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Abstract. The history of constrained optimization spans nearly three
centuries. The principal warhorse, Lagrange multipliers, was discovered
by Lagrange in the Statics section of his famous book on Mechanics
from 1788, by applying the idea of virtual velocities to problems in stat-
ics with constraints. The idea of virtual velocities, in turn, goes back to a
letter of Johann Bernoulli from 1715 to Varignon, in which he announced
a very simple rule for solving hundreds of Varignon’s problems in the
blink of an eye. Varignon then explains this rule in his book published
in 1725. Half a century later, Bernoulli’s rule was chosen by Lagrange
as the general principle for the foundation of his mechanics, with the
multipliers as the main tool for treating mechanical constraints. In the
second edition of his mechanics, published in 1811, Lagrange stressed
the importance of his multipliers also for constrained optimization. In
particular, they provide spectacular simplifications of entire chapters of
Euler’s treatise on Variational Calculus from 1744. Lagrange multipli-
ers is however a much farther reaching concept; we show how one can
discover the important primal and dual equations in optimal control
and the famous maximum principle of Pontryagin using only Lagrange
multipliers. Pontryagin and his group, however, did not discover the
maximum principle this way, since they were coming from a completely
different area of mathematics. We finally give the complete formulation
of PDE constrained optimization based on duality introduced by Lions,
and conclude with an outlook on more recent applications.
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1. Lagrange Multipliers Originating from Mechanics

“Le Traité de Dynamique de M. d’Alembert, ... parut en 1743, ... Cette
méthode réduit toutes les loix du mouvement des corps a celles de leur
équilibre, & ramene ainsi la Dynamique a la Statique” (Lagrange 1788,
Seconde Partie, p. 179)

Lagrange’s method of multipliers originates from Lagrange’s research in me-
chanics, more precisely his Mécanique analytique [33], first published in 1788,
with a second, improved edition [34] in 1811/15. In his long introductions,
Lagrange traces the following history for his work:

1. Archimedes, Pappus, Varignon: For nearly 2000 years, research in mecha-
nics concerned mainly Statics, beginning with the discovery of the law of the
lever by Archimedes. Then, mainly by researchers as Pappus, Stevin, Rober-
val and Descartes, theories for the equilibria of ever more complicated “ma-
chines” were developed, culminating in the Nouvelle Mécanique by Varignon.

2. Galilei, Newton, Leibniz, the Bernoulli brothers, Euler: The next period
then concentrated on the Dynamics of increasingly complex mechanical sys-
tems (mass points, liquids, rigid bodies) with more and more analytical meth-
ods (differential equations).
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3. Lagrange: Finally, the “principle of d’Alembert” from 1743 reduces prob-
lems in dynamics back to problems in statics (see quotation), so that La-
grange’s Mécanique analytique again started with an extensive “premiére par-
tie” on statics, comprising nearly 200 pages, as a foundation for the now-called
Lagrangian mechanics in the second part. The main idea there was the Prin-
ciple of Virtual Velocities, which first appeared in a letter of Joh. Bernoulli
from 1715 to Varignon. The extension of this idea to constrained mechanical
problems then led to the invention of Lagrange multipliers.

1.1. Archimedes’ Proof for the Lever

The very first great discovery in Statics was made by Archimedes with the
law of the lever: two bodies are in equilibrium if their weights are inversely
proportional to their arm lengths (see Fig.1 and [1]).
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FIGURE 1. Archimedes’ law for the lever

The proof of Archimedes is very beautiful: He started from the axiom
that equal weights at equal distances are in equilibrium (see Fig. 2).
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FI1GURE 2. Archimedes’ hypothesis

Then, after more axioms, several preliminary propositions and corollar-
ies, he proved his Proposition 6, valid for rational ratios of weights, in two
pages of Greek text. His idea was to distribute the weight units left and right
in a symmetric way to obtain an overall symmetric configuration (see Fig. 3
for an illustration in the case of a 5 : 2 lever). Fig. 4 shows the corresponding
proposition and figure for the ratio 3 : 2, which appear in the 1615 edition of
Archimedes’ Opera (observe that the letters L, E, C, G, D, K of the Latinized
version correspond to Archimedes’ A, E,T", H, A, K).

1.2. Virtual Velocities and Joh. Bernoulli’s “Regle”

“...il n’y a pas un seul cas d’equilibre dans toute la mechanique tant des
fluides que des solides, qui ne puisse etre expliqué par cette regle ... J'ay



4 M.J. Gander, F. Kwok and G. Wanner

-
T

_I.I.K‘Tl.l.l%
A E . A K

H
FI1GURE 3. Archimedes’ proof of his Prop. 6
OEQ. ¢ | THEOR. VL

Ta 01;#—}42(,541 ey ‘,”PP”"‘!' Commen{urabiles magnitadi-

.2 i s / v nes cx diftantijs reciproci -
oV B0 RaHAGY avTTEADYSOTIY, @ : J cmmioms
dem rationem habentibus quam

,@ 1 3 1 ~ ! .
av@ 2930 exormv mi¢ Bapeow.  pondera, zquiponderant.

Tnoe. Sintcommen-
furabiles magnicudines
A. &B.fitqueve A.ad B.
ficdiftantia D. C. ad di-
ftantiam C. E.

=rure, Dico pondus
A fafpenfum centro gra-
uiratis 3 puncto E. &B. | 5
fimiliter & punéto D. zy
quiponderare ex pun&o’
C. tanquam grauitatis .
eentro magnitudinis ex
A, & B.compofirz.

x AT A= Redo produ-
catur verinque E. D; &
fiat E. L. zqualis parti C.
D.cum fumantur D. G,

D.K.fingulzzqualesal- ] |2

(Opera 1615 (Paris BGE Ka459)

hinl

FIGURE 4. Archimedes’ Prop. 6 with figure from the 1615 edition

donc raison d’appeller le grand et le premier principe de statique sur
lequel j’ay fondé ma regle ...” (Joh.Bernoulli in his letter to Varignon,
1715)

“... je crois pouvoir avancer que tous les principes généraux qu’on pour-
rait peut-étre encore découvrir dans la science de 1’équilibre ne seront
que le méme principe des vitesses virtuelles, envisagé différemment, et
dont ils ne différeront que dans l’expression.” (Lagrange 1811, Section
I, §17)

All the efforts during the centuries after Archimedes in generalizing this result
to more and more complicated situations culminated in the work of Pierre
Varignon, who elaborated during many decades his Nouvelle Mécanique [51],
consisting of two heavy volumes published posthumously in 1725 !, with
hundreds of results illustrated on 64 plates of figures (see Fig.5).

Lon the frontispiece is written ”Dont le projet fut donné en M.DC.LXXXVII”.
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FIGURE 5. Six out of the 64 figure plates from Varignon
(1725); (the upper left figure of the upper left plate explains
the principle of virtual velocities as in Fig. 1.5 below)

When this work was nearly completed, Joh.Bernoulli explained in a
letter to Mr. le Chev. Renau, with a copy to Varignon, his “regle” based
on the Virtual Velocities, which allowed one to replace all such figures by
one general equation. Varignon had some difficulty in admitting that all his
work over decades was declared to be an “easy game”? and contested the
general truth of this rule. Bernoulli then got angry® and explained his ideas in
more detail, written in a second letter, dated Feb. 26, 1715 %. Varignon then
included Bernoulli’s “regle” as “Theoreme XL” in “Section IX” (“Corollaire

2«Votre projet d’une nouvelle mechanique fourmille d’un grand nombre d’exemples, dont
quelques uns a en juger par les figures paroissent assez compliqués; mais je vous deffie de
m’en proposer un a votre choix, que je ne resolve sur le champ et comme en jouant par ma
dite regle.”

3«,.. cependant permettez moy que je vous reproche ici une nonchalance qui vous est arrivé
assez souvent en ce que vous portez quelques fois votre jugement un peu a la legere, sans
examiner, si ce que vous croyez etre une objection en est veritablement une ; ... ¢c’est donc
pour une autre fois que je vous donne cet avertissement a fin que vous soyez a I’avenir sur
vos gardes, quand il s’agit de juger...”

4Varignon gave in his book the wrong date 1717, which was also copied by Lagrange.
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general de la Théorie précedente”) of his book, by saying that, unfortunately,
it was too late to rewrite all the rest of the book (see Fig.6).

PROPOSITION GENERALE.
TueorReMmME XL

«  Entout équilibre de forces quelcongues., en quelqme manien
s qwelles foient appliguées , & [wivant quelques direitim
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» immcdiatement , la [omme des Energies affirmatives Jera
» égale ala fomme des Energies négarives prifes affirmative

el e e ik ren g ‘ '

FIGURE 6. Bernoulli’'s “regle” as published by Varignon

(1725, Vol. 11, p. 176)
We now describe the derivation of Benoulli’s “regle” following the text
of Lagrange (Lagrange [33], 1788, Prem. Partie, Section II). However we do
not follow the style of Lagrange, who proudly avoided the use of any figures.

We start with a system containing two forces P and @, illustrated here

by a lever (see Fig. 7, left) attached at O with arm lengths a and b. We then
suppose that the system receives a virtual velocity during an infinitely small
interval of time, such that the lever arms receive infinitely small displacements
dp and dq proportional to a and b. Archimedes’ law then tells us that for
equilibrium to occur, the virtual velocities and the forces must be inversely
proportional. Thus, if we pay attention to the signs of the displacements, we
obtain

P dq
- =—-— or Pdp + Qdq = 0.
Q dp
Q
P Q P Q' Q" R
e :338252:5-::: i —dp fis:og;;g:: dg —Cc==0o==1¥—dr

FIGURE 7. The Lever (left); Composed levers (right)

Let us now make the system more complicated by considering three
forces P, @ and R instead of two (Fig 7, right). We decompose the force @ as
sum Q = Q' + Q" in such a way that both subsystems to the left and right
are in equilibrium, i.e., such that

Pdp+Q'dg=0 and Q"dg+ Rdr =0,
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so we get Pdp + Qdq + Rdr = 0 as condition for an equilibrium. By adding
more and more forces to the system, we obtain

| Pdp + Qdq + Rdr + ... = 0] (1.1)

for an equilibrium. This equation, expressed in words and not in formulas,
was precisely Joh. Bernoulli’s “regle” of Fig.6. The terms Pdp, Qdg, ... were
called “Energies” by Bernoulli. Lagrange calls them “moments” of the forces
and calls (1.1) “la formule générale de ’équilibre” (see Fig. 8).

Pdp + Qdg~+ Rdr + &c=o.

formule générale de I'équilibre d’un

FIGURE 8. Bernoulli’s rule as published by Lagrange 1788

(f.g:h)

(tm,n) (tm.n)

FIGURE 9. A point attached by three forces (left); as con-
strained problem (right)

Ezample. The first example Lagrange considers in detail (in Section V) is a
mass point attached by several forces P, @, R to fixed points with Cartesian
coordinates (a,b,c), (f,g,h), (I,m,n) (see Fig. 9, left). Inserting

p=V(r—a?+(y—b2+(2-0c), dp= %-((x—a)daf+(y—b)dy+(z—6)dz)7

and similarly for dg, dr, formula (1.1) becomes
Xdx+Ydy+ Zdz=0 (1.2)
where X = P2=2 4 Q==L 4 Re=l |y = PLb 4 QUZ0 4 R and 7 =
P% + Q% + RZ". Since, at the moment, our mass point is completely
free, dz, dy and dz are independent®, and the condition for equilibrium is
X =0, Y =0 and Z=0. (1.3)

5dp, dq, dr are not independent at the equilibrium point.
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In the case where the forces P, @, R are equal (or proportional) to the dis-
tances p, g, r, this formula simplifies considerably and the equilibrium position
becomes the barycenter of the triangle spanned by the three fixed points (or
of a pyramid in the case of four forces, a result which Lagrange attributes to
Leibniz).

1.3. The discovery of the multiplier method

Suppose now (see Fig.9, right) that the mass point is restricted to a surface
L =0, so that in (1.2) the displacements dz, dy, dz are not independent, but
are restricted to the tangent space of L = 0, i.e. they must satisfy

oL OL oL
dL = —d —d —dz=0. 1.4
aa:x+8yy+azz (14)
This means geometrically that, whenever (1.4) holds, i.e. the vector (dz, dy, dz)
is orthogonal to (%, ‘3—5, g—i), we must satisfy (1.2) as well, i.e. the vector
(dz,dy,dz) must also be orthogonal to (X,Y,Z). As a consequence, both
vectors must be parallel so that there exists a constant A such that

oL oL oL
X —_— = Y — = Z — =0. 1.
A5 =0, #A5, =0 and Z4a50=0 (1.5)

However, vectors and scalar products were not yet familiar concepts to La-
grange, so he argued differently (“Il n’est pas difficile de prouver par la théorie
de I’élimination des équations linéaires...”): we eliminate one of the unknowns,
say dz, by multiplying (1.4) with a suitable constant, which is A\ = —Z/g—g,
and add it to (1.2), which gives
<X+)\8—L>-dx+<X+)\a—L)-dy:0, Z—i—)\a—L:O.
ox dy 0z

Here, dz and dy are independent and equations (1.5) must be satisfied, the
last one being the formula for .

Condition (1.5) just means that we have applied the virtual velocity
argument, without constraints, to the system

Xdex+Ydy+ Zdz+ XdL =0 . (1.6)

Lagrange realizes that this “multiplier” A\, whose invention originated
from the theory of linear equations, also has a physical meaning: it represents
the constant which, when multiplied with the vector (%, %’ ‘g—g), yields the
force that holds the particle onto the surface L = 0.

Pdp—+Qdq—+Rdr—+&c~2d L -4pd M~-rd N+&c=o,

FI1GURE 10. Lagrange’s “équation générale” for ALL prob-
lems of equilibria

To include an additional constraint M = 0, we see from linear algebra
that we can simply add another term pudM, and so on. Finally, one can
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generalize (1.1) to any system with any number of constraints by writing

| Pdp+ Qdg+ Rdr + ...+ AL + pdM +vdN +...=0|  (1.7)

(see Fig. 10). This discovery was called “Méthode trés-simple” in Section IV of
the first edition from 1788. Twenty-three years later, in [34], Lagrange stressed
the importance of this idea by giving it the particular name “Méthode des
Multiplicateurs” (see Fig.11).

§ I
Méthode des Multiplicateurs.

FIGURE 11. Heading of §1 in Section IV of Lagrange (1811)

2. Problems of Maximum and Minimum

The above problems of wirtual velocities are closely related to problems of
maximizing or minimizing a function. This connection is mentioned briefly
in Lagrange (1788), but it was only in the second edition from 1811 that
Lagrange stresses this important fact by an entire paragraph (see Fig. 12). If
U(x,y, z) is a “potential” function® satisfying %—g =X, %—Z =Y and %—g =7,
where X, Y and Z are as in (1.2), then the conditions (1.3) mean nothing
else than

U(z,y,2) — min or max. (2.1)
Similarly, in the case where we have to minimize or maximize a function
U(z,y,z) under a constraint L(z,y, z) = 0, the corresponding equations (1.5)
and (1.6) would mean that we have to minimize or maximize

U(z,y,z) + AL(z,y, z) — min or max (2.2)
without constraints. This is the Lagrange multiplier method for constrained
optimization. The geometric meaning of the term A\L(x,y, z) is the following:
it twists the function U(x,y, z), without changing its values on the surface
L =0, such that U+ AL becomes flat in all directions at the minimal position.

For additional constraints, we add additional multipliers, and for higher
dimensions, we add additional variables.

§ IIL
Analogie des problémes de ce genre ayec ceux de maximis et minimis,

FIGURE 12. Heading of §3 in Section IV of Lagrange (1811)

SUp to now, we have preserved all letters exactly as they appear in Lagrange, but we have
changed this potential, denoted II by Lagrange, to U, as it is usual now.
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Example: The Catenary. One of the examples Lagrange discusses in detail
(Part I, Sect. V) is a chain of particles attached by cords of constant length
in an arbitrary force field. If we assume the forces to be constant downwards,
we have the situation as in Fig. 13, for which (1.7) becomes

dyr +dys + ...+ Ao - d((xo —:El)z + (y() —y1)2 —62) + A1 d() +..=0. (2.3)

Differentiating the constraints and collecting the coefficients of, say, dxs, dys,
we obtain
)\2(.232—.133):)\1(331—332) Y2 — Y3 _ Y1 — Y2
A2(y2 —ys3) = M(y1 —y2) — 1 Ty —x3 T — X9

+ const.,

which means that the slope is a linear function of the arc length. This fact is
in accordance with “... les formules connues de la chainette”.

°\ (wO:yO)
0
o) (o —x1)® + (yo —y1)> =2 =0
i\\\ (x1 = 22)* + (1 —92)> = > =0
¢ \i(wzyyz) (xz — :E3)2 + (y2 _ y3)2 —r2=0

E\\i%m

F1cURE 13. The Catenary as a constrained mechanical system

The Catenary as optimization problem. If we ask for the chain with y; +ys +
ys + ... — min under the same constraints as in Fig. 13, i.e. if we seek the
chain with the lowest center of gravity, (2.2) becomes

y1+y2+ ...+ Ao (20 —x1)2 + (yo —y1)2 —82) +A1-(..)+... — min. (24)

This equation, when differentiated, gives precisely the formula (2.3). We thus
see that the catenary is the curve with the lowest center of gravity for a
given arc length, a result Euler ([20] 1744, Chap. V) found in a much more
complicated way, as we will see below.

2.1. Variational Problems

Variational problems are optimization problems where not only some values,
but an entire function y(z), is unknown, for example
b . dy
J = / Z(z,y,p) dr — min or max, where p = e (2.5)
and Z(x,y,p) is a given function. We refer to Gander-Wanner ([28] SIREV
2013, formula (1.3), (1.4) and Section 9.1) to see how Euler ([20] 1744,
Chap. 2) turned this problem into a differential equation

N—ion where N:a—Z —82




Constrained Optimization 11

and, in the case where Z(y, p) is independent of x, how this equation can be
simplified to

0z
Z —p+- — = Const. 2.7
P o (2.7)

2.2. Variational Problems with Constraints

E 2
L
Fzg 3
B N [S |T
T
e

C

FIGURE 14. The isoperimetric problem of Jakob (left, the
drawing is for g(y) = y?); the same picture in Johann’s Opera
Omnia from 1742, vol. 2, p. 270 (right)

The oldest problem of this type, the so-called “isoperimetric problem”,
was a challenge from Jakob Bernoulli to his brother Johann in 1697: Given
two points B and C (see Fig.14), find a curve BaC' of a given length L such
that the area BMETN B is maximal; here, for any distance aN = y, the
distance MN = g(y) is a given function of y. In formulas, this means

T T
/ 9(y(z)) dr — max subject to / V1+p?de=1L1. (2.8)

B B

Al HIRKLMNOP QR § Z A IXK

FI1GURE 15. Euler’s solution of variational problems; uncon-
strained (left), constrained (right)
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Solution. Johann, who had accumulated success after success in the years
before, thought that he could solve this seemingly simple problem in “three
minutes”. The three minutes turned into decades until Johann Bernoulli pub-
lished an extensive paper in 1718 (Mémoires de I’Acad. Roy. des Sciences de
Paris, p.100). The collection of all the solutions of Jakob and himself fills
more than 50 pages in Johann’s Opera Omnia ([4] vol.2, p. 214 269). Fi-
nally, Euler ([20] 1744, in Chap.5 of E65) developed his general theory for
such constrained problems. While in Chap. 2, Euler arrived at (2.6) by “vir-
tual” displacements of the function values of the unknown function one-by-one
(see Fig. 15, left), he was unable to displace the function values independently
for constrained problems of the type (1.4). Instead, he varied the values two
by two n — v,0 — w (see Fig.15, right) and had to build an entirely new
theory (16 pages; §1 through §39 of Chap. 5).

As Lagrange demonstrates proudly in many examples (in Section V), the
idea of using multipliers to deal with constraints extends straightforwardly
to these new problems. For the historical example (2.8), this turns into (for
B=0,T=1)

J = / )+ A m = L)) dx — max. (2.9)

For this problem, condition (2.7) becomes, after simplification,

A
9(y) + ——==C+ L.
1+ p2
We set C+ AL = — K, solve for p = 2% and separate the variables. This gives
the solution (compared to the one from Johann’s Opera Omnia, vol. 2, p. 244)

/ g(y) + K i n 9 /‘ (Xic')dx
y=z+c. == : :
VA = (g(y) + K)? : ¥ (aa—(X==¢)*)
(2.10)
This integral only has an elementary solution for g(y) = y, i.e. the problem of
finding the maximal area surrounded by a curve of prescribed length. As Euler
shows in §41 of [20] E65, Caput V, the integral then leads, not surprisingly,

to a circular solution (quae est aequatio generalis pro Circulo). The drawing
for g(y) = y? in Fig. 14 (left) has been produced by numerical integrations.

An Ezxample with two constraints. For problems with two constraints (“Pluribus
Proprietatibus”), Euler developed again an entirely new theory (E65, Chap. VI).
With Lagrange, we just have to add a second multiplier. We demonstrate this
on Euler’s very last example (§24 in Chap. 6): We seek a curve y(z) (the curve
DMAMD in Fig. 16, right) of a given length L, as well as a constant a (the
distance CQ), such that the area of NDMAMDNQ@N has a given value M,
and the center of gravity of this figure should be as low as possible. Expressed
in formulas we have (we choose C' as origin and take the curve upside down)

1 1 1 .
/ V1+p2de =1L, / (y+a)de =M, / (y—|—a)-y
—1 -1 -1

a
dr — max.
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FIGURE 16. Euler’s problem from E65 with two constraints

Here, we introduce two multipliers A\ and p and get

J= /_1<(y2_a2)+>\(m—L) +u((y+a)—M)) dr —> min or max.

Since we have two unknowns y and a here, we cannot work with the simplified
equation (2.7). Instead, we have to use (2.6) for each of them:

for y: 2y+u—i(AL)=0,

de \/1+ p?
for a: —2a+pu=0 = pu=2a.

This, inserted into the first equation, gives

d P

—(——=) =ky+a).

w\ i) k)
If we think of a water basin, this result expresses the fact that the curvature
of the basin is proportional to the water pressure.

2.3. Solving Optimal Control Problems with Lagrange multipliers

Before explaining the invention of the maximum principle for control prob-
lems in the next section, we first show that the idea of Lagrange multipliers
provides an elegant entry point to the treatment of certain classes of such
problems. Let us look at a problem of the type

b
/k(x,y, u) dr — min or max, (2.11)

subject to

Y=y =4 yb)=B
Here we have two types of functions to find: the values of y;(x), which are
defined via a system of differential equations, and the so-called controls u;(x),
which control the movement of the y’s and with the help of which the cost
function k(z,y,u), when integrated over the interval [a, b], is to be optimized.
Idea: since the differential equations in (2.11) represent an infinite num-
ber of constraints as = varies, we introduce Lagrange multipliers \;(x) as
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functions multiplying the constraints y, — f;(z,y,u) = 0. Inserting this into
the integral, we thus obtain

b
/ {k(z,y,u) + [p" — f"(z,y,u)] - \M(z)} dz —> min or max. (2.12)

This is now an wunconstrained variational problem with a “cost function”
Z(xz, \,y,p,u). Here we have three sets of unknowns, the Lagrange multipliers
Ai(x), the differential equation solutions y;(z) together with their derivatives
pi(z), and the control functions u;(x). For each of these, we apply Euler’s
equation (2.6):

%=0 Ly () = f(a,y,u)

8z d 8Z _ T

Sy —dop =0 ¢ N@) =FE@yuw -G (@ yu) A (213)
o0z _ . T

e =0 D0 =25 yu) — B (2, y,u) - @)

This is a system of differential algebraic equations (DAEs). The first set
of equations are the desired constraints, the second set of equations is the
so-called adjoint system, whose geometric meaning will be discussed below,
and the third set consists of algebraic equations that determine the controls
for every value of x.

Ezample. A body gliding in R? without friction should receive a new direction
with the help of forces (u1 (), u2(t)),0 < ¢t < T in such a way that this control

uses as little energy as possible: fOT 1 (u? 4 u3) dt — min.

Solution. With y1,y2 as the positions of the body and y3, y4 as velocities, the
equations of motion together with the equations in (2.13) become

U1 = Y3 At=0

Y2 = Ya A2 =0 up — A3 =0
Y3 = U1 A3 =—\ Uy — A =0
Y4 = Uz M= —Xo

We see that A1, Ao are constants, A3 = uy, Ay = us are linear, y3, y4 quadratic,
and thus yi1,y2 cubic; the solution curves are thus, not surprisingly, cubic
splines. The time length 7' can be freely chosen. In the picture above, T is
chosen to be that of a uniform circular movement, but the optimal solution
is slightly different.

3. Optimal Control and the Maximum Principle

An important case in applications is the one in which 2 [containing the
controls| is a closed region |[...]. In the case that €2 is an open set |[...],
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the variational problem formulated here turns out to be a special case
of the problem of Lagrange. (Pontryagin 1959 [47])

In the field of optimal control, there were historically two approaches: in the
western world, researchers tried to tackle these problems using variational
calculus and Lagrange multipliers, as we have already seen for a first example
in Subsection 2.3. In Russia, a group of researchers led by Pontryagin tried
to solve these problems using direct analysis and geometric arguments, with
a particular emphasis on handling the important case of closed and bounded
control sets. Their approach led to the invention of the maximum principle
in 1956; they only later noticed the relation to Lagrange multipliers, see the
quote above. To explain these two approaches historically, we first present the
invention of Lagrange from Section 1.3 again, but now using matrix notation
in preparation for its use in optimal control problems.

3.1. Invention of Lagrange Multipliers in Matrix Notation

Lagrange, in his book from 1797: “Théorie des fonctions analytiques,
contenant les principes du calcul différentiel, dégagés de toute consid-
ération d’infiniment petits, d’évanouissans, de limites ou de fluxions, et
réduits a l’analyse algébrique des quantités finies”

Lagrange, who in his youth made his greatest triumphs by free and mas-
terful manipulations of differentials, later in his life condemned them vigor-
ously by replacing “differentials” by “derivatives” and “integrals” by “primi-
tives”, see the quote above. Under the influence of Cayley’s matrix notation,
the above theory subsequently took a different shape, the one we are used
to seeing today: we first consider a finite dimensional optimization problem
with constraints, and show how the Lagrange multipliers are none other than
multipliers like in Gaussian elimination, but without using the notation of dif-
ferentials that were essential in their invention, as we have seen earlier. This
will also reveal a further advantage over the direct solution of the complete
optimality system in the presence of constraints, since the system obtained
with Lagrange multipliers is much smaller. Suppose we wish to solve the
constrained optimization problem

f(®) — min, g(x)=0, (3.1)

where f : R® — R is the objective function and g : R™ — R™ are the
constraints, m < n. To eliminate the constraints, we partition the vector x
intox = (y,u),y € R™ u € R"™ and invoke the implicit function theorem
to obtain y = y(u) from the constraint g(x) = 0. Substituting this into the
objective function, we obtain the unconstrained optimization problem

f(y(u),u) — min. (3.2)

A necessary condition for a local minimum is therefore

dF 01 9y O _ 1y v, T =0, (3.3)

du Oy 8u+8u
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where Y, : R*™™ — R™*("=m) j5 the Jacobian of the implicit function
y(u), and V, f = fyT and V,f = fI' are the gradients (column vectors) of
the objective function with respect to the variables y and w. The necessary
optimality condition (3.3) is a small system involving the n — m unknowns
in the vector u only. However, only in very simple situations it is actually
possibe to explicitly form the function y(u) and differentiate it to obtain Y,.
In general, the Jacobian matrix Y,, is also unknown and depends implicitly
on the solution y, which must also be calculated. To obtain equations for y,
one can directly use the constraint g(y,w) = 0, and for the Jacobian, one
can write the total derivative with respect to u of g(y(u),u) = 0. This leads
to the complete optimality system

VIV, f+Vuf = 0, (3.4)
v Gl +GL = o, (3.5)
g = 0, (3.6)

where G, : R® — R™*™ ig the Jacobian matrix of g with respect to y,
and G, : R" — Rmx(n=m) ig the Jacobian matrix of g with respect to wu.
Equation (3.4) contains n — m equations, (3.5) is a matrix equation for the
Jacobian matrix Y, and contains a total of m(n —m) equations, and (3.6)
contains m equations from the constraints. This gives a total of n+m(n—m)
equations for the n unknowns in y and w combined, and the m(n — m)
unknowns in the Jacobian Y,,, a very big system. The key idea of Lagrange in
this setting is that one can eliminate many of these equations using Gaussian
elimination to arrive at a smaller, but equivalent system. If the Jacobian
Gy is invertible, then multiplying the matrix-valued equation (3.5) by the
vector-valued multiplier A := -G/ TV, f from the right yields

YIGA+GIA=-Y] GG "V, f+GA=-Y]V,f+GIx=0. (3.7)

Adding this equation to (3.4), the cumbersome term with the large Jacobian
matrix cancels and we obtain the smaller but equivalent optimality system

Vuf +GIX = 0, (3.8)
Vyf+Gox = 0, (3.9)
g = 0 (3.10)

which now contains (n —m) +m + m = n+ m equations for the n unknowns
y and u combined, plus the m Lagrange multipliers A. The system (3.8—
3.10) is equivalent to (3.4-3.6), and therefore represents the same necessary
condition for a minimum of the original constraint problem (3.1), but it
has the advantage of having many fewer unknowns to solve for. The key
observation of Lagrange now was that this simpler necessary condition for
optimality can be easily obtained from the function

L(ua Y, )‘) = f(yv u) + g(yv ’u’)T)‘v (3'11)

by simply taking derivatives with respect to its arguments. The function in
(3.11), now known as the Lagrange function or the Lagrangian in honor of
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its inventor, is obtained by simply adding to the objective function the sum
of the constraints, each multiplied by a Lagrange multiplier.

The new formulation, however, introduces an important difficulty when
the remaining u variables are not allowed to vary freely, but are constrained
to be in a closed set U. This is often the case in optimal control problems,
since the controls may not be arbitrarily large. Then the necessary condition
(3.3) for a minimum solution of (3.2) is only relevant if the minimum is in the
interior of U; when the minimum occurs on the boundary, which often hap-
pens in practice, the condition (3.3) need not be satisfied, i.e., the variation
of the Lagrangian with respect to w in (3.8) need not vanish. One possibility
in that case is to revert to the minimization condition of the Lagrangian with
respect to w, which leads to the necessary conditions for optimality

L(y,u,A) — min with respect to u (3.12)

Vyf +GoA = 0, (3.13)

g = 0. (3.14)

Since the constraint g = 0 must be satisfied at the optimum, we have

L(y,u,A) = f(y,u) there, so (3.12) is equivalent to saying that
f(y,u) — min  with respect to wu. (3.15)

In this case, however, the equation (3.13) for the Lagrange multipliers is no
longer needed, since they are not used anywhere in the system; if we remove
it, we just get back the original problem formulation (3.1), except that one
now sees explicitly that the minimization is only possible with respect the
remaining “control” variables w, since the other variables y are determined by
the constraints. Nevertheless, the observation to replace the derivative con-
dition again by the minimization condition points in the direction of results
obtained by Pontryagin and his group and leads to the maximum principle
for optimal control problems. We will see later that they chose a different
function, a Hamiltonian, which has the same stationary points in w as the
Lagrangian”.

A different way of characterizing minima on a closed set of controls U is
to ensure that whenever the minimum occurs on the boundary, any variation
in w that moves the point away from the boundary into the interior of the
closed set must lead to an increase in the objective function, i.e.

(Vuf +GEN)Tou > 0, (3.16)
Vyf+GiA = 0, (3.17)
g = 0, (3.18)

for all admissible variations du such that w 4+ du remains in the closed set
of the admissible controls U. This approach became known under the name
Karush-Kuhn-Tucker (KKT) conditions, which we will see again in Section
4.2

"See also Carathéodory [16] for a general study of equivalent formulations.
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3.2. Lagrange Multipliers for Optimal Control Problems

Using what I had learned at Columbia about flights of airplanes, I set
out to formulate this problem as a variational problem. I found that the
usual variational formulation did not fit very well. It was too clumsy.
And so I reformulated the Problem of Bolza so that it could be applied
easily to the time-optimal problem at hand. It turns out that I had
formulated what is now known as the general optimal control problem.
I wrote it up as a RAND report [31] and it was widely circulated among
engineers. (Hestenes, in a letter to Saunders Mac Lane, see [39])

Optimal control problems were becoming important with the invention of
moving high-tech mechanical devices, especially in the context of war. A typ-
ical example is to guide an airplane along an optimal trajectory to reach
a target, and this was precisely the problem considered by Hestenes in his
famous RAND report [31], see also the quote above. Hestenes, who had ob-
tained his PhD on the calculus of variations under the direction of Bliss, was
a young professor in Chicago during the Second World War and moved to
UCLA afterward. He was also doing research for RAND, a nonprofit institu-
tion with the goal of improving policy and decision-making through research
and analysis, which still exists today (www.rand.org). In his report, he for-
mulated the problem of guiding an airplane in an optimal way from an initial
position to a final position as an optimization problem with a constraint given
by a differential equation. In modern notation, the problem reads

/T fly,u)dt — min, (3.19)
0

y = 9g(yu), (3.20)

y(0) = (3.21)

yT) =y, (3.22)

where the vector y(t) contains the position and velocity vectors of the air-
plane, and the vector u(t) contains the angles of the control vanes of the
airplane and the thrust of the engines. Comparing this optimal control prob-
lem with the general constrained minimization problem (3.1), Hestenes no-
ticed the striking similarity, so he applied the Lagrange multiplier technique
we saw in Subsection 2.3 to obtain a necessary condition for optimality: he
introduced the Lagrangian as in (3.11),

T T
Ly u ) = / Flysu)dt + / (& — g(y,u)” Adt, (3.23)

where all the variables now depend on time, y = y(t), u = u(t), A = A(¢)
(this is precisely equation (2.12) in the new notation). In order to obtain
necessary conditions for optimality, he computed the derivatives with respect
to the variables ¥, u, and X using variational calculus (as Euler did in E420,
see [28]): if y is an optimum, then for an arbitrary variation y + ez, the
derivative of L(y+ez,u, A) with respect to £ must vanish at ¢ = 0, regardless
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of what the variation z is. Thus, we obtain as the first necessary condition

d T T
ez u N = [ V@it [ G- Gyyz)” Ade
0 0

T
/0 (Vyf(ysu) — X =Gl (y,w)A)" zdt + ATzl =0,

where we used integration by parts to factor out the arbitrary variation z,
and the fact that

(Gyz)"A=2TGIX= (ZTGINT =X"Gyz = (GI M) .

Now the variation z(t) must be zero for ¢ = 0 and ¢ = T, since the values
of y are fixed there, see (3.21) and (3.22); thus, we have z(0) = z(T') = 0,
so the boundary terms AT z|7 in (3.24) must vanish as well. However, apart
from the initial and final conditions, the variation z(t) is otherwise arbitrary,
and hence from (3.24), the term multiplying z(¢) under the integral must be
zero. This leads to a differential equation for A, namely

A=—Gl(y, A+ V, f(y,u), (3.24)

without initial or final condition, since y was fixed at both ends. Similarly,
since u is optimal, we can add an arbitrary variation w + v and require
the derivative of L(y,u + ev, A) with respect to ¢ to vanish at e = 0 for all
variations v. This yields the next necessary condition

T T
uteo N = [ VTt [ (<Guyouo)” A
0 0

/T(Vuf(y, u) — Gy (y, w)A)Tvdt = 0.
0

Since the variation w(t) is arbitrary, from (3.25), the term multiplying v(t)
under the integral must be zero, which leads to an equation for w, namely

GL(y, wA =V f(y,u). (3.25)

Finally, adding an arbitrary variation A+epu, the derivative of L(y, u, A+epu)
with respect to € must vanish at € = 0 for all variations g, and we obtain as
the last necessary condition

—L

de
and we simply get back the equations of motion. Hence, for an optimal control
problem, we get from the Lagrange multiplier rule a system of necessary

conditions for optimality that is very similar to the classical conditions (3.8—
3.10), and identical to (2.13):

Vuf(y,u)
vyf(y’ u)

T
(y, 1, A+ 1) = / (9 —gly,w)" ndt =0, (3.26)

A = 0, (3.27)
A (3.28)
(3.29)

-Gy,
T
- Gy (yv

g(y,u

u)
u)

= >
I |
<
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the only difference is that the sign is flipped on the G terms, because this
is how we introduced the constraints, and that a term with a time deriva-
tive appears on the right, because the constraint is an ordinary differential
equation. This system contains precisely enough equations for the number of
unknowns: there are as many algebraic equations in (3.27) as unknowns in
u(t) for ¢ € [0,7], and (3.28)—(3.29) is a coupled first-order system of ordi-
nary differential equations in y(¢) (optimal trajectory) and A(¢) (multipliers)
with precisely two boundary conditions at ¢ = 0 and ¢ = T (both on the
unknown y in our case). Hestenes was therefore able to solve this coupled
system numerically to obtain candidates for the optimal trajectory.

The optimality system (3.27-3.29) reveals a very interesting mathemat-
ical structure®. Defining the Hamiltonian function

H(y,u,X) == = f(y,u) + g(y,u)" X, (3.30)
we see that the boundary value problem (3.28), (3.29) is in fact given by

where V,H = Hg and V) H = Hf Therefore, we have a Hamiltonian
system, which has the property that

%H(y,u, AN)=Hyy+ H,2a+ HA=H/NV\H+ H,a+ H\(-V,H)=0

(3.32)
along optimal trajectories, since H! = V,H = —V, f(y, u)+GL (y,u)A =0
whenever the optimality condition (3.27) holds. Thus, the Hamiltonian is
conserved in this case. The fact that the derivative of the Hamiltonian (3.30)
with respect to the controls uw coincides with the corresponding derivatives
of the Lagrangian in (3.23),

VuH =-V,f+G\=-V,L, (3.33)

implies that an identical necessary condition for an interior minimum in the
controls u can be obtained from both the Lagrangian and the Hamiltonian.
Instead of minimizing the Lagrangian (3.23) with respect to the controls
u, which means minimizing the objective function on an optimal trajectory
satisfying g(y,u) =0

T
/ f(y,u)dt — min  with respect to wu(t), (3.34)
0

one could also maximize the Hamiltonian (3.30)

H(y,u,A\) — max with respect to u(t), (3.35)
pointwise for each ¢ € [0, T']. Minimizing the Lagrangian (3.34) just leads back
to the original problem formulation (3.19-3.22), since A disappears from the

8This was already discovered by Carathéodory [16], see also subsection 3.7
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FIGURE 17. Hestenes’ discovery that the Hamiltonian must
be maximized along a minimizing solution in the RAND re-
port from 1950.

optimality system (3.27-3.29
maximizing the Hamiltonian

when (3.27) is replaced by (3.34). However,
3.35) leads to a new problem formulation

)
(

H(y,u,A\) — max with respect to u(t), (3.36)
y = V)\H(y, u, A)’ (337)
A= —VyH(y,uN), (3.38)

since A does not disappear from this new optimality system (3.36-3.38). This
was already noticed by Hestenes in his famous RAND report from 1950,
see Figure 17. At the time, due to the lack of computing power, Hestenes
was unable to solve the optimality system numerically. However, it was only
a matter of time before digital computers became available, and Hestenes
already anticipated this development in his manual to engineers, see Plail
[46].

There is however a very important issue we did not address so far in
the above attempt for optimizing the controls: the controls u of the airplane
may not take on arbitrary values, but are instead confined to a closed and
bounded set, since the thrust of the engine cannot be arbitrarily large, and
the control vanes of the airplane cannot turn arbitrarily far. The optimality
system (3.27-3.29) is therefore only a necessary condition if the solution lies
in the interior of the domain of controls; the formulation in its present form
cannot identify potential optima on the boundary of the range of the controls
because (3.27), which comes from requiring the derivative with respect to
the controls u to be zero, need not hold on the boundary. We see however
that the new optimality system (3.36-3.38), written with the Hamiltonian,
does not have this problem and deals with the optimal trajectories correctly,
even when the control u lies on the boundary, since the minimization is not
characterized by a derivative. Next, we will see how this insight was found
historically, and led to the famous maximum principle of Pontryagin.

3.3. Early non-classical optimal control problems

An interesting problem, very much related to the fact that the controls in
many real applications must be bounded, was studied by Feldbaum in Russia
in [22]: he considered the problem of guiding an object from one position to
another with a control that can only take two states, a so-called “bang-bang
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FIGURE 18. Solutions of the bang-bang system of Feldbaum
from 1949 on the left, and an original drawing of Feldbaum
from 1949 leading to his understanding of the bang-bang
solution

system” of second order. This was modeled by the equation of motion
y==+M, (3.39)

and the goal was to determine, for a given control strength constant M, when
to choose the positive and when to choose the negative sign in order to go as
quickly as possible from an initial position y(0) at initial speed ¢(0) back to
the origin at rest, i.e. y(T') = y(T) = 0. Here, the controls are a discrete set,
and depending on the sign chosen, we get the general solution branches by
integration,

j* = E£Mt+CF,
1 1
+ +1\2 + -+ 2 +
= 4+—(+M = 4+ )
y 2M( t+CyH)* + C3 2M(y )+ C5

Because y* is a quadratic function of §*, these solution branches are best
drawn in phase space, where y* is a parabola as a function of & centered
at g+ = 0, as illustrated in Figure 18 on the left.

On the red dashed curves, the control —M is active, and we are moving
from the right to the left. On the blue dashed-dotted curves, the control M
is active, and we are moving from left to right. There are only two curves,
shown as solid lines, that pass through the target y(7') = ¢(T") = 0, namely
y* = :l:ﬁ(yi), and from any point along these curves, the fastest is just to
stay on these curves with the corresponding control. Now from any point in
the phase space to the right of this solid curve, one can use the control —M
to arrive as quickly as possible on the blue solid curve, where the control has
to be switched to M to arrive at the origin. An example of such a trajectory
is shown in Figure 18 in black. Similarly, from any point in the phase space
to the left of the solid curve, one can use the control M to arrive as quickly



Constrained Optimization 23

as possible on the red solid curve, where the control has to be switched to
—M to arrive at the origin. In a follow-up paper [23] published four years
later, Feldbaum made the key step of allowing not only the discrete set of
controls {—M, M}, but the entire continuum of all controls in the closed
interval [—M, M], and the problem (3.39) became

§g==u, |ul <M. (3.40)

It was at this moment that the notational convention of using w for the
control was born. Feldbaum gave a precise mathematical formulation of the
minimum time problem for (3.40), and proved that for every initial point
in the phase space, there exists a unique time-optimal control w(¢) which
is still the bang-bang solution found for the control problem with only two
discrete controls (3.39): on the optimal trajectory, the control is never used
from within the interior of the interval [—M, M]! This was the first solution
of what Boltyanski calls in his review [9] a non-classical variational problem.
Bushaw made a similar discovery in his PhD thesis [13], see also [14]. Feld-
baum then generalized this result in two follow-up papers [24, 25] to higher
order problems of the form

n—1

y(n) - _ Z ajy(j) +u, |u| <M,

j=0
and proved what he called the n-interval theorem, namely that the optimal
control is still piecewise constant with values +M, and that there are no
more than n distinct intervals where the control u is constant. Feldbaum
was therefore undoubtedly one of the pioneers in the field of optimal control
where the domain of the controls is a closed set.

Around the same time, Lerner, also in Russia, considered putting a
constraint on the phase coordinates, restricting them to be in a closed set
[35, 36]. He considered the same problem as Feldbaum (3.40), but now also
with the additional constraint a; < y < ay. Figure 19 shows the solution
in that case from his publication [36]. Note that the trajectory constraint is
sometimes active, and sometimes not, whereas the control is always on the
boundary, i.e., its constraint is always active.

3.4. Invention of the Maximum Principle

This fact appears in many cases as a general principle, which we call
the mazimum principle (translated from Boltyanski, Gamkrelidze and
Pontryagin 1956 [10], see Figure 22 for the original)

It was in this context that Pontryagin started to work with his students
Boltyanski and Gamkrelidze on optimal control.? Pontryagin was known
worldwide at the time for his work on homotopic topology, even though he
had become blind after an accident involving an explosion at the age of twelve.
However, around the 1950s, his results in homotopic topology started to be

9For more details on the historical context for this development, see Plail [46] and also
[45].
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FIGURE 19. Lerner’s solution to problem (3.39) with an ad-
ditional inequality constraint on the trajectory

surpassed by the achievements of the French school around Leray, Serre and
Cartan [9], and Pontryagin decided to leave this area of research and focus
on the very different area of optimal control. This was in part due to his
friendship with A. Andronov, with whom Pontryagin had worked on rough
systems, but also because the university administration and the communist
party organization encouraged more applied research. Together with his stu-
dents, Pontryagin started an active research seminar to which engineers were
also invited, and where the talks always had to have an applied side. Feld-
baum also spoke several times at this seminar about his research on optimal
control problems. In 1955, Pontryagin’s group met Colonel Dobrohotov from
the military academy of the Russian air force, and this contact led them to
the important problem of guiding a flying object in minimal time in air com-
bat. Even though the problems were not formulated as such, Pontryagin and
his group realized immediately that the framework of optimal control was
mathematically the correct one.

In their first publication in 1956, see [10], Pontryagin, Boltyanski and
Gamkrelidze present the ideas which led them to formulate the maximum
principle. There is only one reference in this paper, to Feldbaum’s paper from
1955 [24], and the authors refer to the references given there. The problem
they consider is to control in a time optimal way the system governed by the
equations

dy

- —9ww), y(0) =y’ y(T)=yr, (3.41)
which describe the trajectory y : R — R™ of the object for a given set of
control functions u : R — R™~"". The precise problem formulation is to find
among all admissible controls u(t) the one that leads to the shortest travel
time, i.e. T'= T'(u) should be minimized. The authors say right at the begin-

ning that the controls often have to satisfy further constraints, for example
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|uj| < 1. They therefore introduce an open set {2 where the controls live, and
also its closure €2, and carefully distinguish these two cases for the control.
They start with the control in the open set 2, where one could easily derive
optimality conditions using Lagrange multipliers. However, since the group of
Pontryagin had their roots in a different field from variational calculus, they
derive the optimality conditions with their bare hands: they assume existence
of an optimal control u, and derive a necessary optimality condition by con-
sidering a variation of the control w(t) 4+ du(t) and the associated variation
in the trajectory y(t) 4+ dy(t). Inserting these variations into the equations of
motion (3.41), we obtain
Z—‘:{ + dj—ty =9(y + 0y, u +ou) = g(y,u) + G,y + Guou,

and therefore the variation in the trajectory satisfies the linear inhomoge-
neous system of ordinary differential equations

dj—? = Gyoy + G,du, (3.42)
where G, du plays the role of the forcing term. Now the initial condition
for the motion is fixed, and therefore the initial variation dy(0) must van-
ish. Using the technique of variation of constants, we can solve the system
(3.42) as follows: if we denote by the matrix Y (¢) the solution of the linear
homogeneous system

Y =G,Y, Y(0)=1 (I the identity),

the general solution of the homogeneous part of (3.42) is given by Ye for an
arbitrary constant vector c. Now varying the constant by setting z := Ye(t),
we get

2=Yec+Ye=Gyz+Ye
By letting 2z = 0y and comparing with (3.42), we get Y¢ = G,du, and
hence ¢ = ¢y + fof Y ~1(7)G,6u(r)dr. The solution of (3.42) is thus given by
6y = Y, and with the zero initial condition, we obtain

Sy(t) =Y (t) /O YY) G du(r)dr. (3.43)

Now the end point is fixed as well, y(T') = y,, but the time at which the
solution trajectory passes through this endpoint is not. Pontryagin argues as
shown in Figure 20, which translated to English says (we use in the translation
the symbols and equation numbers used in our presentation, instead of the
original ones):

Because of the linearity of system (3.42), the points y(7") 4+ dy(T)

which correspond to any sufficiently small perturbation du fill the

whole range of some linear mapping P’, which passes through y(7T').

From the optimality of the trajectory y(t), it is easy to see that

the dimension of the range of P’ does not exceed m — 1, and P/,

in general, does not touch the trajectory y(t). Let P(T") be some

m — 1 dimensional surface which contains P’ and does not touch
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B cuay aunefinoct cuctembl (2) TOUKH X (¢,) -+ 8% (£;), COOTBETCTBYIOLIHE
BCEBO3MOXKHBIM, JOCTATOYHO MaJblM IO MOAYJIO, BO3MYLIEHHsM dju (f), 3a-
NOJHAIT 06/1acTh HEKOTOPOTO JIHHEHHOro MHorooGpasusi P’, npoxojsuiero
yepe3 Touky X (f;). M3 ontHMaJbHOCTH TpaeKkTopuM X (f) JErKo BBHITEKAeT, YTO
pasmepHOCTb MHOrooGpasus P’ He mpeBocxout n— 1 u P’, BooGlie rosops,
He kKacaercsi Tpaékropun x(t). Ilycte P(tl)—-HeKOTOpaH (n— 1)-mepras
MJOCKOCTB, cofepxkamas P’ H He Kacawomasics Tpaektopun x (t). Kosapuanr-
Hble KCOpAHHATH (1 — 1)- MepHOPl rmocxocm P (¢, ) oéosHaan Uepes ay,...,dn;
Toraa a.8x* (¢,)=0.

FIGURE 20. Geometric idea of Pontryagin, leading to the

adjoint equation without knowing about Lagrange multipli-
ers (see text for a translation)

Y2

y(0)

U1

FicUrE 21. Explanation of Pontryagin’s geometric idea.

the trajectory y(¢). Let the covariant coordinates of this m — 1
dimensional surface P(T) be a1, as, ..., dn. Then a?dy(T) = 0.

It seems that this insight was obtained by Pontryagin very rapidly over two
or three sleepless nights, see [46, 27]'°. To understand his argument, Figure
21 is useful: If the trajectory y(t) is optimal, no variation du(t) is allowed
to produce a trajectory g(t) with g(7) beyond y(T'), since otherwise this
trajectory could have arrived at y(7T") at a time ¢ < T'. Therefore, variations
are only allowed to be orthogonal to the optimal trajectory!!, in a manifold P’
of dimension at most m — 1, where m = 2 in the two dimensional example in

10Personal communication of Plail with Boltyanski, and explanation by Gamkrelidze in
his paper about the discovery of the maximum principle:

The first and the most important step toward the final solution was made
by L.S. right after the formulation of the problem, during three days, or
better to say, during three consecutive sleepless nights,

HTn fact, since the endpoint is fixed as well, no variations are allowed at the endpoint either,
but then Pontryagin could not have obtained the solution (3.43) of the then overdetermined
system of ordinary differential equations (3.42), and thus he decided to first only fix the
starting point [27, page 442]. This flaw was only later fixed by Boltyanski, see the end of
this subsection.
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Figure 21. There must therefore exist a vector a orthogonal to this manifold,
a®6y(T) = 0. Since we know the solutions for the variations from (3.43), we
can compute

a®oy(T) / Y (7)Gudu(r)dr = / YT (1)Gydu(r)dr = 0,
(3.44)
where we defined the vector 9 (t) :== Y =7 (¢)Y7(T)a. This vector is solution
to a differential equation: taking a time derivative of the identity Y'Y = I,
we get
Y)Y +Y V=0 = (Y )=-Y'G, = (¥ T)=-GIy 7,
and hence v is the solution of the differential equation

P =Gy, u)y, (3.45)

with final condition 1 (7) = YT (T)a. Since the variation du is arbitrary in
(3.44), the term under the integral sign must vanish, and Pontryagin and his
students obtained the classical necessary conditions for an interior maximum

P Gu(y,u) = 0, (3.46)
¥ = -Gy u, (3.47)
¥ = glyu), y0)=¢° yT) =y  (348)

which is just a special case of (3.27-3.29)!2, with 1) playing the role of the
Lagrange multiplier A, and with an objective function f that depends neither
on y nor on u. Pontryagin, however, did not know of the relation between this
and the Lagrangian at the time of publication; according to Boltyanski [9],
they only learned about this several months later when reading the Russian
translation of Bliss’ monograph [5] from 1946.

Next, the authors note that the functions 1 can be multiplied by a
convenient constant in order to obtain ¥’ g(y,u)|i—o > 0 without causing
any changes to the necessary conditions for optimality (3.46-3.48), since this
quantity is conserved along optimal trajectories, see (3.32). This then implies
1/7Tg(y, u) > 0 for all ¢. Now if the control u is only allowed to vary in the
closed set (2, the authors explain that the first condition (3.46) needs to be
replaced by

T Gy, u)du <0 (3.49)
for all admissible variations u+ du that remain in . With this modification,
the optimal control may now also be on the boundary. This remark could
have led them directly to the KKT system (3.16).

12To solve the time optimal control problem correctly using Lagrange multipliers, we need
to introduce the time variable as a state variable, yo(¢) := ¢, which implies yo = 1, yo(0) =
0. The correct Lagrangian then becomes L(y, A, u) = yo(T) +f(;r AT (4 — g(y,w))dt, where
all vectors are now one element longer. Computing the variational derivative with respect
to y, we obtain now in addition to the earlier equations Ao = 0 and zo(T)+ o (T)2z0(T) = 0
for arbitrary variation zo, which implies A\o(7') = —1 and hence A\o(t) = —1 to complete
the time optimality system with yo(t) :=



28 M.J. Gander, F. Kwok and G. Wanner

3ror (GakT ABJSETCS YACTHLIM CJAy4aeMm CJeylollero o0lero NpHHuuna,
KOTOPbIt MBI HasbiBaeM MPUHIHIIOM MAKCHMyMa (IPUHIHI 3TOT loKa3aH
HAMH MOKAa JHIUL B DSIe YACTHHIX CJYYaeB):

IMycme yrkyua H (x, §, 1) = $.f* (x, ) npu 006lx PUKCUPOBARHLIE X,
uMeen MaKcumym no u, xoeda eeKmop u Mmenaemcs 6 samxsymor obaacmu L2,
obosnadum smom maxcumym wepes M (x, §). Ecau 2n-mepnoii sexwmop (x, )
ABAACMER PEUIEHUEM 2AMUNBMIONOBOL CUCTIEMbL - :

= OH

x’=f’(x,u):=m,

o3, o i=1,...,n, . (8)
(‘P‘—_' Gxi « axig

20e Kycouno-Henpepuierout sexmop U (t) 8 Kascovui momenm spemenu ydosaem-
eopsem ycaosuro H (x (t), p(8), u(t)) = M (x(£), ¥(£)) >0, mo wu(t) asasemcs
onmuMasbHolM  ynpasaenuem, a x(t)— coomeemcmayroweld  onmumarbHoll
(8 marom) mpaesmopued cucmemst (1). A y

FIiGUurE 22. The historical moment when the maximum
principle was invented

The second result in [10] is a sufficient condition for optimality, ob-
tained according to [9] by Gamkrelidze, and again only for points in the
interior of the control domain. The result is based on second variations of
the function 7 g(y,w), whose first derivative with respect to u was in the
necessary condition for optimality in (3.46). With the change in sign such
that 1/7Tg(y, u) > 0, Gamkrelidze showed that if, in addition to (3.46-3.48),
the Hessian of Q,Z)Tg(y, u) with respect to w is negative definite at ¢ = 0, then
the control u(t) and associated trajectory y(t) are optimal in a neighbor-
hood of ¢t = 0. This sufficient condition was not a new result either, as it is a
particular case of the sufficient condition of Legendre type [5, Chapter IX],
which the authors did not know at that time. They then however note that
if the Hessian is indefinite, then there is no optimal control in the interior of
Q, so any optimal control inside the closed set Q of admissible controls must
occur on the boundary.

The authors then conclude, based on the necessary conditions (3.46—
3.48) and the fact that the Hessian of ¢” g(y, u) with respect to w must be
negative definite for optimality, that the Hamiltonian H (y, u, ) := ¥’ g(y, u)
must attain a local maximum in w(t) for fixed y(t) and 4(¢) satisfying (3.46—
3.48): under the condition that the variations du are admissible and small
enough, the inequality

P gy, u) > ¢ gy, u+ du) (3.50)

must hold for all time whenever (3.46-3.48) are satisfied and the Hessian is
negative definite.

This was the historical moment of the invention of the maximum prin-
ciple. The Hamiltonian could also be used to define the important differential
equations involved, see Figure 22 for the original paragraph in Russian, which
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translates as (we use again the notation from our text in the translation):

This fact appears in many cases as a general principle, which we
call the mazimum principle (we have only proved this principle so
far for several special cases): Let H(y,u) = v g(y,u) have, for
arbitrary but fixed y, 1 a maximum as u varies within the closed
set Q. We denote this maximum by M (y, v). If the 2m-dimensional
vector (y, 1) is a solution of the Hamiltonian system

y=9g(y,u)=Vyl,
Y =-Gyy=-VyH,

and a piecewise continuous vector u(t) satisfies for each point in
time

H(y(t), (1), u(t)) = M(y(t),¥(t) >0,
then w(t) is the optimal control and y(¢) the corresponding (lo-
cally) optimal trajectory of system (3.41).

This first publication only gave a criterion for the solution of the time
optimal control problem, and it was formulated as a sufficient condition.
Pontryagin also hoped that the criterion would give the global optimal con-
trol, and put the word “locally” in parentheses [9], see also Figure 22. The
maximum principle allowed the authors to immediately solve the Bushaw-
Feldbaum problem we have seen earlier,

jj =u, |U'| S 17

as follows: we first transform the system to first order
U1=Y2, Y2=1u,

and the Hamiltonian becomes

H = 1y2 + Yau.

For the auxiliary functions, we obtain the differential equations
P =0, 1y =—¢r.
These equations can be easily integrated to give ¢1(t) = C; and ¢q(t) =

Cy—C4t, where Cy and Cs are constants. To maximize H under the condition
that |u| < 1, the control must satisfy

u(t) = sign(v2(t)) = sign(Cs — C1t),

and is therefore piecewise constant and can change at most once, since ¥o(t)
is a linear function of t. We thus obtain precisely the bang-bang solution
found by Feldbaum for this problem, but in a very simple way with the
maximum principle. The maximum principle also worked very well for many
similar problems that could not be solved earlier, which explains the high
hopes Pontryagin had for it.

After this first publication, the work was divided by Pontryagin as fol-
lows: Gamkrelidze was asked to generalize the results obtained during the
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calculation of examples, and he quickly found the work by Bellman, Glicks-
berg and Gross [2], who had established a necessary and sufficient condition
for the linear case

and the time optimal control to get to y = 0. For constant matrices A and
B, where the eigenvalues of A have negative real parts, the optimal control
is uT(t) = sign(b” Y (t)), where Y (t) = X~'(t)B and X solves the matrix
equation X = AX. Here b is an appropriately chosen vector, and the result
holds under a general position condition, see [2]. Gamkrelidze managed to
show that this necessary and sufficient condition coincides with the maximum
principle, and hence for linear problems, the maximum principle is indeed a
necessary and sufficient condition for optimality.

Boltyanski was supposed to work out in detail the results in the first
paper [10], and Pontryagin was supposed to find a general justification of the
maximum principle. Boltyanski started working on the first result in [10] and
tried to formulate it differently from the classical analysis textbook style in
which the argument was given, and searched for a geometrical proof. After a
more careful study of the second, sufficient condition in [10], Boltyanski finally
arrived, “in a brilliant half hour” [9], at the conclusion that the maximum
principle was only a necessary condition. He immediately called Pontryagin in
his apartment and told him that the maximum principle was only a necessary
condition, but a global one. Pontryagin was angry when he received the call
because it had woken him up from his afternoon nap, but he called back five
minutes later to say that if Boltyanski had really found a proof, this would be
of great interest, so it had to be checked carefully. Gamkrelidze did the careful
checking, and the argument was correct, so Boltyanski asked Pontryagin if
he could publish the results [9]:

“It was proposed to publish it, as a joint paper of four authors. I
refused point-blank. Then it was proposed (i) to name that theo-
rem Pontryagin’s mazimum principle, and (i) to add at the end
of my paper a paragraph dictated by Pontryagin that pointed out
his role in creation of the principle. Pontryagin was the head of
the laboratory in the Steklov Mathematical Institute, and at that
time could insist on his interests. I had to agree. After that, my
paper was presented to Doklady AN SSSR [8].

Boltyanski indeed named the maximum principle after Pontryagin in the
single authored paper [8]:

Buickazannsit JI. C. TloHTpsiryHbIM B KauecTse-
l"HHOTEBH NPHHUHKN MAaKCHMYMa - B
The maximum principle suggested by Pontryagin as a hypothe-
sis. ..

and we also show in Figure 23 the final paragraph dictated by Pontryagin
to Boltyanski from the end of the same paper. The literal translation of this
paragraph is:
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IMy6ankyemble 3leCh pe3y/bTaThi MOMYUeHb! MHOIO IPH paGoTe B PYKOBOLK-
moM JI. C. TTOHTPSATHHEIM CeMHHape MO TeODHH KONeGAHHA W aBTOMATHYECKOro
peryauposanns. JI. G. TIOHTPATHH yKa3ala MHe Ha OJHO YMpouleHHe B JOKasa-
TeNbCTBE NPHHIHNA MAKCHMYMa, OJsaroflapsi YeMy Moe JOKa3aTeJbCTBO CTalno
NPHIrORHLIM JAJA NPOH3BOJILHOrO TOMOJOrHYeckoro npoctpadcrsa U (mepro-
HaYyaNAbHbIA BAPHAHT AOKa3are/bCTBA COAEpIKas JIHUIHIOW, HUCLEe (baxruqecxn
He HCMOJb30BABIIYIOCA KOHCTPYKLHIO, KOTOpasi 3aCTaB/ANa OF PAHHUHBATECA
caydaeM, Korfia U ectb 3aMKHyTast 06.1aCTh BeKTOPHOIO NIPOCTPAHCTBA C KYCOU-
HO-TN13AKOA rpaHHUell H BEINYKAbIMK BHYTPEHHHMH YT/IaMH B TOUKaX ncpesioMa).

FiGURE 23. The last paragraph Boltyanski had to add in his
single authored paper, dictated by Pontryagin (see transla-
tion in the text)

Q=T

FIGURE 24. Original drawing by Boltyanski removing the
initial flaw of variations at the endpoint in the proof of the
maximum principle

I got the results which are published in this paper working in the

Pontryagin seminar on the theory of oscillations and automatic

regulation. Pontryagin pointed out to me one simplification in the

proof of the maximum principle, and because of that my proof

became applicable to arbitrary topological spaces U (the first vari-

ant of the proof contained an unnecessary, actually nowhere used,

construction that forced the restriction on the case, when U is a

closed domain in a vector space with piecewise-smooth boundary

and convex inner corners in breaking points).
As we have seen already in footnote 11, the initial argument of Pontryagin,
which allowed the end point to vary in a lower dimensional manifold, was not
quite correct. To remove this flaw, Boltyanski resorted in [8] to the tool of
needle variations, which already appeared in McShane in 1939 [40]; however,
Boltyanski insists that he was unaware of McShane’s work at the time and
came up with the technique independently [7]. We show in Figure 24 the hand
drawing of Boltyanski from [9]. One can clearly see that a cone appears,
instead of the variations orthogonal to the trajectory, and the role of the
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manifold is now played by I' at the tip of the cone. The complete original
proof also relies on techniques from topology, the field of origin of the group.
It is quite long and technical; details can be found in the historical book
by the four authors from 1962 [48], which was quickly translated into many
languages and made Pontryagin and the Russian school of optimal control
famous with their maximum principle. However, from Boltyanski’s point of
view, it was he who formulated and proved the maximum principle correctly.
Pontryagin’s insistence on publishing the result as a joint paper led to a
period of deep bitterness for Boltyanski, during which he could not even do
mathematics any more, as he tells in [9].

3.5. General formulation of the Maximum Principle

The times to and ¢1, in this statement of the problem, are not fixed. We
only require that the object should be in state x¢ at the initial time, and
at state x1 at the final time, and that the functional should achieve a
minimum. ( Pontryagin, Boltyanski, Gamkrelidze and Mishchenko 1962

[48])

Pontryagin and his students then generalized the problem of minimizing
travel time to one of minimizing an arbitrary function [11]. The model for
the technical object is again the system of ordinary differential equations

dy
- — 9w, ylt) =" (3.51)
for the trajectory y : R — R™ of the object, depending on the control
functions u : R — R™~"™. These controls are supposed to be chosen such that
when the object arrives at time t; at a given location y(t;) = y!, the general
functional .
1
7= [ aolwo) u)ds (352)
to
is minimized. Here the scalar function gy : R™ x R®"™™ — R was on purpose
denoted by the index zero, since a first step was then to define an additional
ordinary differential equation

dyo
o 9o(y,u), yo(to) = 0.
Appending this equation to the system of ordinary differential equations for
the technical object as the zeroth coordinate, ¥ := (yo, y1,-- -, Ym), and sim-
ilarly g := (g0, 91,-- -, gm), the new system of ordinary differential equations
dyg _,. -

encodes, in addition to the trajectory, also the current value of the objective
function in its zeroth component:

yo(t):/ go(y(t), u(t))dt.

to
The authors now give a geometric interpretation of the optimal control prob-
lem in this higher dimensional space: given an initial point y° and a target y'
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Yo

| optimal y(t)
Syt
.~ optimal y(t)

Y1 Y0

FIGURE 25. Interpretation of the optimal control problem in
the higher dimensional space including the objective function
coordinate g

in R™, as shown in Figure 25, among all the trajectories solution of (3.53) and
ending at y' (dashed line examples in Figure 25), find the one that crosses
the vertical line in the yy direction above with the lowest coordinate value
yo(t1) possible (see solid line in Figure 25). Next, they explain several proper-
ties of this optimal control problem: first, the problem is time invariant, since
the right hand side of the state equation and the objective function do not
depend on time. One can therefore do translations in time without changing
the problem, see Figure 26 from their book [48]. Because of this, one can also
consider several points in phase space, and search for controls separately to
move from one to the next sequentially, and then concatenate the controls in
order to get a single control to go from the first to the last point in phase
space. Doing this, one just has to sum the local objective function values
to obtain the global value of the objective function. Concatenating the con-
trols this way, however, is not possible in the space of continuous controls in
general, and therefore one must expect the optimal control to be piecewise
continuous only, as illustrated in Figure 27 from [48]. Finally, in preparation
of their proof, they argue that the optimal trajectory must also be locally op-
timal: if it were not optimal on a sub-interval, then one could simply replace

LHmh ¢

3 g 4
~
"‘--.\J\l

FIGURE 26. Graph to illustrate time translation invariance
from [48]
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FiGUurE 27. Graph to illustrate that the optimal controls
are piecewise continuous, from [48]

the control there by a better one, and since the objective functions are just
summed, the global objective function would decrease, see Figure 28 from
[48] for an illustration of this.

For the formal statement of the maximum principle, the authors intro-
duce as before the adjoint system (but now without explanation)

dpi _ NOgi(yw) -
dt Jz::() B v;, 1=0,1,....m (3.54)

and the Hamiltonian
T .

H(, g, u) =% g(y, u), (3.55)
but now the maximum principle is no longer stated as a sufficient condition:
a necessary condition for the control w and associated trajectory y to be
optimal is that there exist @ such that the Hamiltonian system

dy;  OH

vi O o m (3.56)
at oy,

di; OH

Wi 9T =01, .
e Gy 1= 0L (3.57)

FIGURE 28. Graph to illustrate that the solution must be
locally optimal, from [48§]
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holds and that for each admissible control v the inequality

H(, §,v) < H(¥, 9, u) (3.58)

be satisfied, i.e. the optimal control u is the value of v maximizing the Hamil-
tonian.

Suppose now that the optimum is in the interior of the domain. Then the
inequality (3.58) implies that we are at a stationary point, i.e. the derivative
with respect to w must vanish,

P Gulyu) =0 < PoVago(y,u) + GT(y, )t = 0.

Since the Hamiltonian does not depend on g, 1 is just a constant, ¥y =
—1 and we find naturally the condition (3.27) from the Lagrange multiplier
approach'3. So the maximum principle stating that the Hamiltonian has to
be maximized is equivalent to stating explicitly that the Lagrangian has to
be minimized, and not just at a stationary point, and the reason why it is
a maximum for the Hamiltonian and a minimum for the Lagrangian comes
just from the sign change in the definition of the Hamiltonian (3.30).

3.6. Example of an ODE Control Problem

We illustrate the use of Pontryagin’s maximum principle on the following
example. Suppose we have a system with a state variable y = y(¢) € R and a
control variable u = u(t) € R governed by

Y =u, y(0) =0,

subject to the box constraints |u(t)| < 1 for all . We would like to find the

control u(t) such that y(1) = 3 and which minimizes the cost

1t
J(y,U)=§/O y“ dt.

Without the constraint on the control, the optimality system (3.27-3.29)
leadstoy:u,ib:y,0:l-wandthusz/J:O,y:Oandu:O. Since we
must however have y(1) = 3, one can force the solution in the last moment
with a very large control to this value, and make the integral [ y2dt arbitrarily
small. With the constraint on the control, the best one can do is use u = 1,
and we need to use this control over the second half of the interval to get
y = 1, in order to reach y(1) = %, which is the optimal solution, see Figure
29.

Lets now see how Pontryagin’s maximum principle guides us to this
solution: it says that if u(¢) is the optimal control, then for every ¢ € (0, 1),

we have

H(y(t), u(t), ¥(t)) = max H(y(t),, ¢ (1)),

l€l<1

13see also Footnote 12
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—y®
---u()
081 --w(

FIGURE 29. Solution of the simple optimal control problem.

where y(t) and ¥(t) are the state and adjoint state of the optimal trajectory
at time ¢, and H is the Hamiltonian
1
H(y,u, ) = u - 5y°.
Thus, by inspection, we have

B 1, if¥(t) >0,
ult) = {—1 if (1) < 0.

If 4(t) = 0, then we get no information from the maximum principle. We
now deduce the optimal control and trajectory based on these properties.

1. We know that y(1) = %, so by the adjoint equation ¥ = y, we see that
1) has a positive slope in a neighborhood of ¢t = 1, so it cannot vanish
identically there. So if we assume that (1) <0, then ¥ (¢) < 0 in some
interval t € (¢1,1) with ¢t; =1—40, 6 > 0, so u(t) = —1 there. This yields

1
y(t) =y(1) — /t y(nydr=y(1)+1—-t= g —t. (3.59)

Thus, y(t) > & for all ¢t € (t1,1), so 1(t) is a strictly increasing function
with ¢ (1) < 0, implying that ¢(¢) < 0 for all ¢t € (¢1,1). In particular,
¥(t1) < 0, so continuing this argument now over the interval (¢; — 6, t1),
etc. shows that (3.59) in fact holds for the whole interval (0,1). This
implies y(0) = 2, which contradicts the initial condition y(0) = 0. Hence
1 (1) cannot be negative (or zero).

2. Suppose now that (1) = ¥; > 0. Then there exists a neighborhood
around ¢ = 1 in which ¢(¢) > 0. Let ¢t* € [0,1) be the smallest ¢ such
that ¢(t) > 0 whenever ¢ > t*. Then by the continuity of v, we have
¥ (t*) = 0. Moreover, v = 1 on (¢*,1), which implies

y(t) =y(1) — /f u(r)dr=y(l)—1+t=t— % (3.60)
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whenever ¢ € (t*,1].

3. We show that y(t*) = 0 by excluding both y(t*) > 0 and y(t*) < 0. If
y(t*) > 0, then ¥ (t* — §) < 0 for § > 0 small enough, so u = —1 on the
interval (¢* —¢,t*). This means y(t*—0) > y(t*) > 0; continuing this ar-
gument backwards in time, we obtain y(0) > y(t*) > 0, a contradiction.
On the other hand, if we assume that y(t*) < 0, then 9)(¢t*) < 0 and
P(t*) = 0 together implies that ¢ (t* + ¢) < 0 for § > 0 small enough,
which contradicts the definition of ¢*. Thus, y(¢t*) = 0. Since (3.60) is
satisfied for all ¢ € (t*,1], we deduce that t* = 3.

4. The optimal trajectory and control are now determined for the interval
[1,1]. Since f11/2 y? dt is now fixed, we are left with the minimization
problem

1/2
/ y? dt — min s.t. y(0) = y(5) =0,
0

where ¢y = u and |u(t)| < 1. The optimal solution is obviously
y(t) =0, u(t) =0 vt € (0, 3).

Note that the adjoint state must also vanish, since u would not be
allowed to take on values different from +1 otherwise.

We thus obtain the same solution from Figure 29. Note that unlike problems
with a pure bang-bang solution, our optimal control contains both an interior
part (u=0ont € (0,3)) and a boundary part (u =1 on ¢ € (3,1)). We
also see that in this case, the maximum principle is useful in the sense that
it guides us towards the optimal solution bit by bit, but it does not provide
an algorithm for computing the optimal control directly.

3.7. Caratheodory

Auf den folgenden Seiten soll auf das allgemeine Problem der Variations-
rechnung in einem (n+ 1)-dimensionalen Raum mit p gew6hnlichen Dif-
ferentialgleichungen als Nebenbedingungen die Methode der geodatis-
chen Aquidistanten angewandt werden'? (Carathéodory 1926 [16])

Constantin Carthéodory had already worked in his PhD thesis on dis-
continuous solutions in the calculus of variations [15], and became one of the
eminent researchers in this field. In a paper published in 1926, see also the
quote above, he set out to solve precisely the same type of problem we have
seen before, but thirty years earlier. He studied the minimization problem

ta
I:= / L(t,xz,&)dt — min
t1
under the constraints given by implicit differential equations
G(t,x, &) =0, (3.61)
140n the following pages we will solve the general problem of variational calculus in an

(n 4+ 1) dimensional space with p ordinary differential equations as constraints, using the
method of geodesic equal distances
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FiGURE 30. Formulation of necessary conditions using the
Hamiltonian for optimal control problems already found in
the work by Carathéodory from 1926

where L : R x R" x R* — R, and G : R x R™ x R" — RP. Using geodesic
arguments, he was led to define the scalar quantity

M(tﬂ w? i? I’L) = L(t7 w? i) + I’LTG(t7 w? i)’

for some parameter functions p. He then applied the Legendre transform to
M, which led him to the Hamiltonian

H(tv Zz, y) = _M(tv T, P, X) + 3/T<P'
Here, ¢ represents the right hand side when the implicit differential equation
(3.61) is solved to obtain an explicit form &; = ¢;(¢, ), and x = p, which
gives
H(t,z,y) = —L(t,z,¢) —x " G(t,z, ) +y .

Now along a solution satisfying the constraint, we have G(¢,x,¢) = 0, and
Carathéodory obtains as the main result!'®, as we have seen earlier, that the
solution candidates must satisfy the differential equations

&=V, H, ¢=-V,H, (3.62)

which he says play such a prominent role in mechanics, see also the original
formulas in Figure 30. In contrast to Pontryagin later, he does however only
consider local optima in open sets. For more explanations on the derivation
of the Hamiltonian formulation of Carathéodory, see [44], and also the very
interesting description of the history of the maximum principle and optimal
control in [46], see also [45, 43].

4. PDE Constrained Optimization

We have seen in the previous section how the desire to optimize the trajec-
tory of a system governed by ODEs gave birth to the field of optimal control.
In many applications, however, the system is not governed by ODEs, but by
partial differential equations (PDEs), and the desire to optimize certain out-
puts leads to PDE constrained optimization problems. This field is nowadays
an active research area, as attested by the many conferences and papers in

15Das Hauptresultat besteht darin, dass unsere Gefillkurven mit den Cauchyschen Charak-
teristiken zusammenfallen und Ldsungen der kanonischen Differentialgleichungen (3.62)
sind, die in der Mechanik eine so bedeutende Rolle spielen
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recent years. Here we mention only three sample applications; other appli-
cations abound and new ones arise every day, so it is impossible to mention
them all.

e Oil reservoir management: the flow of fluids in an oil field satisfies a
system nonlinear PDEs that models the conservation of chemical species
transported by different fluid phases. Here, the only interaction with
the subsurface oil field is through wells, either by injecting fluid (water
or gas) into the ground or by controlling how much fluid (typically a
mixture of oil, water and gas) can come out of it. Thus, the goal could be,
for instance, to optimize the oil output over the lifetime of the reservoir
by optimizing over the control variables, such as the injection rate of
water or gas at an injection well, or the fluid pressure or production rate
at the production wells. Here the control variables can be functions of
time, just like in the ODE case.

e Shape and topology optimization: consider the design of an airfoil. De-
pending on the purpose of the airfoil, one can maximize the lift, minimize
the drag, or minimize the vortices created by the airfoil when air flows
around it. Thus, the objective function depends on the solution of the
PDE governing the flow of air around the airfoil, e.g., a Laplace-type
potential flow equation, or the full Navier—Stokes equation. Here, the
control variable is the “shape” of the airfoil, i.e., the function that de-
fines the boundary of the domain, and the PDE constraint is the Laplace
or Navier—Stokes equation.

e Inverse problems: consider an underground rock formation, of which we
would like to understand its internal composition (types of rock, exis-
tence of layers and faults, etc.) One way of obtaining information with-
out drilling is to send seismic or electromagnetic waves into the ground
and install detectors on the surface to measure the reflected waves. If the
rock parameters were known ahead of time, then the reflected waves can
by calculated by solving a PDE (elasticity or wave equation). However,
since our goal is precisely to estimate these parameters, we must solve
an optimization problem by choosing the parameters that minimize the
discrepancy between the predicted and measured waves, subject to the
constraint that the waves satisfy a PDE.

4.1. Early Work

The discovery of Pontryagin’s maximum principle and its ability to explain
bang-bang type solutions generated great interest in the optimal control com-
munity. In particular, starting from the 1960s, there was a push to generalize
both results to systems described by PDE rather than ODE constraints. The
earliest reference appears to be a series of papers by Egorov [18]-[19] starting
in 1962, which contains a detailed study of the minimal time problem for the
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parabolic control problem of the type

0

8_zt/ +Ay+b(u)y=f+u onQx(0,T),
y=20 on 09 x (0,7),

with initial condition y(to;u) = yo and target y(t1;u) = yr, but the argu-

ments therein are rather opaque'®.

Stateside, a proof of the bang-bang property when b = 0 and w is re-
stricted to the set

(4.1)

Uga = {u:|u(t)| <1ae}
was given in 1964 by Fattorini [21], who wrote his Ph.D. thesis on the topic
under the supervision of P. D. Lax. The proof proceeds in two steps. First,
Fattorini writes y(7;u) in terms of the Green’s function

y(m5u) = G(T)yo + /OT G(r — o)u(o) do.

Using this representation, he shows that if |u(t)| < 1—e for some € > 0 almost
everywhere in the interval (0,7), then one can produce another control v(t)
such that |v(t)] < 1 and y(s;v) = yr with s < 7, so that 7 is not the
optimal time. He then shows that even in the case where |u(t)] < 1 — €
only on a subset e C (0,7) of positive measure, u cannot optimal. To show
this, let e be the subset in which |u(t)] < 1 — e. Then using semi-group
theory, Fattorini shows that there exists a control g(t) with bounded values
and support in e such that y(7;9) = y(7;u) = yr. By taking a weighted
average of u and g, one obtains a new control v = (1 — #)u + 0g that satisfies
|v(t)] < 1— € everywhere for some é > 0, but without changing the target yr,
since y(7,v) = (1—-0)y(7;u)+0y(7; g) = yr. Thus, by the previous argument,
T is not the shortest time necessary to arrive at yr, so u is not time-optimal.
This proof does not use any variant of the Pontryagin’s maximum principle,
so none was formulated in the paper.

Proofs of the bang-bang property for other systems, notably bound-
ary control problems, appeared subsequently, see for instance Friedman [26].
However, it was a research monograph of Jacques-Louis Lions that launched
the systematic study of optimal control under PDE constraints and shaped
the field as we know it today.

4.2. Lions

A new adventure began for Lions in the early 1960s, when he met (in
spirit) another of his intellectual mentors, John von Neumann. By then,
using computers built from his early designs, von Neumann was devel-
oping numerical methods for the solution of PDEs from fluid mechanics
and meteorology. At a time when the French mathematical school was
almost exclusively engaged in the development of the Bourbaki program,
Lions — virtually alone in France — dreamed of an important future

16 According to J.-L. Lions: “Le travail de Yu. V. Egorov contient une étude détaillée de ce
probléme, mais nous n’avons pas pu comprendre tous les points des démonstrations de cet
auteur, les résultats étant trés probablement tous corrects.”
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for mathematics in these new directions; he threw himself into this new
work, while still continuing to produce high-level theoretical work on
PDEs. ( R. M. Temam, Obituary of Jacques-Louis Lions (STAM News,
July 10, 2001)

Jacques-Louis Lions (1928-2001) was one of the most influential figures
of his time in applied mathematics in France and throughout the world. Under
the influence of his PhD supervisor, the Fields medalist L. Schwartz, Lions’
early work was of a theoretical nature, emphasizing the use of distributions
and appropriate function spaces in the study and solution of PDEs. During
his time as scientific director at IRIA'7, he discovered “systems theory”, which
subsequently became a new component of his research in the form of control
theory. Given his expertise in PDEs and variational formulations, it is no
surprise that his theory of PDE constrained optimization is heavily based on
function (especially Sobolev) spaces and variational arguments.

Lions’ first contribution in PDE constrained optimization was a research
monograph entitled “Controle optimal de systémes gouvernés par des équa-
tions aux dérivées partielles” [37]. It was published in 1968 and became the
standard reference of the subject. In this volume, Lions developed his the-
ory systematically by first considering the control of elliptic problems, and
then moving on to time-dependent problems of the parabolic and hyperbolic
types. The stated goals of the volume, which appear in the introduction, are
as follows:

1. to obtain necessary (and maybe also sufficient) conditions for local ex-
trema of the PDE constrained optimization problems;

2. to study the structure and properties of equations expressing such con-
ditions;

3. to obtain constructive algorithms that can be used to calculate the op-
timal controls numerically.

This last point was particularly groundbreaking at a time when PDE
research was mostly theoretical, see the quote above. It is especially fitting
that variational formulations and Hilbert spaces play a fundamental role in
the monograph, giving its results a natural algorithmic realization in the form
of finite element methods, cf. [28].

To illustrate his approach, let us consider the problem of minimizing
the cost functional

J(u) = [|Cy(u) = zallf; + (Nu, u)y.

Here, the desired state z4 belongs to a Hilbert space H, where as the state
variable y = y(u) belongs to a possibly different Hilbert space V. The state
variable y(u) depends on the control variable u via the PDE

Ay = f + Bu, (4.2)

17Institut de Recherche en Informatique et Automatique, the precursor of the modern
INRIA.
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where A : V — V' is generally taken to be a differential operator. The
minimization is done over all controls u lying in the admissible set Uyq, a
closed convex subset of a Hilbert space U. The quadratic form (Nu,u)y, with
N self-adjoint and semi-positive definite, penalizes large control variables u.
From the definition of J(u), we see that for all v € U,q, we have

J(v) = (Cy(v) — 24, Cy(v) — za)u + (Nv,v)u
= [ Cy(u) = zall7 +2(Cy(u) — 24, Cy(v) — y(u)u + [ Cy(v) — y(w)|F
+ (Nu,u)y + 2(Nu,v —uw)y + (N(v —u),v —u)y
= J(u) +2(Cy(u) — 24, Cy(v) —y(w)) g + 2(Nu,v — u)y
+ 1€ @) —y)llg + (N —u),v —u)y.

Now since w is the minimizer, we must have J(v) — J(u) > 0, so that

2(Cy(u) = 24, Cy(v) — y(W)u + 2(Nu,v — u)y
+IC () =yl + (N (v = u),v — )y > 0,
which must hold for all v € Ugg. So if ||v —u|| = O(e) and we let € tend to

zero, the two quadratic terms become negligible, so we obtain after division
by 2 the optimality condition

(Cy(u) = 24, C(y(v) —y(W))m + (Nu,v —u)y 20 Vv € Ung,  (4.3)

which is analogous to (3.16) in the KKT conditions. The inequality (4.3) can
be rewritten as

(C*A(Cy(u) — 2zq),y(v) —y(uw)y + (Nu,v —u)y >0 Yo € Ugg, (4.4)

where A : H — H' is the canonical isomorphism from H to its dual space
H'. Lions then defines the adjoint state p(v) € V implicitly via
A'p(v) = C*A(Cy(v) — za), (4.5)
where A* : V' — V' is the adjoint of A. Then substituting (4.5) into (4.4)
yields
(C*A(Cy(u) = za),y(v) — y(w)v + (Nu,v —u)y
p(u), y(v) —y(u)v + (Nu,v —u)y

= (A"p(w),
= (p(u), A(y(v) — y(u)v + (Nu,v — u)y
= (p(u), B(v — u))y + (Nu,v — u)u
= (A;'B*p(u) + Nu,v —u)y >0 Vo € U, (4.6)

where B* : V. — U’ is the adjoint of B, Ay : U — U’ is the canonical
isomorphism from U to U’, and we have used the fact that

A(y(v) — y(u)) = f + Bv — (f + Bu) = B(v — u).

In other words, the definition of p(v) in (4.5) can be seen as an intelligent
guess that allows one to eliminate the state y(u) from the optimality condition
(4.4), similar to the way we chose the Lagrange multiplier A in Section 3.1
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to eliminate the state y in the finite-dimensional case. Inequality (4.6) can
be reformulated as
(AG'Bp(u) + Nu,u)y = inf (Ay'B*p(u) + Nu,v)y,
v€Uqqa

which then looks like an elliptic analogue of Pontryagin’s maximum princi-
ple.'8

The advantage of the abstract Hilbert space approach is that the results
are immediately applicable to many different types of control problems. For
instance, consider a problem in which the control function is Neumann data
on part of the boundary I'y C T' = 012, and we want the Dirichlet trace on
another part of the boundary I'y € 99, T'oNI'; = 0 to be as close as possible
to some desired trace z4. Then the analogue of (4.6) in the boundary control
case states that the optimal control u € U,q C L?(I') must satisfy

/p(u)(v —u)dl' >0 Yo € Uygq. (4.7
r

If the set of admissible controls is defined by pointwise box constraints, e.g.,
if

Uaa = {v : Supp(v) C T'p and |v(z)| < 1 a.e. on Iy},
then a standard argument allows one to convert the variational inequality
(4.7) into a pointwise one of the form

p(z;u)(§ —u(x)) 20 VEe[-1,1]. (4.8)

Under some smoothness assumptions on the domain boundary I" and the
coefficients of the elliptic PDE, Lions shows that the optimal control u € Uyg
satisfies either p(x;u) = 0, in which case y(u)|r, = 24, or p(x;u) # 0 almost
everywhere. Then (4.8) implies

p(z;u) >0 = u(x) = -1,
p(r;u) <0 = u(x) =1.

Thus, we have a bang-bang property in the elliptic case, a result which, to
Lions’ knowledge, had not been published at the time.

4.3. Derivation by Lagrange Multipliers

It was never explicitly mentioned what motivated Lions to define the adjoint
state p via (4.5). One possibility is that he was influenced by the work of
Pontryagin; another reason could simply be that he wanted to eliminate the
state variables y(u) and y(v) algebraically, just as we did in Section 3.1. Here,
we show that the same variable p can be obtained using a formal Lagrange
multiplier argument. Let the Lagrangian be defined by

1 1
L(yauvp) = EHCy - Zd”%‘[ + §(NU)U)U - (Ay - f - Buvp)Va

18«La formulation (1.31) peut étre considérée comme un analogue du « principe du
maximum de Pontryagin », pour lequel nous référons [...] & PONTRYAGIN-BOLTYANSKI-
GAMKRELIDZE- MISCHENKO” [37].
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where p € V now acts as the Lagrange multiplier. Next, we take the varia-
tional derivative with respect to y, i.e., we calculate

d !
o L+ ez up)lmg = (C2, 0y —za)n — (Az.p)v =0
for all z € V. We thus have
(Cz,Cy — za)u — (Az,p)v = (2,C"A(Cy — za))v — (2, A"p)v =0,

which implies A*p = C*A(Cy — z4). So the adjoint state is nothing but the
Lagrange multiplier for the constrained problem! We check that this formu-
lation gives the same optimality condition for u: we want u to be a minimizer
of L(y,u,p), i.e., for all v € Uyq, we have

0<L(y,v,p) — L(y,u,p) = (B(v—u),p)y + (Nu,v —u)y + %(N(v —u),v—u)y

1
= (v—u,A;'B*p+ Nu)y + §(N(v —u),v—u)y.

In particular, for v = u + ew € U,q, we have
2
e(w, Nu + Al}lB*p)U + 6E(Nw, w)y > 0,

so by letting € — 0, we obtain the same condition as (4.6). One can only
speculate whether Lions had this derivation in mind'®.

4.4, Later developments

Lions’ monograph only signaled the beginning of the rapid development of
PDE constrained optimization as a modern field of research. Fueled by practi-
cal needs in industry and advances in other branches of applied mathematics,
the field saw major progress in terms of both theory and algorithms — this
is in addition to the number of application areas to which PDE constrained
optimization is applied. The following list is by no means exhaustive; the goal
is to show a sample of achievements in the intervening decades.

Theory. Much of the theory in Lions’ monograph, including the exis-
tence and regularity of optimal controls and the maximum principle, has
been extended to more general problems. For instance, Pontryagin’s maxi-
mum principle for linear parabolic problems has been generalized to semi-
linear parabolic problems by von Wolfersdorf [52, 53]. It is also possible to
include state constraints, i.e., constraints on the state variables y rather than
on the control u. For a comprehensive modern introduction to the subject,
see the recent book by Troltzsch [50].

Another major theoretical development, related to the existence of op-
timal controls, is the theory of controllability, where the goal is to determine
whether it is possible to find a control function that steers an object from any
initial state yo to a given target state yr. An important result, which appeared
in [38] in 1988, was proved by Lions himself: he introduced what is known as

19 According to J. Blum, it was R. Glowinski, one of the former students of Lions, who
showed Lions once on the board that the adjoint state can simply be interpreted as a
Lagrange multiplier. This was confirmed by R. Glowinski (personal communication)
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the Hilbert Uniqueness Method. The method takes a linear time-reversible
PDE (such as the wave equation), an initial state yo and a target state yr,
and constructs a control u (belonging to some specially chosen Hilbert space
H) that steers yo to yr, provided that the system is observable and the time
horizon is long enough. For a more recent survey, see the articles by Zuazua
[54, 55].

Algorithms. There has also been significant development on the algo-
rithmic front: here, the goal is to discretize the infinite-dimensional PDE
constrained problem, e.g. using finite element methods, in order to obtain a
finite dimensional approximation, which can then be solved numerically. In
principle, one can discretize the KKT formulation (3.16)—(3.18) and then use
standard optimization routines, such as line search, trust region and interior
point methods to solve the finite dimensional problem; however, one must be
careful to discretize the forward and adjoint problems consistently to retain
optimality in the discrete setting, see [12]. Using such routines allows one
to take advantage of advances in sparse matrix factorizations and precondi-
tioners that have been developed for general saddle-point problems, see for
instance [3].

Shooting methods, or more precisely multiple shooting methods, were
originally developed for solving two-point boundary value problems [41, 32,
42]. While the finite element method has become the method of choice for
most boundary value problems (especially of the elliptic type), multiple shoot-
ing remained a viable approach for optimal control problems, since they
are able to integrate systems that are highly unstable and very sensitive to
changes in initial /final conditions, see the PhD thesis by Bock [6]. More re-
cently, multiple shooting has been applied successfully to problems with PDE
constraints, see for example [49], [29], [30], and the recent work by Rannacher
et al. [17].

With the rapid increase in computing power in the form of multi-core
processors and parallel clusters, there is increasing interest in parallel algo-
rithms for solving PDE constrained optimization and optimal control prob-
lems. Methods such as domain decomposition and multigrid, which have been
developed and analyzed extensively for discretized PDE problems, are par-
ticularly suited for this purpose. For the use of domain decomposition in
parabolic optimal control problems, see Heinkenschloss [29] and references
therein.
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