̇ = −GT
y (y,u)λ +∇yf(y, u), (3.24)

without initial or �nal ondition, sine y was �xed at both ends. Similarly,

sine u is optimal, we an add an arbitrary variation u + εv and require

the derivative of L(y,u + εv,λ) with respet to ε to vanish at ε = 0 for all

variations v. This yields the next neessary ondition

d

dε
L(y,u+ εv,λ)|ε=0 =

∫ T

0

∇uf
T (y, u)vdt+

∫ T

0

(−Gu(y,u)v)
T
λdt

=

∫ T

0

(∇uf(y, u)−GT
u (y,u)λ)

Tvdt = 0.

Sine the variation u(t) is arbitrary, from (3.25), the term multiplying v(t)
under the integral must be zero, whih leads to an equation for u, namely

GT
u (y,u)λ = ∇uf(y, u). (3.25)

Finally, adding an arbitrary variation λ+εµ, the derivative of L(y,u,λ+εµ)
with respet to ε must vanish at ε = 0 for all variations µ, and we obtain as

the last neessary ondition

d

dε
L(y,u,λ+ εµ)|ε=0 =

∫ T

0

(ẏ − g(y,u))T µdt = 0, (3.26)

and we simply get bak the equations of motion. Hene, for an optimal ontrol

problem, we get from the Lagrange multiplier rule a system of neessary

onditions for optimality that is very similar to the lassial onditions (3.8�

3.10), and idential to (2.13):

∇uf(y, u)−GT
u (y,u)λ = 0, (3.27)

∇yf(y, u)−GT
y (y,u)λ = λ̇, (3.28)

g(y,u) = ẏ, (3.29)
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the only di�erene is that the sign is �ipped on the G terms, beause this

is how we introdued the onstraints, and that a term with a time deriva-

tive appears on the right, beause the onstraint is an ordinary di�erential

equation. This system ontains preisely enough equations for the number of

unknowns: there are as many algebrai equations in (3.27) as unknowns in

u(t) for t ∈ [0, T ], and (3.28)�(3.29) is a oupled �rst-order system of ordi-

nary di�erential equations in y(t) (optimal trajetory) and λ(t) (multipliers)

with preisely two boundary onditions at t = 0 and t = T (both on the

unknown y in our ase). Hestenes was therefore able to solve this oupled

system numerially to obtain andidates for the optimal trajetory.

The optimality system (3.27�3.29) reveals a very interesting mathemat-

ial struture

8
. De�ning the Hamiltonian funtion

H(y,u,λ) := −f(y,u) + g(y,u)Tλ, (3.30)

we see that the boundary value problem (3.28), (3.29) is in fat given by

ẏ = ∇λH(y,u,λ) = g(y,u),

λ̇ = −∇yH(y,u,λ) = −GT
y (y,u)λ+∇yf(y, u),

(3.31)

where ∇yH = HT
y and ∇λH = HT

λ . Therefore, we have a Hamiltonian

system, whih has the property that

d

dt
H(y,u,λ) = Hyẏ +Huu̇+Hλλ̇ = Hy∇λH +Huu̇+Hλ(−∇yH) = 0

(3.32)

along optimal trajetories, sine HT
u = ∇uH = −∇uf(y, u)+G

T
u (y,u)λ = 0

whenever the optimality ondition (3.27) holds. Thus, the Hamiltonian is

onserved in this ase. The fat that the derivative of the Hamiltonian (3.30)

with respet to the ontrols u oinides with the orresponding derivatives

of the Lagrangian in (3.23),

∇uH = −∇uf +GT
uλ = −∇uL, (3.33)

implies that an idential neessary ondition for an interior minimum in the

ontrols u an be obtained from both the Lagrangian and the Hamiltonian.

Instead of minimizing the Lagrangian (3.23) with respet to the ontrols

u, whih means minimizing the objetive funtion on an optimal trajetory

satisfying g(y,u) = 0

∫ T

0

f(y,u)dt −→ min with respet to u(t), (3.34)

one ould also maximize the Hamiltonian (3.30)

H(y,u,λ) −→ max with respet to u(t), (3.35)

pointwise for eah t ∈ [0, T ]. Minimizing the Lagrangian (3.34) just leads bak

to the original problem formulation (3.19�3.22), sine λ disappears from the

8
This was already disovered by Carathéodory [16℄, see also subsetion 3.7
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Figure 17. Hestenes' disovery that the Hamiltonian must

be maximized along a minimizing solution in the RAND re-

port from 1950.

optimality system (3.27�3.29) when (3.27) is replaed by (3.34). However,

maximizing the Hamiltonian (3.35) leads to a new problem formulation

H(y,u,λ) −→ max with respet to u(t), (3.36)

ẏ = ∇λH(y,u,λ), (3.37)

λ̇ = −∇yH(y,u,λ), (3.38)

sine λ does not disappear from this new optimality system (3.36-3.38). This

was already notied by Hestenes in his famous RAND report from 1950,

see Figure 17. At the time, due to the lak of omputing power, Hestenes

was unable to solve the optimality system numerially. However, it was only

a matter of time before digital omputers beame available, and Hestenes

already antiipated this development in his manual to engineers, see Plail

[46℄.

There is however a very important issue we did not address so far in

the above attempt for optimizing the ontrols: the ontrols u of the airplane

may not take on arbitrary values, but are instead on�ned to a losed and

bounded set, sine the thrust of the engine annot be arbitrarily large, and

the ontrol vanes of the airplane annot turn arbitrarily far. The optimality

system (3.27�3.29) is therefore only a neessary ondition if the solution lies

in the interior of the domain of ontrols; the formulation in its present form

annot identify potential optima on the boundary of the range of the ontrols

beause (3.27), whih omes from requiring the derivative with respet to

the ontrols u to be zero, need not hold on the boundary. We see however

that the new optimality system (3.36�3.38), written with the Hamiltonian,

does not have this problem and deals with the optimal trajetories orretly,

even when the ontrol u lies on the boundary, sine the minimization is not

haraterized by a derivative. Next, we will see how this insight was found

historially, and led to the famous maximum priniple of Pontryagin.

3.3. Early non-lassial optimal ontrol problems

An interesting problem, very muh related to the fat that the ontrols in

many real appliations must be bounded, was studied by Feldbaum in Russia

in [22℄: he onsidered the problem of guiding an objet from one position to

another with a ontrol that an only take two states, a so-alled �bang-bang
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Figure 18. Solutions of the bang-bang system of Feldbaum

from 1949 on the left, and an original drawing of Feldbaum

from 1949 leading to his understanding of the bang-bang

solution

system� of seond order. This was modeled by the equation of motion

ÿ = ±M, (3.39)

and the goal was to determine, for a given ontrol strength onstantM , when

to hoose the positive and when to hoose the negative sign in order to go as

quikly as possible from an initial position y(0) at initial speed ẏ(0) bak to

the origin at rest, i.e. y(T ) = ẏ(T ) = 0. Here, the ontrols are a disrete set,

and depending on the sign hosen, we get the general solution branhes by

integration,

ẏ± = ±Mt+ C±
1 ,

y± = ±
1

2M
(±Mt+ C±

1 )2 + C±
2 = ±

1

2M
(ẏ±)2 + C±

2 .

Beause y± is a quadrati funtion of ẏ±, these solution branhes are best

drawn in phase spae, where y± is a parabola as a funtion of ẏ± entered

at ẏ± = 0, as illustrated in Figure 18 on the left.

On the red dashed urves, the ontrol −M is ative, and we are moving

from the right to the left. On the blue dashed-dotted urves, the ontrol M
is ative, and we are moving from left to right. There are only two urves,

shown as solid lines, that pass through the target y(T ) = ẏ(T ) = 0, namely

y± = ± 1
2M (ẏ±), and from any point along these urves, the fastest is just to

stay on these urves with the orresponding ontrol. Now from any point in

the phase spae to the right of this solid urve, one an use the ontrol −M
to arrive as quikly as possible on the blue solid urve, where the ontrol has

to be swithed to M to arrive at the origin. An example of suh a trajetory

is shown in Figure 18 in blak. Similarly, from any point in the phase spae

to the left of the solid urve, one an use the ontrol M to arrive as quikly
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as possible on the red solid urve, where the ontrol has to be swithed to

−M to arrive at the origin. In a follow-up paper [23℄ published four years

later, Feldbaum made the key step of allowing not only the disrete set of

ontrols {−M,M}, but the entire ontinuum of all ontrols in the losed

interval [−M,M ], and the problem (3.39) beame

ÿ = ±u, |u| ≤M. (3.40)

It was at this moment that the notational onvention of using u for the

ontrol was born. Feldbaum gave a preise mathematial formulation of the

minimum time problem for (3.40), and proved that for every initial point

in the phase spae, there exists a unique time-optimal ontrol u(t) whih

is still the bang-bang solution found for the ontrol problem with only two

disrete ontrols (3.39): on the optimal trajetory, the ontrol is never used

from within the interior of the interval [−M,M ]! This was the �rst solution
of what Boltyanski alls in his review [9℄ a non-lassial variational problem.

Bushaw made a similar disovery in his PhD thesis [13℄, see also [14℄. Feld-

baum then generalized this result in two follow-up papers [24, 25℄ to higher

order problems of the form

y(n) = −
n−1
∑

j=0

ajy
(j) + u, |u| ≤M,

and proved what he alled the n-interval theorem, namely that the optimal

ontrol is still pieewise onstant with values ±M , and that there are no

more than n distint intervals where the ontrol u is onstant. Feldbaum

was therefore undoubtedly one of the pioneers in the �eld of optimal ontrol

where the domain of the ontrols is a losed set.

Around the same time, Lerner, also in Russia, onsidered putting a

onstraint on the phase oordinates, restriting them to be in a losed set

[35, 36℄. He onsidered the same problem as Feldbaum (3.40), but now also

with the additional onstraint a1 ≤ y ≤ a2. Figure 19 shows the solution

in that ase from his publiation [36℄. Note that the trajetory onstraint is

sometimes ative, and sometimes not, whereas the ontrol is always on the

boundary, i.e., its onstraint is always ative.

3.4. Invention of the Maximum Priniple

This fat appears in many ases as a general priniple, whih we all

the maximum priniple (translated from Boltyanski, Gamkrelidze and

Pontryagin 1956 [10℄, see Figure 22 for the original)

It was in this ontext that Pontryagin started to work with his students

Boltyanski and Gamkrelidze on optimal ontrol.

9
Pontryagin was known

worldwide at the time for his work on homotopi topology, even though he

had beome blind after an aident involving an explosion at the age of twelve.

However, around the 1950s, his results in homotopi topology started to be

9
For more details on the historial ontext for this development, see Plail [46℄ and also

[45℄.
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Figure 19. Lerner's solution to problem (3.39) with an ad-

ditional inequality onstraint on the trajetory

surpassed by the ahievements of the Frenh shool around Leray, Serre and

Cartan [9℄, and Pontryagin deided to leave this area of researh and fous

on the very di�erent area of optimal ontrol. This was in part due to his

friendship with A. Andronov, with whom Pontryagin had worked on rough

systems, but also beause the university administration and the ommunist

party organization enouraged more applied researh. Together with his stu-

dents, Pontryagin started an ative researh seminar to whih engineers were

also invited, and where the talks always had to have an applied side. Feld-

baum also spoke several times at this seminar about his researh on optimal

ontrol problems. In 1955, Pontryagin's group met Colonel Dobrohotov from

the military aademy of the Russian air fore, and this ontat led them to

the important problem of guiding a �ying objet in minimal time in air om-

bat. Even though the problems were not formulated as suh, Pontryagin and

his group realized immediately that the framework of optimal ontrol was

mathematially the orret one.

In their �rst publiation in 1956, see [10℄, Pontryagin, Boltyanski and

Gamkrelidze present the ideas whih led them to formulate the maximum

priniple. There is only one referene in this paper, to Feldbaum's paper from

1955 [24℄, and the authors refer to the referenes given there. The problem

they onsider is to ontrol in a time optimal way the system governed by the

equations

dy

dt
= g(y,u), y(0) = y0, y(T ) = yT , (3.41)

whih desribe the trajetory y : R → R
m

of the objet for a given set of

ontrol funtions u : R → R
n−m

. The preise problem formulation is to �nd

among all admissible ontrols u(t) the one that leads to the shortest travel

time, i.e. T = T (u) should be minimized. The authors say right at the begin-

ning that the ontrols often have to satisfy further onstraints, for example
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|uj| ≤ 1. They therefore introdue an open set Ω where the ontrols live, and

also its losure Ω̄, and arefully distinguish these two ases for the ontrol.

They start with the ontrol in the open set Ω, where one ould easily derive

optimality onditions using Lagrange multipliers. However, sine the group of

Pontryagin had their roots in a di�erent �eld from variational alulus, they

derive the optimality onditions with their bare hands: they assume existene

of an optimal ontrol u, and derive a neessary optimality ondition by on-

sidering a variation of the ontrol u(t) + δu(t) and the assoiated variation

in the trajetory y(t)+ δy(t). Inserting these variations into the equations of
motion (3.41), we obtain

dy

dt
+
dδy

dt
= g(y + δy,u+ δu) = g(y,u) +Gyδy +Guδu,

and therefore the variation in the trajetory satis�es the linear inhomoge-

neous system of ordinary di�erential equations

dδy

dt
= Gyδy +Guδu, (3.42)

where Guδu plays the role of the foring term. Now the initial ondition

for the motion is �xed, and therefore the initial variation δy(0) must van-

ish. Using the tehnique of variation of onstants, we an solve the system

(3.42) as follows: if we denote by the matrix Y (t) the solution of the linear

homogeneous system

Ẏ = GyY, Y (0) = I (I the identity),

the general solution of the homogeneous part of (3.42) is given by Y c for an
arbitrary onstant vetor c. Now varying the onstant by setting z := Y c(t),
we get

ż = Ẏ c+ Y ċ = Gyz + Y ċ.

By letting z = δy and omparing with (3.42), we get Y ċ = Guδu, and

hene c = c0 +
∫ t

0 Y
−1(τ)Guδu(τ)dτ . The solution of (3.42) is thus given by

δy = Y c, and with the zero initial ondition, we obtain

δy(t) = Y (t)

∫ t

0

Y −1(τ)Guδu(τ)dτ. (3.43)

Now the end point is �xed as well, y(T ) = yT , but the time at whih the

solution trajetory passes through this endpoint is not. Pontryagin argues as

shown in Figure 20, whih translated to English says (we use in the translation

the symbols and equation numbers used in our presentation, instead of the

original ones):

Beause of the linearity of system (3.42), the points y(T ) + δy(T )
whih orrespond to any su�iently small perturbation δu �ll the

whole range of some linear mapping P ′
, whih passes through y(T ).

From the optimality of the trajetory y(t), it is easy to see that

the dimension of the range of P ′
does not exeed m − 1, and P ′

,

in general, does not touh the trajetory y(t). Let P (T ) be some

m − 1 dimensional surfae whih ontains P ′
and does not touh
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Figure 20. Geometri idea of Pontryagin, leading to the

adjoint equation without knowing about Lagrange multipli-

ers (see text for a translation)

PSfrag replaements
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Figure 21. Explanation of Pontryagin's geometri idea.

the trajetory y(t). Let the ovariant oordinates of this m − 1
dimensional surfae P (T ) be a1, a2, . . . , am. Then aT δy(T ) = 0.

It seems that this insight was obtained by Pontryagin very rapidly over two

or three sleepless nights, see [46, 27℄

10
. To understand his argument, Figure

21 is useful: If the trajetory y(t) is optimal, no variation δu(t) is allowed

to produe a trajetory ỹ(t) with ỹ(T ) beyond y(T ), sine otherwise this

trajetory ould have arrived at y(T ) at a time t < T . Therefore, variations
are only allowed to be orthogonal to the optimal trajetory

11
, in a manifold P ′

of dimension at most m− 1, where m = 2 in the two dimensional example in

10
Personal ommuniation of Plail with Boltyanski, and explanation by Gamkrelidze in

his paper about the disovery of the maximum priniple:

11
In fat, sine the endpoint is �xed as well, no variations are allowed at the endpoint either,

but then Pontryagin ould not have obtained the solution (3.43) of the then overdetermined

system of ordinary di�erential equations (3.42), and thus he deided to �rst only �x the

starting point [27, page 442℄. This �aw was only later �xed by Boltyanski, see the end of

this subsetion.



Constrained Optimization 27

Figure 21. There must therefore exist a vetor a orthogonal to this manifold,

aT δy(T ) = 0. Sine we know the solutions for the variations from (3.43), we

an ompute

aT δy(T ) = aTY (T )

∫ T

0

Y −1(τ)Guδu(τ)dτ =

∫ T

0

ψT (τ)Guδu(τ)dτ = 0,

(3.44)

where we de�ned the vetor ψ(t) := Y −T (t)Y T (T )a. This vetor is solution
to a di�erential equation: taking a time derivative of the identity Y −1Y = I,
we get

˙(Y −1)Y + Y −1Ẏ = 0 =⇒ ˙(Y −1) = −Y −1Gy =⇒ ˙(Y −T ) = −GT
y Y

−T ,

and hene ψ is the solution of the di�erential equation

ψ̇ = −GT
y (y,u)ψ, (3.45)

with �nal ondition ψ(T ) = Y T (T )a. Sine the variation δu is arbitrary in

(3.44), the term under the integral sign must vanish, and Pontryagin and his

students obtained the lassial neessary onditions for an interior maximum

ψTGu(y,u) = 0, (3.46)

ψ̇ = −GT
y (y,u)ψ, (3.47)

ẏ = g(y,u), y(0) = y0, y(T ) = yT , (3.48)

whih is just a speial ase of (3.27�3.29)

12
, with ψ playing the role of the

Lagrange multiplier λ, and with an objetive funtion f that depends neither

on y nor on u. Pontryagin, however, did not know of the relation between this

and the Lagrangian at the time of publiation; aording to Boltyanski [9℄,

they only learned about this several months later when reading the Russian

translation of Bliss' monograph [5℄ from 1946.

Next, the authors note that the funtions ψ an be multiplied by a

onvenient onstant in order to obtain ψT g(y,u)|t=0 > 0 without ausing

any hanges to the neessary onditions for optimality (3.46�3.48), sine this

quantity is onserved along optimal trajetories, see (3.32). This then implies

ψTg(y,u) > 0 for all t. Now if the ontrol u is only allowed to vary in the

losed set Ω̄, the authors explain that the �rst ondition (3.46) needs to be

replaed by

ψTGu(y,u)δu ≤ 0 (3.49)

for all admissible variations u+δu that remain in Ω̄. With this modi�ation,

the optimal ontrol may now also be on the boundary. This remark ould

have led them diretly to the KKT system (3.16).

12
To solve the time optimal ontrol problem orretly using Lagrange multipliers, we need

to introdue the time variable as a state variable, y0(t) := t, whih implies ẏ0 = 1, y0(0) =

0. The orret Lagrangian then beomes L(y,λ,u) = y0(T )+
∫
T

0
λT (ẏ−g(y,u))dt, where

all vetors are now one element longer. Computing the variational derivative with respet

to y, we obtain now in addition to the earlier equations λ̇0 = 0 and z0(T )+λ0(T )z0(T ) = 0
for arbitrary variation z0, whih implies λ0(T ) = −1 and hene λ0(t) = −1 to omplete

the time optimality system with y0(t) := t.
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Figure 22. The historial moment when the maximum

priniple was invented

The seond result in [10℄ is a su�ient ondition for optimality, ob-

tained aording to [9℄ by Gamkrelidze, and again only for points in the

interior of the ontrol domain. The result is based on seond variations of

the funtion ψTg(y,u), whose �rst derivative with respet to u was in the

neessary ondition for optimality in (3.46). With the hange in sign suh

that ψT g(y,u) > 0, Gamkrelidze showed that if, in addition to (3.46�3.48),

the Hessian of ψTg(y,u) with respet to u is negative de�nite at t = 0, then
the ontrol u(t) and assoiated trajetory y(t) are optimal in a neighbor-

hood of t = 0. This su�ient ondition was not a new result either, as it is a

partiular ase of the su�ient ondition of Legendre type [5, Chapter IX℄,

whih the authors did not know at that time. They then however note that

if the Hessian is inde�nite, then there is no optimal ontrol in the interior of

Ω, so any optimal ontrol inside the losed set Ω̄ of admissible ontrols must

our on the boundary.

The authors then onlude, based on the neessary onditions (3.46�

3.48) and the fat that the Hessian of ψT g(y,u) with respet to u must be

negative de�nite for optimality, that the HamiltonianH(y,u,ψ) := ψTg(y,u)
must attain a loal maximum in u(t) for �xed y(t) and ψ(t) satisfying (3.46�
3.48): under the ondition that the variations δu are admissible and small

enough, the inequality

ψT g(y,u) ≥ ψTg(y,u+ δu) (3.50)

must hold for all time whenever (3.46�3.48) are satis�ed and the Hessian is

negative de�nite.

This was the historial moment of the invention of the maximum prin-

iple. The Hamiltonian ould also be used to de�ne the important di�erential

equations involved, see Figure 22 for the original paragraph in Russian, whih
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translates as (we use again the notation from our text in the translation):

This fat appears in many ases as a general priniple, whih we

all the maximum priniple (we have only proved this priniple so

far for several speial ases): Let H(y,u) = ψTg(y,u) have, for
arbitrary but �xed y, ψ a maximum as u varies within the losed

set Ω̄. We denote this maximum byM(y,ψ). If the 2m-dimensional

vetor (y,ψ) is a solution of the Hamiltonian system

ẏ = g(y,u) = ∇ψH,

ψ̇ = −GT
yψ = −∇yH,

and a pieewise ontinuous vetor u(t) satis�es for eah point in

time

H(y(t),ψ(t),u(t)) =M(y(t),ψ(t)) > 0,

then u(t) is the optimal ontrol and y(t) the orresponding (lo-

ally) optimal trajetory of system (3.41).

This �rst publiation only gave a riterion for the solution of the time

optimal ontrol problem, and it was formulated as a su�ient ondition.

Pontryagin also hoped that the riterion would give the global optimal on-

trol, and put the word �loally� in parentheses [9℄, see also Figure 22. The

maximum priniple allowed the authors to immediately solve the Bushaw-

Feldbaum problem we have seen earlier,

ÿ = u, |u| ≤ 1,

as follows: we �rst transform the system to �rst order

ẏ1 = y2, ẏ2 = u,

and the Hamiltonian beomes

H = ψ1y2 + ψ2u.

For the auxiliary funtions, we obtain the di�erential equations

ψ̇1 = 0, ψ̇2 = −ψ1.

These equations an be easily integrated to give ψ1(t) = C1 and ψ2(t) =
C2−C1t, where C1 and C2 are onstants. To maximizeH under the ondition

that |u| ≤ 1, the ontrol must satisfy

u(t) = sign(ψ2(t)) = sign(C2 − C1t),

and is therefore pieewise onstant and an hange at most one, sine ψ2(t)
is a linear funtion of t. We thus obtain preisely the bang-bang solution

found by Feldbaum for this problem, but in a very simple way with the

maximum priniple. The maximum priniple also worked very well for many

similar problems that ould not be solved earlier, whih explains the high

hopes Pontryagin had for it.

After this �rst publiation, the work was divided by Pontryagin as fol-

lows: Gamkrelidze was asked to generalize the results obtained during the
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alulation of examples, and he quikly found the work by Bellman, Gliks-

berg and Gross [2℄, who had established a neessary and su�ient ondition

for the linear ase

ẏ = Ay +Bu, |uj| ≤ 1,

and the time optimal ontrol to get to y = 0. For onstant matries A and

B, where the eigenvalues of A have negative real parts, the optimal ontrol

is uT (t) = sign(bTY (t)), where Y (t) = X−1(t)B and X solves the matrix

equation Ẋ = AX . Here b is an appropriately hosen vetor, and the result

holds under a general position ondition, see [2℄. Gamkrelidze managed to

show that this neessary and su�ient ondition oinides with the maximum

priniple, and hene for linear problems, the maximum priniple is indeed a

neessary and su�ient ondition for optimality.

Boltyanski was supposed to work out in detail the results in the �rst

paper [10℄, and Pontryagin was supposed to �nd a general justi�ation of the

maximum priniple. Boltyanski started working on the �rst result in [10℄ and

tried to formulate it di�erently from the lassial analysis textbook style in

whih the argument was given, and searhed for a geometrial proof. After a

more areful study of the seond, su�ient ondition in [10℄, Boltyanski �nally

arrived, �in a brilliant half hour� [9℄, at the onlusion that the maximum

priniple was only a neessary ondition. He immediately alled Pontryagin in

his apartment and told him that the maximum priniple was only a neessary

ondition, but a global one. Pontryagin was angry when he reeived the all

beause it had woken him up from his afternoon nap, but he alled bak �ve

minutes later to say that if Boltyanski had really found a proof, this would be

of great interest, so it had to be heked arefully. Gamkrelidze did the areful

heking, and the argument was orret, so Boltyanski asked Pontryagin if

he ould publish the results [9℄:

�It was proposed to publish it, as a joint paper of four authors. I

refused point-blank. Then it was proposed (i) to name that theo-

rem Pontryagin's maximum priniple, and (ii) to add at the end

of my paper a paragraph ditated by Pontryagin that pointed out

his role in reation of the priniple. Pontryagin was the head of

the laboratory in the Steklov Mathematial Institute, and at that

time ould insist on his interests. I had to agree. After that, my

paper was presented to Doklady AN SSSR [8℄.

Boltyanski indeed named the maximum priniple after Pontryagin in the

single authored paper [8℄:

The maximum priniple suggested by Pontryagin as a hypothe-

sis. . .

and we also show in Figure 23 the �nal paragraph ditated by Pontryagin

to Boltyanski from the end of the same paper. The literal translation of this

paragraph is:
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Figure 23. The last paragraph Boltyanski had to add in his

single authored paper, ditated by Pontryagin (see transla-

tion in the text)

Figure 24. Original drawing by Boltyanski removing the

initial �aw of variations at the endpoint in the proof of the

maximum priniple

I got the results whih are published in this paper working in the

Pontryagin seminar on the theory of osillations and automati

regulation. Pontryagin pointed out to me one simpli�ation in the

proof of the maximum priniple, and beause of that my proof

beame appliable to arbitrary topologial spaes U (the �rst vari-

ant of the proof ontained an unneessary, atually nowhere used,

onstrution that fored the restrition on the ase, when U is a

losed domain in a vetor spae with pieewise-smooth boundary

and onvex inner orners in breaking points).

As we have seen already in footnote 11, the initial argument of Pontryagin,

whih allowed the end point to vary in a lower dimensional manifold, was not

quite orret. To remove this �aw, Boltyanski resorted in [8℄ to the tool of

needle variations, whih already appeared in MShane in 1939 [40℄; however,

Boltyanski insists that he was unaware of MShane's work at the time and

ame up with the tehnique independently [7℄. We show in Figure 24 the hand

drawing of Boltyanski from [9℄. One an learly see that a one appears,

instead of the variations orthogonal to the trajetory, and the role of the
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manifold is now played by Γ at the tip of the one. The omplete original

proof also relies on tehniques from topology, the �eld of origin of the group.

It is quite long and tehnial; details an be found in the historial book

by the four authors from 1962 [48℄, whih was quikly translated into many

languages and made Pontryagin and the Russian shool of optimal ontrol

famous with their maximum priniple. However, from Boltyanski's point of

view, it was he who formulated and proved the maximum priniple orretly.

Pontryagin's insistene on publishing the result as a joint paper led to a

period of deep bitterness for Boltyanski, during whih he ould not even do

mathematis any more, as he tells in [9℄.

3.5. General formulation of the Maximum Priniple

The times t0 and t1, in this statement of the problem, are not �xed. We

only require that the objet should be in state x0 at the initial time, and

at state x1 at the �nal time, and that the funtional should ahieve a

minimum. ( Pontryagin, Boltyanski, Gamkrelidze and Mishhenko 1962

[48℄)

Pontryagin and his students then generalized the problem of minimizing

travel time to one of minimizing an arbitrary funtion [11℄. The model for

the tehnial objet is again the system of ordinary di�erential equations

dy

dt
= g(y,u), y(t0) = y

0
(3.51)

for the trajetory y : R → R
m

of the objet, depending on the ontrol

funtions u : R → R
n−m

. These ontrols are supposed to be hosen suh that

when the objet arrives at time t1 at a given loation y(t1) = y
1
, the general

funtional

J :=

∫ t1

t0

g0(y(t),u(t))dt (3.52)

is minimized. Here the salar funtion g0 : Rm ×R
n−m → R was on purpose

denoted by the index zero, sine a �rst step was then to de�ne an additional

ordinary di�erential equation

dy0
dt

= g0(y,u), y0(t0) = 0.

Appending this equation to the system of ordinary di�erential equations for

the tehnial objet as the zeroth oordinate, ỹ := (y0, y1, . . . , ym), and sim-

ilarly g̃ := (g0, g1, . . . , gm), the new system of ordinary di�erential equations

dỹ

dt
= g̃(ỹ,u), ỹ(t0) = (0,y0) (3.53)

enodes, in addition to the trajetory, also the urrent value of the objetive

funtion in its zeroth omponent:

y0(t) =

∫ t

t0

g0(y(t),u(t))dt.

The authors now give a geometri interpretation of the optimal ontrol prob-

lem in this higher dimensional spae: given an initial point y0 and a target y1
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Figure 25. Interpretation of the optimal ontrol problem in

the higher dimensional spae inluding the objetive funtion

oordinate y0

in R
m
, as shown in Figure 25, among all the trajetories solution of (3.53) and

ending at y1 (dashed line examples in Figure 25), �nd the one that rosses

the vertial line in the y0 diretion above with the lowest oordinate value

y0(t1) possible (see solid line in Figure 25). Next, they explain several proper-

ties of this optimal ontrol problem: �rst, the problem is time invariant, sine

the right hand side of the state equation and the objetive funtion do not

depend on time. One an therefore do translations in time without hanging

the problem, see Figure 26 from their book [48℄. Beause of this, one an also

onsider several points in phase spae, and searh for ontrols separately to

move from one to the next sequentially, and then onatenate the ontrols in

order to get a single ontrol to go from the �rst to the last point in phase

spae. Doing this, one just has to sum the loal objetive funtion values

to obtain the global value of the objetive funtion. Conatenating the on-

trols this way, however, is not possible in the spae of ontinuous ontrols in

general, and therefore one must expet the optimal ontrol to be pieewise

ontinuous only, as illustrated in Figure 27 from [48℄. Finally, in preparation

of their proof, they argue that the optimal trajetory must also be loally op-

timal: if it were not optimal on a sub-interval, then one ould simply replae

Figure 26. Graph to illustrate time translation invariane

from [48℄
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Figure 27. Graph to illustrate that the optimal ontrols

are pieewise ontinuous, from [48℄

the ontrol there by a better one, and sine the objetive funtions are just

summed, the global objetive funtion would derease, see Figure 28 from

[48℄ for an illustration of this.

For the formal statement of the maximum priniple, the authors intro-

due as before the adjoint system (but now without explanation)

dψ̃i

dt
= −

m
∑

j=0

∂gj(y,u)

∂yi
ψ̃j , i = 0, 1, . . . ,m (3.54)

and the Hamiltonian

H(ψ̃, ỹ,u) := ψ̃
T
g̃(y,u), (3.55)

but now the maximum priniple is no longer stated as a su�ient ondition:

a neessary ondition for the ontrol u and assoiated trajetory y to be

optimal is that there exist ψ suh that the Hamiltonian system

dyi
dt

=
∂H

∂ψ̃i

, i = 0, 1, . . . ,m (3.56)

dψ̃i

dt
= −

∂H

∂yi
, i = 0, 1, . . . ,m (3.57)

Figure 28. Graph to illustrate that the solution must be

loally optimal, from [48℄
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holds and that for eah admissible ontrol v the inequality

H(ψ̃, ỹ,v) ≤ H(ψ̃, ỹ,u) (3.58)

be satis�ed, i.e. the optimal ontrol u is the value of v maximizing the Hamil-

tonian.

Suppose now that the optimum is in the interior of the domain. Then the

inequality (3.58) implies that we are at a stationary point, i.e. the derivative

with respet to u must vanish,

ψ̃
T
G̃u(y,u) = 0 ⇐⇒ ψ0∇ug0(y,u) +GT

u (y,u)ψ = 0.

Sine the Hamiltonian does not depend on y0, ψ0 is just a onstant, ψ0 =
−1 and we �nd naturally the ondition (3.27) from the Lagrange multiplier

approah

13
. So the maximum priniple stating that the Hamiltonian has to

be maximized is equivalent to stating expliitly that the Lagrangian has to

be minimized, and not just at a stationary point, and the reason why it is

a maximum for the Hamiltonian and a minimum for the Lagrangian omes

just from the sign hange in the de�nition of the Hamiltonian (3.30).

3.6. Example of an ODE Control Problem

We illustrate the use of Pontryagin's maximum priniple on the following

example. Suppose we have a system with a state variable y = y(t) ∈ R and a

ontrol variable u = u(t) ∈ R governed by

ẏ = u, y(0) = 0,

subjet to the box onstraints |u(t)| ≤ 1 for all t. We would like to �nd the

ontrol u(t) suh that y(1) = 1
2 and whih minimizes the ost

J(y, u) =
1

2

∫ 1

0

y2 dt.

Without the onstraint on the ontrol, the optimality system (3.27�3.29)

leads to ẏ = u, ψ̇ = y, 0 = 1 · ψ and thus ψ = 0, y = 0 and u = 0. Sine we
must however have y(1) = 1

2 , one an fore the solution in the last moment

with a very large ontrol to this value, and make the integral

∫

y2dt arbitrarily
small. With the onstraint on the ontrol, the best one an do is use u = 1,
and we need to use this ontrol over the seond half of the interval to get

ẏ = 1, in order to reah y(1) = 1
2 , whih is the optimal solution, see Figure

29.

Lets now see how Pontryagin's maximum priniple guides us to this

solution: it says that if u(t) is the optimal ontrol, then for every t ∈ (0, 1),
we have

H(y(t), u(t), ψ(t)) = max
|ξ|≤1

H(y(t), ξ, ψ(t)),

13
see also Footnote 12
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Figure 29. Solution of the simple optimal ontrol problem.

where y(t) and ψ(t) are the state and adjoint state of the optimal trajetory

at time t, and H is the Hamiltonian

H(y, u, ψ) = ψu−
1

2
y2.

Thus, by inspetion, we have

u(t) =

{

1, if ψ(t) > 0,

−1 if ψ(t) < 0.

If ψ(t) = 0, then we get no information from the maximum priniple. We

now dedue the optimal ontrol and trajetory based on these properties.

1. We know that y(1) = 1
2 , so by the adjoint equation ψ̇ = y, we see that

ψ has a positive slope in a neighborhood of t = 1, so it annot vanish

identially there. So if we assume that ψ(1) ≤ 0, then ψ(t) < 0 in some

interval t ∈ (t1, 1) with t1 = 1−δ, δ > 0, so u(t) = −1 there. This yields

y(t) = y(1)−

∫ 1

t

ẏ(τ)dτ = y(1) + 1− t =
3

2
− t. (3.59)

Thus, y(t) ≥ 1
2 for all t ∈ (t1, 1), so ψ(t) is a stritly inreasing funtion

with ψ(1) ≤ 0, implying that ψ(t) < 0 for all t ∈ (t1, 1). In partiular,

ψ(t1) < 0, so ontinuing this argument now over the interval (t1− δ, t1),
et. shows that (3.59) in fat holds for the whole interval (0, 1). This
implies y(0) = 3

2 , whih ontradits the initial ondition y(0) = 0. Hene
ψ(1) annot be negative (or zero).

2. Suppose now that ψ(1) = ψ1 > 0. Then there exists a neighborhood

around t = 1 in whih ψ(t) > 0. Let t∗ ∈ [0, 1) be the smallest t suh
that ψ(t) > 0 whenever t > t∗. Then by the ontinuity of ψ, we have

ψ(t∗) = 0. Moreover, u = 1 on (t∗, 1), whih implies

y(t) = y(1)−

∫ 1

t

u(τ)dτ = y(1)− 1 + t = t−
1

2
(3.60)
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whenever t ∈ (t∗, 1].
3. We show that y(t∗) = 0 by exluding both y(t∗) > 0 and y(t∗) < 0. If
y(t∗) > 0, then ψ(t∗ − δ) < 0 for δ > 0 small enough, so u = −1 on the

interval (t∗−δ, t∗). This means y(t∗−δ) > y(t∗) > 0; ontinuing this ar-
gument bakwards in time, we obtain y(0) > y(t∗) > 0, a ontradition.

On the other hand, if we assume that y(t∗) < 0, then ψ̇(t∗) < 0 and

ψ(t∗) = 0 together implies that ψ(t∗ + δ) < 0 for δ > 0 small enough,

whih ontradits the de�nition of t∗. Thus, y(t∗) = 0. Sine (3.60) is

satis�ed for all t ∈ (t∗, 1], we dedue that t∗ = 1
2 .

4. The optimal trajetory and ontrol are now determined for the interval

[ 12 , 1]. Sine
∫ 1

1/2 y
2 dt is now �xed, we are left with the minimization

problem

∫ 1/2

0

y2 dt→ min s.t. y(0) = y(12 ) = 0,

where ẏ = u and |u(t)| ≤ 1. The optimal solution is obviously

y(t) ≡ 0, u(t) ≡ 0 ∀t ∈ (0, 12 ).

Note that the adjoint state must also vanish, sine u would not be

allowed to take on values di�erent from ±1 otherwise.

We thus obtain the same solution from Figure 29. Note that unlike problems

with a pure bang-bang solution, our optimal ontrol ontains both an interior

part (u = 0 on t ∈ (0, 12 )) and a boundary part (u = 1 on t ∈ (12 , 1)). We

also see that in this ase, the maximum priniple is useful in the sense that

it guides us towards the optimal solution bit by bit, but it does not provide

an algorithm for omputing the optimal ontrol diretly.

3.7. Caratheodory

Auf den folgenden Seiten soll auf das allgemeine Problem der Variations-

rehnung in einem (n+1)-dimensionalen Raum mit p gewöhnlihen Dif-

ferentialgleihungen als Nebenbedingungen die Methode der geodätis-

hen Äquidistanten angewandt werden

14
(Carathéodory 1926 [16℄)

Constantin Carthéodory had already worked in his PhD thesis on dis-

ontinuous solutions in the alulus of variations [15℄, and beame one of the

eminent researhers in this �eld. In a paper published in 1926, see also the

quote above, he set out to solve preisely the same type of problem we have

seen before, but thirty years earlier. He studied the minimization problem

I :=

∫ t2

t1

L(t,x, ẋ)dt −→ min

under the onstraints given by impliit di�erential equations

G(t,x, ẋ) = 0, (3.61)

14
On the following pages we will solve the general problem of variational alulus in an

(n + 1) dimensional spae with p ordinary di�erential equations as onstraints, using the

method of geodesi equal distanes
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Figure 30. Formulation of neessary onditions using the

Hamiltonian for optimal ontrol problems already found in

the work by Carathéodory from 1926

where L : R × R
n × R

n → R, and G : R × R
n × R

n → R
p
. Using geodesi

arguments, he was led to de�ne the salar quantity

M(t,x, ẋ,µ) := L(t,x, ẋ) + µTG(t,x, ẋ),

for some parameter funtions µ. He then applied the Legendre transform to

M , whih led him to the Hamiltonian

H(t,x,y) := −M(t,x,ϕ,χ) + yTϕ.

Here, ϕ represents the right hand side when the impliit di�erential equation

(3.61) is solved to obtain an expliit form ẋi = ϕi(t,x), and χ = µ, whih

gives

H(t,x,y) = −L(t,x,ϕ)− χTG(t,x,ϕ) + yTϕ.

Now along a solution satisfying the onstraint, we have G(t,x,ϕ) = 0, and
Carathéodory obtains as the main result

15
, as we have seen earlier, that the

solution andidates must satisfy the di�erential equations

ẋ = ∇yH, ẏ = −∇xH, (3.62)

whih he says play suh a prominent role in mehanis, see also the original

formulas in Figure 30. In ontrast to Pontryagin later, he does however only

onsider loal optima in open sets. For more explanations on the derivation

of the Hamiltonian formulation of Carathéodory, see [44℄, and also the very

interesting desription of the history of the maximum priniple and optimal

ontrol in [46℄, see also [45, 43℄.

4. PDE Constrained Optimization

We have seen in the previous setion how the desire to optimize the traje-

tory of a system governed by ODEs gave birth to the �eld of optimal ontrol.

In many appliations, however, the system is not governed by ODEs, but by

partial di�erential equations (PDEs), and the desire to optimize ertain out-

puts leads to PDE onstrained optimization problems. This �eld is nowadays

an ative researh area, as attested by the many onferenes and papers in

15
Das Hauptresultat besteht darin, dass unsere Gefällkurven mit den Cauhyshen Charak-

teristiken zusammenfallen und Lösungen der kanonishen Di�erentialgleihungen (3.62)

sind, die in der Mehanik eine so bedeutende Rolle spielen
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reent years. Here we mention only three sample appliations; other appli-

ations abound and new ones arise every day, so it is impossible to mention

them all.

• Oil reservoir management: the �ow of �uids in an oil �eld satis�es a

system nonlinear PDEs that models the onservation of hemial speies

transported by di�erent �uid phases. Here, the only interation with

the subsurfae oil �eld is through wells, either by injeting �uid (water

or gas) into the ground or by ontrolling how muh �uid (typially a

mixture of oil, water and gas) an ome out of it. Thus, the goal ould be,

for instane, to optimize the oil output over the lifetime of the reservoir

by optimizing over the ontrol variables, suh as the injetion rate of

water or gas at an injetion well, or the �uid pressure or prodution rate

at the prodution wells. Here the ontrol variables an be funtions of

time, just like in the ODE ase.

• Shape and topology optimization: onsider the design of an airfoil. De-

pending on the purpose of the airfoil, one an maximize the lift, minimize

the drag, or minimize the vorties reated by the airfoil when air �ows

around it. Thus, the objetive funtion depends on the solution of the

PDE governing the �ow of air around the airfoil, e.g., a Laplae-type

potential �ow equation, or the full Navier�Stokes equation. Here, the

ontrol variable is the �shape� of the airfoil, i.e., the funtion that de-

�nes the boundary of the domain, and the PDE onstraint is the Laplae

or Navier�Stokes equation.

• Inverse problems: onsider an underground rok formation, of whih we

would like to understand its internal omposition (types of rok, exis-

tene of layers and faults, et.) One way of obtaining information with-

out drilling is to send seismi or eletromagneti waves into the ground

and install detetors on the surfae to measure the re�eted waves. If the

rok parameters were known ahead of time, then the re�eted waves an

by alulated by solving a PDE (elastiity or wave equation). However,

sine our goal is preisely to estimate these parameters, we must solve

an optimization problem by hoosing the parameters that minimize the

disrepany between the predited and measured waves, subjet to the

onstraint that the waves satisfy a PDE.

4.1. Early Work

The disovery of Pontryagin's maximum priniple and its ability to explain

bang-bang type solutions generated great interest in the optimal ontrol om-

munity. In partiular, starting from the 1960s, there was a push to generalize

both results to systems desribed by PDE rather than ODE onstraints. The

earliest referene appears to be a series of papers by Egorov [18℄�[19℄ starting

in 1962, whih ontains a detailed study of the minimal time problem for the
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paraboli ontrol problem of the type

∂y

∂t
+Ay + b(u)y = f + u on Ω× (0, T ),

y = 0 on ∂Ω× (0, T ),
(4.1)

with initial ondition y(t0;u) = y0 and target y(t1;u) = yT , but the argu-

ments therein are rather opaque

16
.

Stateside, a proof of the bang-bang property when b = 0 and u is re-

strited to the set

Uad = {u : |u(t)| ≤ 1 a.e.}

was given in 1964 by Fattorini [21℄, who wrote his Ph.D. thesis on the topi

under the supervision of P. D. Lax. The proof proeeds in two steps. First,

Fattorini writes y(τ ;u) in terms of the Green's funtion

y(τ ;u) = G(τ)y0 +

∫ τ

0

G(τ − σ)u(σ) dσ.

Using this representation, he shows that if |u(t)| ≤ 1−ǫ for some ǫ > 0 almost

everywhere in the interval (0, τ), then one an produe another ontrol v(t)
suh that |v(t)| ≤ 1 and y(s; v) = yT with s < τ , so that τ is not the

optimal time. He then shows that even in the ase where |u(t)| ≤ 1 − ǫ
only on a subset e ⊂ (0, τ) of positive measure, u annot optimal. To show

this, let e be the subset in whih |u(t)| ≤ 1 − ǫ. Then using semi-group

theory, Fattorini shows that there exists a ontrol ḡ(t) with bounded values

and support in e suh that y(τ ; ḡ) = y(τ ;u) = yT . By taking a weighted

average of u and ḡ, one obtains a new ontrol v = (1− θ)u+ θḡ that satis�es
|v(t)| ≤ 1− ǫ̂ everywhere for some ǫ̂ > 0, but without hanging the target yT ,
sine y(τ, v) = (1−θ)y(τ ;u)+θy(τ ; ḡ) = yT . Thus, by the previous argument,

τ is not the shortest time neessary to arrive at yT , so u is not time-optimal.

This proof does not use any variant of the Pontryagin's maximum priniple,

so none was formulated in the paper.

Proofs of the bang-bang property for other systems, notably bound-

ary ontrol problems, appeared subsequently, see for instane Friedman [26℄.

However, it was a researh monograph of Jaques-Louis Lions that launhed

the systemati study of optimal ontrol under PDE onstraints and shaped

the �eld as we know it today.

4.2. Lions

A new adventure began for Lions in the early 1960s, when he met (in

spirit) another of his intelletual mentors, John von Neumann. By then,

using omputers built from his early designs, von Neumann was devel-

oping numerial methods for the solution of PDEs from �uid mehanis

and meteorology. At a time when the Frenh mathematial shool was

almost exlusively engaged in the development of the Bourbaki program,

Lions � virtually alone in Frane � dreamed of an important future

16
Aording to J.-L. Lions: �Le travail de Yu. V. Egorov ontient une étude détaillée de e

problème, mais nous n'avons pas pu omprendre tous les points des démonstrations de et

auteur, les résultats étant très probablement tous orrets.�
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for mathematis in these new diretions; he threw himself into this new

work, while still ontinuing to produe high-level theoretial work on

PDEs. ( R. M. Temam, Obituary of Jaques-Louis Lions (SIAM News,

July 10, 2001)

Jaques-Louis Lions (1928�2001) was one of the most in�uential �gures

of his time in applied mathematis in Frane and throughout the world. Under

the in�uene of his PhD supervisor, the Fields medalist L. Shwartz, Lions'

early work was of a theoretial nature, emphasizing the use of distributions

and appropriate funtion spaes in the study and solution of PDEs. During

his time as sienti� diretor at IRIA

17
, he disovered �systems theory�, whih

subsequently beame a new omponent of his researh in the form of ontrol

theory. Given his expertise in PDEs and variational formulations, it is no

surprise that his theory of PDE onstrained optimization is heavily based on

funtion (espeially Sobolev) spaes and variational arguments.

Lions' �rst ontribution in PDE onstrained optimization was a researh

monograph entitled �Contr�le optimal de systèmes gouvernés par des équa-

tions aux dérivées partielles� [37℄. It was published in 1968 and beame the

standard referene of the subjet. In this volume, Lions developed his the-

ory systematially by �rst onsidering the ontrol of ellipti problems, and

then moving on to time-dependent problems of the paraboli and hyperboli

types. The stated goals of the volume, whih appear in the introdution, are

as follows:

1. to obtain neessary (and maybe also su�ient) onditions for loal ex-

trema of the PDE onstrained optimization problems;

2. to study the struture and properties of equations expressing suh on-

ditions;

3. to obtain onstrutive algorithms that an be used to alulate the op-

timal ontrols numerially.

This last point was partiularly groundbreaking at a time when PDE

researh was mostly theoretial, see the quote above. It is espeially �tting

that variational formulations and Hilbert spaes play a fundamental role in

the monograph, giving its results a natural algorithmi realization in the form

of �nite element methods, f. [28℄.

To illustrate his approah, let us onsider the problem of minimizing

the ost funtional

J(u) = ‖Cy(u)− zd‖
2
H + (Nu, u)U .

Here, the desired state zd belongs to a Hilbert spae H , where as the state

variable y = y(u) belongs to a possibly di�erent Hilbert spae V . The state

variable y(u) depends on the ontrol variable u via the PDE

Ay = f +Bu, (4.2)

17
Institut de Reherhe en Informatique et Automatique, the preursor of the modern

INRIA.
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where A : V → V ′
is generally taken to be a di�erential operator. The

minimization is done over all ontrols u lying in the admissible set Uad, a

losed onvex subset of a Hilbert spae U . The quadrati form (Nu, u)U , with
N self-adjoint and semi-positive de�nite, penalizes large ontrol variables u.
From the de�nition of J(u), we see that for all v ∈ Uad, we have

J(v) = (Cy(v) − zd, Cy(v)− zd)H + (Nv, v)U

= ‖Cy(u)− zd‖
2
H + 2(Cy(u)− zd, C(y(v) − y(u)))H + ‖C(y(v)− y(u))‖2H

+ (Nu, u)U + 2(Nu, v − u)U + (N(v − u), v − u)U

= J(u) + 2(Cy(u)− zd, C(y(v)− y(u)))H + 2(Nu, v − u)U

+ ‖C(y(v)− y(u))‖H + (N(v − u), v − u)U .

Now sine u is the minimizer, we must have J(v)− J(u) ≥ 0, so that

2(Cy(u)− zd, C(y(v) − y(u)))H + 2(Nu, v − u)U

+ ‖C(y(v)− y(u))‖2H + (N(v − u), v − u)U ≥ 0,

whih must hold for all v ∈ Uad. So if ‖v − u‖ = O(ǫ) and we let ǫ tend to

zero, the two quadrati terms beome negligible, so we obtain after division

by 2 the optimality ondition

(Cy(u)− zd, C(y(v) − y(u)))H + (Nu, v − u)U ≥ 0 ∀v ∈ Uad, (4.3)

whih is analogous to (3.16) in the KKT onditions. The inequality (4.3) an

be rewritten as

(C∗Λ(Cy(u)− zd), y(v) − y(u))V + (Nu, v − u)U ≥ 0 ∀v ∈ Uad, (4.4)

where Λ : H → H ′
is the anonial isomorphism from H to its dual spae

H ′
. Lions then de�nes the adjoint state p(v) ∈ V impliitly via

A∗p(v) = C∗Λ(Cy(v) − zd), (4.5)

where A∗ : V → V ′
is the adjoint of A. Then substituting (4.5) into (4.4)

yields

(C∗Λ(Cy(u)− zd), y(v) − y(u))V + (Nu, v − u)U

= (A∗p(u), y(v)− y(u))V + (Nu, v − u)U

= (p(u), A(y(v) − y(u))V + (Nu, v − u)U

= (p(u), B(v − u))V + (Nu, v − u)U

= (Λ−1
U B∗p(u) +Nu, v − u)U ≥ 0 ∀v ∈ Uad, (4.6)

where B∗ : V → U ′
is the adjoint of B, ΛU : U → U ′

is the anonial

isomorphism from U to U ′
, and we have used the fat that

A(y(v) − y(u)) = f +Bv − (f +Bu) = B(v − u).

In other words, the de�nition of p(v) in (4.5) an be seen as an intelligent

guess that allows one to eliminate the state y(u) from the optimality ondition

(4.4), similar to the way we hose the Lagrange multiplier λ in Setion 3.1
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to eliminate the state y in the �nite-dimensional ase. Inequality (4.6) an

be reformulated as

(Λ−1
U B∗p(u) +Nu, u)U = inf

v∈Uad

(Λ−1
U B∗p(u) +Nu, v)U ,

whih then looks like an ellipti analogue of Pontryagin's maximum prini-

ple.

18

The advantage of the abstrat Hilbert spae approah is that the results

are immediately appliable to many di�erent types of ontrol problems. For

instane, onsider a problem in whih the ontrol funtion is Neumann data

on part of the boundary Γ0 ⊂ Γ = ∂Ω, and we want the Dirihlet trae on

another part of the boundary Γ1 ⊂ ∂Ω, Γ0 ∩Γ1 = ∅ to be as lose as possible

to some desired trae zd. Then the analogue of (4.6) in the boundary ontrol

ase states that the optimal ontrol u ∈ Uad ⊂ L2(Γ) must satisfy

∫

Γ

p(u)(v − u) dΓ ≥ 0 ∀v ∈ Uad. (4.7)

If the set of admissible ontrols is de�ned by pointwise box onstraints, e.g.,

if

Uad = {v : Supp(v) ⊂ Γ0 and |v(x)| ≤ 1 a.e. on Γ0},

then a standard argument allows one to onvert the variational inequality

(4.7) into a pointwise one of the form

p(x;u)(ξ − u(x)) ≥ 0 ∀ξ ∈ [−1, 1]. (4.8)

Under some smoothness assumptions on the domain boundary Γ and the

oe�ients of the ellipti PDE, Lions shows that the optimal ontrol u ∈ Uad

satis�es either p(x;u) ≡ 0, in whih ase y(u)|Γ1
= zd, or p(x;u) 6= 0 almost

everywhere. Then (4.8) implies

p(x;u) > 0 =⇒ u(x) = −1,

p(x;u) < 0 =⇒ u(x) = 1.

Thus, we have a bang-bang property in the ellipti ase, a result whih, to

Lions' knowledge, had not been published at the time.

4.3. Derivation by Lagrange Multipliers

It was never expliitly mentioned what motivated Lions to de�ne the adjoint

state p via (4.5). One possibility is that he was in�uened by the work of

Pontryagin; another reason ould simply be that he wanted to eliminate the

state variables y(u) and y(v) algebraially, just as we did in Setion 3.1. Here,

we show that the same variable p an be obtained using a formal Lagrange

multiplier argument. Let the Lagrangian be de�ned by

L(y, u, p) =
1

2
‖Cy − zd‖

2
H +

1

2
(Nu, u)U − (Ay − f −Bu, p)V ,

18
�La formulation (1.31) peut être onsidérée omme un analogue du � prinipe du

maximum de Pontryagin �, pour lequel nous référons [. . . ℄ à Pontryagin-Boltyanski-

Gamkrelidze-Mishenko� [37℄.
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where p ∈ V now ats as the Lagrange multiplier. Next, we take the varia-

tional derivative with respet to y, i.e., we alulate

d

dǫ
L(y + ǫz, u, p)|ǫ=0 = (Cz,Cy − zd)H − (Az, p)V

!
= 0

for all z ∈ V . We thus have

(Cz,Cy − zd)H − (Az, p)V = (z, C∗Λ(Cy − zd))V − (z, A∗p)V = 0,

whih implies A∗p = C∗Λ(Cy − zd). So the adjoint state is nothing but the

Lagrange multiplier for the onstrained problem! We hek that this formu-

lation gives the same optimality ondition for u: we want u to be a minimizer

of L(y, u, p), i.e., for all v ∈ Uad, we have

0 ≤ L(y, v, p)− L(y, u, p) = (B(v − u), p)V + (Nu, v − u)U +
1

2
(N(v − u), v − u)U

= (v − u,Λ−1
U B∗p+Nu)U +

1

2
(N(v − u), v − u)U .

In partiular, for v = u+ ǫw ∈ Uad, we have

ǫ(w,Nu + Λ−1
U B∗p)U +

ǫ2

2
(Nw,w)U ≥ 0,

so by letting ǫ→ 0, we obtain the same ondition as (4.6). One an only

speulate whether Lions had this derivation in mind

19
.

4.4. Later developments

Lions' monograph only signaled the beginning of the rapid development of

PDE onstrained optimization as a modern �eld of researh. Fueled by prati-

al needs in industry and advanes in other branhes of applied mathematis,

the �eld saw major progress in terms of both theory and algorithms � this

is in addition to the number of appliation areas to whih PDE onstrained

optimization is applied. The following list is by no means exhaustive; the goal

is to show a sample of ahievements in the intervening deades.

Theory. Muh of the theory in Lions' monograph, inluding the exis-

tene and regularity of optimal ontrols and the maximum priniple, has

been extended to more general problems. For instane, Pontryagin's maxi-

mum priniple for linear paraboli problems has been generalized to semi-

linear paraboli problems by von Wolfersdorf [52, 53℄. It is also possible to

inlude state onstraints, i.e., onstraints on the state variables y rather than
on the ontrol u. For a omprehensive modern introdution to the subjet,

see the reent book by Tröltzsh [50℄.

Another major theoretial development, related to the existene of op-

timal ontrols, is the theory of ontrollability, where the goal is to determine

whether it is possible to �nd a ontrol funtion that steers an objet from any

initial state y0 to a given target state yT . An important result, whih appeared

in [38℄ in 1988, was proved by Lions himself: he introdued what is known as

19
Aording to J. Blum, it was R. Glowinski, one of the former students of Lions, who

showed Lions one on the board that the adjoint state an simply be interpreted as a

Lagrange multiplier. This was on�rmed by R. Glowinski (personal ommuniation)
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the Hilbert Uniqueness Method. The method takes a linear time-reversible

PDE (suh as the wave equation), an initial state y0 and a target state yT ,
and onstruts a ontrol u (belonging to some speially hosen Hilbert spae

H) that steers y0 to yT , provided that the system is observable and the time

horizon is long enough. For a more reent survey, see the artiles by Zuazua

[54, 55℄.

Algorithms. There has also been signi�ant development on the algo-

rithmi front: here, the goal is to disretize the in�nite-dimensional PDE

onstrained problem, e.g. using �nite element methods, in order to obtain a

�nite dimensional approximation, whih an then be solved numerially. In

priniple, one an disretize the KKT formulation (3.16)�(3.18) and then use

standard optimization routines, suh as line searh, trust region and interior

point methods to solve the �nite dimensional problem; however, one must be

areful to disretize the forward and adjoint problems onsistently to retain

optimality in the disrete setting, see [12℄. Using suh routines allows one

to take advantage of advanes in sparse matrix fatorizations and preondi-

tioners that have been developed for general saddle-point problems, see for

instane [3℄.

Shooting methods, or more preisely multiple shooting methods, were

originally developed for solving two-point boundary value problems [41, 32,

42℄. While the �nite element method has beome the method of hoie for

most boundary value problems (espeially of the ellipti type), multiple shoot-

ing remained a viable approah for optimal ontrol problems, sine they

are able to integrate systems that are highly unstable and very sensitive to

hanges in initial/�nal onditions, see the PhD thesis by Bok [6℄. More re-

ently, multiple shooting has been applied suessfully to problems with PDE

onstraints, see for example [49℄, [29℄, [30℄, and the reent work by Rannaher

et al. [17℄.

With the rapid inrease in omputing power in the form of multi-ore

proessors and parallel lusters, there is inreasing interest in parallel algo-

rithms for solving PDE onstrained optimization and optimal ontrol prob-

lems. Methods suh as domain deomposition and multigrid, whih have been

developed and analyzed extensively for disretized PDE problems, are par-

tiularly suited for this purpose. For the use of domain deomposition in

paraboli optimal ontrol problems, see Heinkenshloss [29℄ and referenes

therein.
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