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Abstra
t. The history of 
onstrained optimization spans nearly three


enturies. The prin
ipal warhorse, Lagrange multipliers, was dis
overed

by Lagrange in the Stati
s se
tion of his famous book on Me
hani
s

from 1788, by applying the idea of virtual velo
ities to problems in stat-

i
s with 
onstraints. The idea of virtual velo
ities, in turn, goes ba
k to a

letter of Johann Bernoulli from 1715 to Varignon, in whi
h he announ
ed

a very simple rule for solving hundreds of Varignon's problems in the

blink of an eye. Varignon then explains this rule in his book published

in 1725. Half a 
entury later, Bernoulli's rule was 
hosen by Lagrange

as the general prin
iple for the foundation of his me
hani
s, with the

multipliers as the main tool for treating me
hani
al 
onstraints. In the

se
ond edition of his me
hani
s, published in 1811, Lagrange stressed

the importan
e of his multipliers also for 
onstrained optimization. In

parti
ular, they provide spe
ta
ular simpli�
ations of entire 
hapters of

Euler's treatise on Variational Cal
ulus from 1744. Lagrange multipli-

ers is however a mu
h farther rea
hing 
on
ept; we show how one 
an

dis
over the important primal and dual equations in optimal 
ontrol

and the famous maximum prin
iple of Pontryagin using only Lagrange

multipliers. Pontryagin and his group, however, did not dis
over the

maximum prin
iple this way, sin
e they were 
oming from a 
ompletely

di�erent area of mathemati
s. We �nally give the 
omplete formulation

of PDE 
onstrained optimization based on duality introdu
ed by Lions,

and 
on
lude with an outlook on more re
ent appli
ations.
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∗
Our intention is not to write a full histori
al paper, but to highlight the parts of the

histori
al development we �nd interesting as mathemati
ians. For full details on the history

of 
onstrained optimization with 
omplete referen
es, see [45℄ and [46℄.
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1. Lagrange Multipliers Originating from Me
hani
s

�Le Traité de Dynamique de M. d'Alembert, ... parut en 1743, ... Cette

méthode réduit toutes les loix du mouvement des 
orps à 
elles de leur

équilibre, & ramene ainsi la Dynamique à la Statique� (Lagrange 1788,

Se
onde Partie, p. 179)

Lagrange's method of multipliers originates from Lagrange's resear
h in me-


hani
s, more pre
isely his Mé
anique analytique [33℄, �rst published in 1788,

with a se
ond, improved edition [34℄ in 1811/15. In his long introdu
tions,

Lagrange tra
es the following history for his work:

1. Ar
himedes, Pappus, Varignon: For nearly 2000 years, resear
h in me
ha-

ni
s 
on
erned mainly Stati
s, beginning with the dis
overy of the law of the

lever by Ar
himedes. Then, mainly by resear
hers as Pappus, Stevin, Rober-

val and Des
artes, theories for the equilibria of ever more 
ompli
ated �ma-


hines� were developed, 
ulminating in the Nouvelle Mé
anique by Varignon.

2. Galilei, Newton, Leibniz, the Bernoulli brothers, Euler : The next period

then 
on
entrated on the Dynami
s of in
reasingly 
omplex me
hani
al sys-

tems (mass points, liquids, rigid bodies) with more and more analyti
al meth-

ods (di�erential equations).
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3. Lagrange: Finally, the �prin
iple of d'Alembert� from 1743 redu
es prob-

lems in dynami
s ba
k to problems in stati
s (see quotation), so that La-

grange'sMé
anique analytique again started with an extensive �première par-

tie� on stati
s, 
omprising nearly 200 pages, as a foundation for the now-
alled

Lagrangian me
hani
s in the se
ond part. The main idea there was the Prin-


iple of Virtual Velo
ities, whi
h �rst appeared in a letter of Joh. Bernoulli

from 1715 to Varignon. The extension of this idea to 
onstrained me
hani
al

problems then led to the invention of Lagrange multipliers.

1.1. Ar
himedes' Proof for the Lever

The very �rst great dis
overy in Stati
s was made by Ar
himedes with the

law of the lever: two bodies are in equilibrium if their weights are inversely

proportional to their arm lengths (see Fig. 1 and [1℄).

(Opera, printed 1615 in Paris, BGE Ka459)

2 5E ∆
Prop. 6 (rat.) and 7 (irrat.)

Figure 1. Ar
himedes' law for the lever

The proof of Ar
himedes is very beautiful: He started from the axiom

that equal weights at equal distan
es are in equilibrium (see Fig. 2).

(Opera 1615 (Paris BGE Ka459)

a a

Figure 2. Ar
himedes' hypothesis

Then, after more axioms, several preliminary propositions and 
orollar-

ies, he proved his Proposition 6, valid for rational ratios of weights, in two

pages of Greek text. His idea was to distribute the weight units left and right

in a symmetri
 way to obtain an overall symmetri
 
on�guration (see Fig. 3

for an illustration in the 
ase of a 5 : 2 lever). Fig. 4 shows the 
orresponding

proposition and �gure for the ratio 3 : 2, whi
h appear in the 1615 edition of

Ar
himedes' Opera (observe that the letters L,E,C,G,D,K of the Latinized

version 
orrespond to Ar
himedes' Λ, E,Γ, H,∆,K).

1.2. Virtual Velo
ities and Joh. Bernoulli's �Regle�

�... il n'y a pas un seul 
as d'equilibre dans toute la me
hanique tant des

�uides que des solides, qui ne puisse etre expliqué par 
ette regle ... J'ay
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Λ E
Γ

H ∆ K

Figure 3. Ar
himedes' proof of his Prop. 6

(Opera 1615 (Paris BGE Ka459)

Figure 4. Ar
himedes' Prop. 6 with �gure from the 1615 edition

don
 raison d'appeller le grand et le premier prin
ipe de statique sur

lequel j'ay fondé ma regle ...� (Joh. Bernoulli in his letter to Varignon,

1715)

�... je 
rois pouvoir avan
er que tous les prin
ipes généraux qu'on pour-

rait peut-être en
ore dé
ouvrir dans la s
ien
e de l'équilibre ne seront

que le même prin
ipe des vitesses virtuelles, envisagé di�éremment, et

dont ils ne di�éreront que dans l'expression.� (Lagrange 1811, Se
tion

I, �17)

All the e�orts during the 
enturies after Ar
himedes in generalizing this result

to more and more 
ompli
ated situations 
ulminated in the work of Pierre

Varignon, who elaborated during many de
ades his Nouvelle Mé
anique [51℄,


onsisting of two heavy volumes published posthumously in 1725

1
, with

hundreds of results illustrated on 64 plates of �gures (see Fig. 5).

1
on the frontispie
e is written �Dont le projet fut donné en M.DC.LXXXVII�.
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Figure 5. Six out of the 64 �gure plates from Varignon

(1725); (the upper left �gure of the upper left plate explains

the prin
iple of virtual velo
ities as in Fig. 1.5 below)

When this work was nearly 
ompleted, Joh. Bernoulli explained in a

letter to Mr. le Chev. Renau, with a 
opy to Varignon, his �regle� based

on the Virtual Velo
ities, whi
h allowed one to repla
e all su
h �gures by

one general equation. Varignon had some di�
ulty in admitting that all his

work over de
ades was de
lared to be an �easy game�

2
and 
ontested the

general truth of this rule. Bernoulli then got angry

3
and explained his ideas in

more detail, written in a se
ond letter, dated Feb. 26, 1715

4
. Varignon then

in
luded Bernoulli's �regle� as �Theoreme XL� in �Se
tion IX� (�Corollaire

2
�Votre projet d'une nouvelle me
hanique fourmille d'un grand nombre d'exemples, dont

quelques uns à en juger par les �gures paroissent assez 
ompliqués; mais je vous de�e de

m'en proposer un à votre 
hoix, que je ne resolve sur le 
hamp et 
omme en jouant par ma

dite regle.�

3
�... 
ependant permettez moy que je vous repro
he i
i une non
halan
e qui vous est arrivé

assez souvent en 
e que vous portez quelques fois votre jugement un peu à la legere, sans

examiner, si 
e que vous 
royez etre une obje
tion en est veritablement une ; ... 
'est don


pour une autre fois que je vous donne 
et avertissement à �n que vous soyez à l'avenir sur

vos gardes, quand il s'agit de juger...�

4
Varignon gave in his book the wrong date 1717, whi
h was also 
opied by Lagrange.
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general de la Théorie pré
edente�) of his book, by saying that, unfortunately,

it was too late to rewrite all the rest of the book (see Fig. 6).

Figure 6. Bernoulli's �regle� as published by Varignon

(1725, Vol. II, p. 176)

We now des
ribe the derivation of Benoulli's �regle� following the text

of Lagrange (Lagrange [33℄, 1788, Prem.Partie, Se
tion II). However we do

not follow the style of Lagrange, who proudly avoided the use of any �gures.

We start with a system 
ontaining two for
es P and Q, illustrated here

by a lever (see Fig. 7, left) atta
hed at O with arm lengths a and b. We then

suppose that the system re
eives a virtual velo
ity during an in�nitely small

interval of time, su
h that the lever arms re
eive in�nitely small displa
ements

dp and dq proportional to a and b. Ar
himedes' law then tells us that for

equilibrium to o

ur, the virtual velo
ities and the for
es must be inversely

proportional. Thus, if we pay attention to the signs of the displa
ements, we

obtain

P

Q
= −

dq

dp
or Pdp+Qdq = 0.

a b−dp dq

P Q

O a b c
d

−dp dq −dr

P

Q

Q′
Q′′ R

O O′

Figure 7. The Lever (left); Composed levers (right)

Let us now make the system more 
ompli
ated by 
onsidering three

for
es P , Q and R instead of two (Fig 7, right). We de
ompose the for
e Q as

sum Q = Q′ +Q′′
in su
h a way that both subsystems to the left and right

are in equilibrium, i.e., su
h that

Pdp+Q′dq = 0 and Q′′dq +Rdr = 0,
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so we get Pdp +Qdq + Rdr = 0 as 
ondition for an equilibrium. By adding

more and more for
es to the system, we obtain

Pdp+Qdq +Rdr + . . . = 0 (1.1)

for an equilibrium. This equation, expressed in words and not in formulas,

was pre
isely Joh. Bernoulli's �regle� of Fig. 6. The terms Pdp,Qdq, . . . were

alled �Energies� by Bernoulli. Lagrange 
alls them �moments� of the for
es

and 
alls (1.1) �la formule générale de l'équilibre� (see Fig. 8).

Figure 8. Bernoulli's rule as published by Lagrange 1788

p

q

r

P
Q

R

−dp

dq
−dr

(a,b,c)

(f,g,h)

(l,m,n)

P Q

R

dx

dy

(a,b,c)

(f,g,h)

(l,m,n)

L=0

Figure 9. A point atta
hed by three for
es (left); as 
on-

strained problem (right)

Example. The �rst example Lagrange 
onsiders in detail (in Se
tion V) is a

mass point atta
hed by several for
es P,Q,R to �xed points with Cartesian


oordinates (a, b, c), (f, g, h), (l,m, n) (see Fig. 9, left). Inserting

p =
√

(x−a)2 + (y−b)2 + (z−c)2, dp =
1

p
·((x−a)dx+(y−b)dy+(z−c)dz) ,

and similarly for dq, dr, formula (1.1) be
omes

Xdx+ Y dy + Zdz = 0 (1.2)

where X = P x−a
p + Qx−f

q + Rx−l
r , Y = P y−b

p + Q y−g
q + R y−m

r and Z =

P z−c
p +Q z−h

q + R z−n
r . Sin
e, at the moment, our mass point is 
ompletely

free, dx, dy and dz are independent

5
, and the 
ondition for equilibrium is

X = 0 , Y = 0 and Z = 0 . (1.3)

5dp, dq, dr are not independent at the equilibrium point.
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In the 
ase where the for
es P,Q,R are equal (or proportional) to the dis-

tan
es p, q, r, this formula simpli�es 
onsiderably and the equilibrium position

be
omes the bary
enter of the triangle spanned by the three �xed points (or

of a pyramid in the 
ase of four for
es, a result whi
h Lagrange attributes to

Leibniz).

1.3. The dis
overy of the multiplier method

Suppose now (see Fig. 9, right) that the mass point is restri
ted to a surfa
e

L = 0, so that in (1.2) the displa
ements dx, dy, dz are not independent, but
are restri
ted to the tangent spa
e of L = 0, i.e. they must satisfy

dL =
∂L

∂x
dx+

∂L

∂y
dy +

∂L

∂z
dz = 0 . (1.4)

This means geometri
ally that, whenever (1.4) holds, i.e. the ve
tor (dx, dy, dz)
is orthogonal to (∂L∂x ,

∂L
∂y ,

∂L
∂z ), we must satisfy (1.2) as well, i.e. the ve
tor

(dx, dy, dz) must also be orthogonal to (X,Y, Z). As a 
onsequen
e, both

ve
tors must be parallel so that there exists a 
onstant λ su
h that

X + λ
∂L

∂x
= 0 , Y + λ

∂L

∂y
= 0 and Z + λ

∂L

∂z
= 0 . (1.5)

However, ve
tors and s
alar produ
ts were not yet familiar 
on
epts to La-

grange, so he argued di�erently (�Il n'est pas di�
ile de prouver par la théorie

de l'élimination des équations linéaires...�): we eliminate one of the unknowns,

say dz, by multiplying (1.4) with a suitable 
onstant, whi
h is λ = −Z/∂L
∂z ,

and add it to (1.2), whi
h gives

(

X + λ
∂L

∂x

)

· dx+

(

X + λ
∂L

∂y

)

· dy = 0 , Z + λ
∂L

∂z
= 0 .

Here, dx and dy are independent and equations (1.5) must be satis�ed, the

last one being the formula for λ.
Condition (1.5) just means that we have applied the virtual velo
ity

argument, without 
onstraints, to the system

Xdx+ Y dy + Zdz + λdL = 0 . (1.6)

Lagrange realizes that this �multiplier� λ, whose invention originated

from the theory of linear equations, also has a physi
al meaning: it represents

the 
onstant whi
h, when multiplied with the ve
tor (∂L∂x ,
∂L
∂y ,

∂L
∂z ), yields the

for
e that holds the parti
le onto the surfa
e L = 0.

Figure 10. Lagrange's �équation générale� for ALL prob-

lems of equilibria

To in
lude an additional 
onstraint M = 0, we see from linear algebra

that we 
an simply add another term µdM , and so on. Finally, one 
an
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generalize (1.1) to any system with any number of 
onstraints by writing

Pdp+Qdq +Rdr + . . .+ λdL+ µdM + νdN + . . . = 0 (1.7)

(see Fig. 10). This dis
overy was 
alled �Méthode très-simple� in Se
tion IV of

the �rst edition from 1788. Twenty-three years later, in [34℄, Lagrange stressed

the importan
e of this idea by giving it the parti
ular name �Méthode des

Multipli
ateurs� (see Fig. 11).

Figure 11. Heading of �1 in Se
tion IV of Lagrange (1811)

2. Problems of Maximum and Minimum

The above problems of virtual velo
ities are 
losely related to problems of

maximizing or minimizing a fun
tion. This 
onne
tion is mentioned brie�y

in Lagrange (1788), but it was only in the se
ond edition from 1811 that

Lagrange stresses this important fa
t by an entire paragraph (see Fig. 12). If

U(x, y, z) is a �potential� fun
tion6 satisfying ∂U
∂x = X ,

∂U
∂y = Y and

∂U
∂z = Z,

where X , Y and Z are as in (1.2), then the 
onditions (1.3) mean nothing

else than

U(x, y, z) −→ min or max. (2.1)

Similarly, in the 
ase where we have to minimize or maximize a fun
tion

U(x, y, z) under a 
onstraint L(x, y, z) = 0, the 
orresponding equations (1.5)
and (1.6) would mean that we have to minimize or maximize

U(x, y, z) + λL(x, y, z) −→ min or max (2.2)

without 
onstraints. This is the Lagrange multiplier method for 
onstrained

optimization. The geometri
 meaning of the term λL(x, y, z) is the following:
it twists the fun
tion U(x, y, z), without 
hanging its values on the surfa
e

L = 0, su
h that U+λL be
omes �at in all dire
tions at the minimal position.

For additional 
onstraints, we add additional multipliers, and for higher

dimensions, we add additional variables.

Figure 12. Heading of �3 in Se
tion IV of Lagrange (1811)

6
Up to now, we have preserved all letters exa
tly as they appear in Lagrange, but we have


hanged this potential, denoted Π by Lagrange, to U , as it is usual now.
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Example: The Catenary. One of the examples Lagrange dis
usses in detail

(Part I, Se
t. V) is a 
hain of parti
les atta
hed by 
ords of 
onstant length

in an arbitrary for
e �eld. If we assume the for
es to be 
onstant downwards,

we have the situation as in Fig. 13, for whi
h (1.7) be
omes

dy1+dy2+ ...+λ0 ·d((x0 −x1)
2+(y0− y1)

2− ℓ2)+λ1 ·d(...)+ ... = 0. (2.3)

Di�erentiating the 
onstraints and 
olle
ting the 
oe�
ients of, say, dx2, dy2,
we obtain

λ2(x2 − x3) = λ1(x1 − x2)
λ2(y2 − y3) = λ1(y1 − y2)− 1

⇒
y2 − y3
x2 − x3

=
y1 − y2
x1 − x2

+ 
onst.,

whi
h means that the slope is a linear fun
tion of the ar
 length. This fa
t is

in a

ordan
e with �... les formules 
onnues de la 
hainette�.

ℓ

ℓ

ℓ

(x0,y0)

(x1,y1)

(x2,y2)

(x3,y3)

(x0 − x1)
2 + (y0 − y1)

2 − ℓ2 = 0
(x1 − x2)

2 + (y1 − y2)
2 − ℓ2 = 0

(x2 − x3)
2 + (y2 − y3)

2 − ℓ2 = 0
. . .

Figure 13. The Catenary as a 
onstrained me
hani
al system

The Catenary as optimization problem. If we ask for the 
hain with y1+ y2+
y3 + . . . −→ min under the same 
onstraints as in Fig. 13, i.e. if we seek the


hain with the lowest 
enter of gravity, (2.2) be
omes

y1+ y2+ ...+λ0 · ((x0−x1)
2+(y0− y1)

2 − ℓ2)+λ1 · (...)+ ... −→ min. (2.4)

This equation, when di�erentiated, gives pre
isely the formula (2.3). We thus

see that the 
atenary is the 
urve with the lowest 
enter of gravity for a

given ar
 length, a result Euler ([20℄ 1744, Chap.V) found in a mu
h more


ompli
ated way, as we will see below.

2.1. Variational Problems

Variational problems are optimization problems where not only some values,

but an entire fun
tion y(x), is unknown, for example

J =

∫ b

a

Z(x, y, p) dx −→ min or max, where p =
dy

dx
(2.5)

and Z(x, y, p) is a given fun
tion. We refer to Gander-Wanner ([28℄ SIREV

2013, formula (1.3), (1.4) and Se
tion 9.1) to see how Euler ([20℄ 1744,

Chap. 2) turned this problem into a di�erential equation

N −
d

dx
P = 0 where N =

∂Z

∂y
, P =

∂Z

∂p
, (2.6)
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and, in the 
ase where Z(y, p) is independent of x, how this equation 
an be

simpli�ed to

Z − p ·
∂Z

∂p
= Const. (2.7)

2.2. Variational Problems with Constraints

y

g(y)
max !

L

B

C

E

T

a

M

N

Figure 14. The isoperimetri
 problem of Jakob (left, the

drawing is for g(y) = y2); the same pi
ture in Johann'sOpera

Omnia from 1742, vol. 2, p. 270 (right)

The oldest problem of this type, the so-
alled �isoperimetri
 problem�,

was a 
hallenge from Jakob Bernoulli to his brother Johann in 1697: Given

two points B and C (see Fig. 14), �nd a 
urve BaC of a given length L su
h

that the area BMETNB is maximal; here, for any distan
e aN = y, the
distan
e MN = g(y) is a given fun
tion of y. In formulas, this means

∫ T

B

g(y(x)) dx −→ max subje
t to

∫ T

B

√

1 + p2 dx = L . (2.8)

Figure 15. Euler's solution of variational problems; un
on-

strained (left), 
onstrained (right)
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Solution. Johann, who had a

umulated su

ess after su

ess in the years

before, thought that he 
ould solve this seemingly simple problem in �three

minutes�. The three minutes turned into de
ades until Johann Bernoulli pub-

lished an extensive paper in 1718 (Mémoires de l'A
ad. Roy. des S
ien
es de

Paris, p. 100). The 
olle
tion of all the solutions of Jakob and himself �lls

more than 50 pages in Johann's Opera Omnia ([4℄ vol. 2, p. 214� 269). Fi-

nally, Euler ([20℄ 1744, in Chap. 5 of E65) developed his general theory for

su
h 
onstrained problems. While in Chap. 2, Euler arrived at (2.6) by �vir-

tual� displa
ements of the fun
tion values of the unknown fun
tion one-by-one

(see Fig. 15, left), he was unable to displa
e the fun
tion values independently

for 
onstrained problems of the type (1.4). Instead, he varied the values two

by two n 7→ ν, o 7→ ω (see Fig. 15, right) and had to build an entirely new

theory (16 pages; �1 through �39 of Chap. 5).

As Lagrange demonstrates proudly in many examples (in Se
tion V), the

idea of using multipliers to deal with 
onstraints extends straightforwardly

to these new problems. For the histori
al example (2.8), this turns into (for

B = 0, T = 1)

J =

∫ 1

0

(

g(y) + λ
(

√

1 + p2 − L
)

)

dx −→ max. (2.9)

For this problem, 
ondition (2.7) be
omes, after simpli�
ation,

g(y) +
λ

√

1 + p2
= C + λL .

We set C+λL = −K, solve for p = dy
dx and separate the variables. This gives

the solution (
ompared to the one from Johann's Opera Omnia, vol. 2, p. 244)

∫

g(y) +K
√

λ2 − (g(y) +K)2
dy = x+ c .

(2.10)

This integral only has an elementary solution for g(y) = y, i.e. the problem of

�nding the maximal area surrounded by a 
urve of pres
ribed length. As Euler

shows in �41 of [20℄ E65, Caput V, the integral then leads, not surprisingly,

to a 
ir
ular solution (quae est aequatio generalis pro Cir
ulo). The drawing

for g(y) = y2 in Fig. 14 (left) has been produ
ed by numeri
al integrations.

An Example with two 
onstraints. For problems with two 
onstraints (�Pluribus

Proprietatibus�), Euler developed again an entirely new theory (E65, Chap.VI).

With Lagrange, we just have to add a se
ond multiplier. We demonstrate this

on Euler's very last example (�24 in Chap. 6): We seek a 
urve y(x) (the 
urve
DMAMD in Fig. 16, right) of a given length L, as well as a 
onstant a (the

distan
e CQ), su
h that the area of NDMAMDNQN has a given value M ,

and the 
enter of gravity of this �gure should be as low as possible. Expressed

in formulas we have (we 
hoose C as origin and take the 
urve upside down)

∫ 1

−1

√

1 + p2 dx = L ,

∫ 1

−1

(y+a) dx =M ,

∫ 1

−1

(y+a) ·
y − a

2
dx −→ max.
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0 x

y

a
D

M

D

NN

A

Figure 16. Euler's problem from E65 with two 
onstraints

Here, we introdu
e two multipliers λ and µ and get

J =

∫ 1

−1

(

(y2 − a2)+λ
(

√

1 + p2 −L
)

+µ
(

(y+ a)−M
)

)

dx −→ min or max.

Sin
e we have two unknowns y and a here, we 
annot work with the simpli�ed

equation (2.7). Instead, we have to use (2.6) for ea
h of them:

for y: 2y + µ−
d

dx

(

λ
p

√

1 + p2

)

= 0,

for a: −2a+ µ = 0 ⇒ µ = 2a .

This, inserted into the �rst equation, gives

d

dx

( p
√

1 + p2

)

= k(y + a) .

If we think of a water basin, this result expresses the fa
t that the 
urvature

of the basin is proportional to the water pressure.

2.3. Solving Optimal Control Problems with Lagrange multipliers

Before explaining the invention of the maximum prin
iple for 
ontrol prob-

lems in the next se
tion, we �rst show that the idea of Lagrange multipliers

provides an elegant entry point to the treatment of 
ertain 
lasses of su
h

problems. Let us look at a problem of the type

∫ b

a

k(x, y, u) dx −→ min or max, (2.11)

subje
t to

dy

dx
= f(x, y, u), y(a)=A, y(b)=B.

Here we have two types of fun
tions to �nd: the values of yi(x), whi
h are

de�ned via a system of di�erential equations, and the so-
alled 
ontrols uj(x),
whi
h 
ontrol the movement of the y's and with the help of whi
h the 
ost

fun
tion k(x, y, u), when integrated over the interval [a, b], is to be optimized.

Idea: sin
e the di�erential equations in (2.11) represent an in�nite num-

ber of 
onstraints as x varies, we introdu
e Lagrange multipliers λi(x) as
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fun
tions multiplying the 
onstraints y′i − fi(x, y, u) = 0. Inserting this into

the integral, we thus obtain

∫ b

a

{

k(x, y, u) + [pT − fT (x, y, u)] · λ(x)
}

dx −→ min or max. (2.12)

This is now an un
onstrained variational problem with a �
ost fun
tion�

Z(x, λ, y, p, u). Here we have three sets of unknowns, the Lagrange multipliers

λi(x), the di�erential equation solutions yi(x) together with their derivatives

pi(x), and the 
ontrol fun
tions uj(x). For ea
h of these, we apply Euler's

equation (2.6):

∂Z
∂λ = 0 : y′(x) = f(x, y, u)

∂Z
∂y − d

dx
∂Z
∂p = 0 : λ′(x) = ∂k

∂y (x, y, u)−
∂f
∂y

T
(x, y, u) · λ(x)

∂Z
∂u = 0 : 0 = ∂k

∂u (x, y, u)−
∂f
∂u

T
(x, y, u) · λ(x)

(2.13)

This is a system of di�erential algebrai
 equations (DAEs). The �rst set

of equations are the desired 
onstraints, the se
ond set of equations is the

so-
alled adjoint system, whose geometri
 meaning will be dis
ussed below,

and the third set 
onsists of algebrai
 equations that determine the 
ontrols

for every value of x.

Example. A body gliding in R2
without fri
tion should re
eive a new dire
tion

with the help of for
es (u1(t), u2(t)), 0 ≤ t ≤ T in su
h a way that this 
ontrol

uses as little energy as possible:

∫ T

0
1
2 (u

2
1 + u22) dt −→ min.

Solution. With y1, y2 as the positions of the body and y3, y4 as velo
ities, the
equations of motion together with the equations in (2.13) be
ome

ẏ1 = y3
ẏ2 = y4
ẏ3 = u1
ẏ4 = u2

λ̇1 = 0

λ̇2 = 0

λ̇3 = −λ1
λ̇4 = −λ2

u1 − λ3 = 0
u2 − λ4 = 0

We see that λ1, λ2 are 
onstants, λ3 = u1, λ4 = u2 are linear, y3, y4 quadrati
,
and thus y1, y2 
ubi
; the solution 
urves are thus, not surprisingly, 
ubi


splines. The time length T 
an be freely 
hosen. In the pi
ture above, T is


hosen to be that of a uniform 
ir
ular movement, but the optimal solution

is slightly di�erent.

3. Optimal Control and the Maximum Prin
iple

An important 
ase in appli
ations is the one in whi
h Ω [
ontaining the


ontrols℄ is a 
losed region [. . . ℄. In the 
ase that Ω is an open set [. . . ℄,
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the variational problem formulated here turns out to be a spe
ial 
ase

of the problem of Lagrange. (Pontryagin 1959 [47℄)

In the �eld of optimal 
ontrol, there were histori
ally two approa
hes: in the

western world, resear
hers tried to ta
kle these problems using variational


al
ulus and Lagrange multipliers, as we have already seen for a �rst example

in Subse
tion 2.3. In Russia, a group of resear
hers led by Pontryagin tried

to solve these problems using dire
t analysis and geometri
 arguments, with

a parti
ular emphasis on handling the important 
ase of 
losed and bounded


ontrol sets. Their approa
h led to the invention of the maximum prin
iple

in 1956; they only later noti
ed the relation to Lagrange multipliers, see the

quote above. To explain these two approa
hes histori
ally, we �rst present the

invention of Lagrange from Se
tion 1.3 again, but now using matrix notation

in preparation for its use in optimal 
ontrol problems.

3.1. Invention of Lagrange Multipliers in Matrix Notation

Lagrange, in his book from 1797: �Théorie des fon
tions analytiques,


ontenant les prin
ipes du 
al
ul di�érentiel, dégagés de toute 
onsid-

ération d'in�niment petits, d'évanouissans, de limites ou de �uxions, et

réduits à l'analyse algébrique des quantités �nies�

Lagrange, who in his youth made his greatest triumphs by free and mas-

terful manipulations of di�erentials, later in his life 
ondemned them vigor-

ously by repla
ing �di�erentials� by �derivatives� and �integrals� by �primi-

tives�, see the quote above. Under the in�uen
e of Cayley's matrix notation,

the above theory subsequently took a di�erent shape, the one we are used

to seeing today: we �rst 
onsider a �nite dimensional optimization problem

with 
onstraints, and show how the Lagrange multipliers are none other than

multipliers like in Gaussian elimination, but without using the notation of dif-

ferentials that were essential in their invention, as we have seen earlier. This

will also reveal a further advantage over the dire
t solution of the 
omplete

optimality system in the presen
e of 
onstraints, sin
e the system obtained

with Lagrange multipliers is mu
h smaller. Suppose we wish to solve the


onstrained optimization problem

f(x) −→ min, g(x) = 0, (3.1)

where f : R
n → R is the obje
tive fun
tion and g : R

n → R
m

are the


onstraints, m < n. To eliminate the 
onstraints, we partition the ve
tor x

into x = (y,u), y ∈ R
m
, u ∈ R

n−m
, and invoke the impli
it fun
tion theorem

to obtain y = y(u) from the 
onstraint g(x) = 0. Substituting this into the

obje
tive fun
tion, we obtain the un
onstrained optimization problem

f(y(u),u) −→ min . (3.2)

A ne
essary 
ondition for a lo
al minimum is therefore

df

du
=
∂f

∂y
·
∂y

∂u
+
∂f

∂u
:= (Y T

u ∇yf +∇uf)
T = 0, (3.3)
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where Yu : R
n−m → R

m×(n−m)
is the Ja
obian of the impli
it fun
tion

y(u), and ∇yf = fT
y and ∇uf = fT

u are the gradients (
olumn ve
tors) of

the obje
tive fun
tion with respe
t to the variables y and u. The ne
essary

optimality 
ondition (3.3) is a small system involving the n −m unknowns

in the ve
tor u only. However, only in very simple situations it is a
tually

possibe to expli
itly form the fun
tion y(u) and di�erentiate it to obtain Yu.
In general, the Ja
obian matrix Yu is also unknown and depends impli
itly

on the solution y, whi
h must also be 
al
ulated. To obtain equations for y,

one 
an dire
tly use the 
onstraint g(y,u) = 0, and for the Ja
obian, one


an write the total derivative with respe
t to u of g(y(u),u) = 0. This leads
to the 
omplete optimality system

Y T
u ∇yf +∇uf = 0, (3.4)

Y T
u G

T
y +GT

u = 0, (3.5)

g = 0, (3.6)

where Gy : R
n → R

m×m
is the Ja
obian matrix of g with respe
t to y,

and Gu : Rn → R
m×(n−m)

is the Ja
obian matrix of g with respe
t to u.

Equation (3.4) 
ontains n −m equations, (3.5) is a matrix equation for the

Ja
obian matrix Yu and 
ontains a total of m(n − m) equations, and (3.6)


ontains m equations from the 
onstraints. This gives a total of n+m(n−m)
equations for the n unknowns in y and u 
ombined, and the m(n − m)
unknowns in the Ja
obian Yu, a very big system. The key idea of Lagrange in

this setting is that one 
an eliminate many of these equations using Gaussian

elimination to arrive at a smaller, but equivalent system. If the Ja
obian

Gy is invertible, then multiplying the matrix-valued equation (3.5) by the

ve
tor-valued multiplier λ := −G−T
y ∇yf from the right yields

Y T
u Gyλ +GT

uλ = −Y T
u G

T
yG

−T
y ∇yf +GT

uλ = −Y T
u ∇yf +GT

uλ = 0. (3.7)

Adding this equation to (3.4), the 
umbersome term with the large Ja
obian

matrix 
an
els and we obtain the smaller but equivalent optimality system

∇uf +GT
uλ = 0, (3.8)

∇yf +GT
y λ = 0, (3.9)

g = 0, (3.10)

whi
h now 
ontains (n−m) +m+m = n+m equations for the n unknowns

y and u 
ombined, plus the m Lagrange multipliers λ. The system (3.8�

3.10) is equivalent to (3.4�3.6), and therefore represents the same ne
essary


ondition for a minimum of the original 
onstraint problem (3.1), but it

has the advantage of having many fewer unknowns to solve for. The key

observation of Lagrange now was that this simpler ne
essary 
ondition for

optimality 
an be easily obtained from the fun
tion

L(u,y,λ) := f(y,u) + g(y,u)Tλ, (3.11)

by simply taking derivatives with respe
t to its arguments. The fun
tion in

(3.11), now known as the Lagrange fun
tion or the Lagrangian in honor of
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its inventor, is obtained by simply adding to the obje
tive fun
tion the sum

of the 
onstraints, ea
h multiplied by a Lagrange multiplier.

The new formulation, however, introdu
es an important di�
ulty when

the remaining u variables are not allowed to vary freely, but are 
onstrained

to be in a 
losed set U . This is often the 
ase in optimal 
ontrol problems,

sin
e the 
ontrols may not be arbitrarily large. Then the ne
essary 
ondition

(3.3) for a minimum solution of (3.2) is only relevant if the minimum is in the

interior of U ; when the minimum o

urs on the boundary, whi
h often hap-

pens in pra
ti
e, the 
ondition (3.3) need not be satis�ed, i.e., the variation

of the Lagrangian with respe
t to u in (3.8) need not vanish. One possibility

in that 
ase is to revert to the minimization 
ondition of the Lagrangian with

respe
t to u, whi
h leads to the ne
essary 
onditions for optimality

L(y,u,λ) −→ min with respe
t to u (3.12)

∇yf +GT
y λ = 0, (3.13)

g = 0. (3.14)

Sin
e the 
onstraint g = 0 must be satis�ed at the optimum, we have

L(y,u,λ) = f(y,u) there, so (3.12) is equivalent to saying that

f(y,u) −→ min with respe
t to u. (3.15)

In this 
ase, however, the equation (3.13) for the Lagrange multipliers is no

longer needed, sin
e they are not used anywhere in the system; if we remove

it, we just get ba
k the original problem formulation (3.1), ex
ept that one

now sees expli
itly that the minimization is only possible with respe
t the

remaining �
ontrol� variables u, sin
e the other variables y are determined by

the 
onstraints. Nevertheless, the observation to repla
e the derivative 
on-

dition again by the minimization 
ondition points in the dire
tion of results

obtained by Pontryagin and his group and leads to the maximum prin
iple

for optimal 
ontrol problems. We will see later that they 
hose a di�erent

fun
tion, a Hamiltonian, whi
h has the same stationary points in u as the

Lagrangian

7
.

A di�erent way of 
hara
terizing minima on a 
losed set of 
ontrols U is

to ensure that whenever the minimum o

urs on the boundary, any variation

in u that moves the point away from the boundary into the interior of the


losed set must lead to an in
rease in the obje
tive fun
tion, i.e.

(∇uf +GT
uλ)

T δu ≥ 0, (3.16)

∇yf +GT
y λ = 0, (3.17)

g = 0, (3.18)

for all admissible variations δu su
h that u + δu remains in the 
losed set

of the admissible 
ontrols U . This approa
h be
ame known under the name

Karush�Kuhn�Tu
ker (KKT) 
onditions, whi
h we will see again in Se
tion

4.2

7
See also Carathéodory [16℄ for a general study of equivalent formulations.
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3.2. Lagrange Multipliers for Optimal Control Problems

Using what I had learned at Columbia about �ights of airplanes, I set

out to formulate this problem as a variational problem. I found that the

usual variational formulation did not �t very well. It was too 
lumsy.

And so I reformulated the Problem of Bolza so that it 
ould be applied

easily to the time-optimal problem at hand. It turns out that I had

formulated what is now known as the general optimal 
ontrol problem.

I wrote it up as a RAND report [31℄ and it was widely 
ir
ulated among

engineers. (Hestenes, in a letter to Saunders Ma
 Lane, see [39℄)

Optimal 
ontrol problems were be
oming important with the invention of

moving high-te
h me
hani
al devi
es, espe
ially in the 
ontext of war. A typ-

i
al example is to guide an airplane along an optimal traje
tory to rea
h

a target, and this was pre
isely the problem 
onsidered by Hestenes in his

famous RAND report [31℄, see also the quote above. Hestenes, who had ob-

tained his PhD on the 
al
ulus of variations under the dire
tion of Bliss, was

a young professor in Chi
ago during the Se
ond World War and moved to

UCLA afterward. He was also doing resear
h for RAND, a nonpro�t institu-

tion with the goal of improving poli
y and de
ision-making through resear
h

and analysis, whi
h still exists today (www.rand.org). In his report, he for-

mulated the problem of guiding an airplane in an optimal way from an initial

position to a �nal position as an optimization problem with a 
onstraint given

by a di�erential equation. In modern notation, the problem reads

∫ T

0

f(y, u)dt −→ min, (3.19)

ẏ = g(y,u), (3.20)

y(0) = y0, (3.21)

y(T ) = yT , (3.22)

where the ve
tor y(t) 
ontains the position and velo
ity ve
tors of the air-

plane, and the ve
tor u(t) 
ontains the angles of the 
ontrol vanes of the

airplane and the thrust of the engines. Comparing this optimal 
ontrol prob-

lem with the general 
onstrained minimization problem (3.1), Hestenes no-

ti
ed the striking similarity, so he applied the Lagrange multiplier te
hnique

we saw in Subse
tion 2.3 to obtain a ne
essary 
ondition for optimality: he

introdu
ed the Lagrangian as in (3.11),

L(y,u,λ) :=

∫ T

0

f(y, u)dt+

∫ T

0

(ẏ − g(y,u))T λdt, (3.23)

where all the variables now depend on time, y = y(t), u = u(t), λ = λ(t)
(this is pre
isely equation (2.12) in the new notation). In order to obtain

ne
essary 
onditions for optimality, he 
omputed the derivatives with respe
t

to the variables y, u, and λ using variational 
al
ulus (as Euler did in E420,

see [28℄): if y is an optimum, then for an arbitrary variation y + εz, the
derivative of L(y+εz,u,λ) with respe
t to ε must vanish at ε = 0, regardless
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of what the variation z is. Thus, we obtain as the �rst ne
essary 
ondition

d

dε
L(y + εz,u,λ)|ε=0 =

∫ T

0

∇yf
T (y, u)zdt+

∫ T

0

(ż −Gy(y,u)z)
T
λdt

=

∫ T

0

(∇yf(y, u)− λ̇−GT
y (y,u)λ)

Tzdt+ λTz|T0 = 0,

where we used integration by parts to fa
tor out the arbitrary variation z,

and the fa
t that

(Gyz)
Tλ = zTGT

y λ = (zTGT
y λ)

T = λTGyz = (GT
y λ)

Tz.

Now the variation z(t) must be zero for t = 0 and t = T , sin
e the values

of y are �xed there, see (3.21) and (3.22); thus, we have z(0) = z(T ) = 0,

so the boundary terms λTz|T0 in (3.24) must vanish as well. However, apart

from the initial and �nal 
onditions, the variation z(t) is otherwise arbitrary,
and hen
e from (3.24), the term multiplying z(t) under the integral must be

zero. This leads to a di�erential equation for λ, namely

λ̇ = −GT
y (y,u)λ +∇yf(y, u), (3.24)

without initial or �nal 
ondition, sin
e y was �xed at both ends. Similarly,

sin
e u is optimal, we 
an add an arbitrary variation u + εv and require

the derivative of L(y,u + εv,λ) with respe
t to ε to vanish at ε = 0 for all

variations v. This yields the next ne
essary 
ondition

d

dε
L(y,u+ εv,λ)|ε=0 =

∫ T

0

∇uf
T (y, u)vdt+

∫ T

0

(−Gu(y,u)v)
T
λdt

=

∫ T

0

(∇uf(y, u)−GT
u (y,u)λ)

Tvdt = 0.

Sin
e the variation u(t) is arbitrary, from (3.25), the term multiplying v(t)
under the integral must be zero, whi
h leads to an equation for u, namely

GT
u (y,u)λ = ∇uf(y, u). (3.25)

Finally, adding an arbitrary variation λ+εµ, the derivative of L(y,u,λ+εµ)
with respe
t to ε must vanish at ε = 0 for all variations µ, and we obtain as

the last ne
essary 
ondition

d

dε
L(y,u,λ+ εµ)|ε=0 =

∫ T

0

(ẏ − g(y,u))T µdt = 0, (3.26)

and we simply get ba
k the equations of motion. Hen
e, for an optimal 
ontrol

problem, we get from the Lagrange multiplier rule a system of ne
essary


onditions for optimality that is very similar to the 
lassi
al 
onditions (3.8�

3.10), and identi
al to (2.13):

∇uf(y, u)−GT
u (y,u)λ = 0, (3.27)

∇yf(y, u)−GT
y (y,u)λ = λ̇, (3.28)

g(y,u) = ẏ, (3.29)
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the only di�eren
e is that the sign is �ipped on the G terms, be
ause this

is how we introdu
ed the 
onstraints, and that a term with a time deriva-

tive appears on the right, be
ause the 
onstraint is an ordinary di�erential

equation. This system 
ontains pre
isely enough equations for the number of

unknowns: there are as many algebrai
 equations in (3.27) as unknowns in

u(t) for t ∈ [0, T ], and (3.28)�(3.29) is a 
oupled �rst-order system of ordi-

nary di�erential equations in y(t) (optimal traje
tory) and λ(t) (multipliers)

with pre
isely two boundary 
onditions at t = 0 and t = T (both on the

unknown y in our 
ase). Hestenes was therefore able to solve this 
oupled

system numeri
ally to obtain 
andidates for the optimal traje
tory.

The optimality system (3.27�3.29) reveals a very interesting mathemat-

i
al stru
ture

8
. De�ning the Hamiltonian fun
tion

H(y,u,λ) := −f(y,u) + g(y,u)Tλ, (3.30)

we see that the boundary value problem (3.28), (3.29) is in fa
t given by

ẏ = ∇λH(y,u,λ) = g(y,u),

λ̇ = −∇yH(y,u,λ) = −GT
y (y,u)λ+∇yf(y, u),

(3.31)

where ∇yH = HT
y and ∇λH = HT

λ . Therefore, we have a Hamiltonian

system, whi
h has the property that

d

dt
H(y,u,λ) = Hyẏ +Huu̇+Hλλ̇ = Hy∇λH +Huu̇+Hλ(−∇yH) = 0

(3.32)

along optimal traje
tories, sin
e HT
u = ∇uH = −∇uf(y, u)+G

T
u (y,u)λ = 0

whenever the optimality 
ondition (3.27) holds. Thus, the Hamiltonian is


onserved in this 
ase. The fa
t that the derivative of the Hamiltonian (3.30)

with respe
t to the 
ontrols u 
oin
ides with the 
orresponding derivatives

of the Lagrangian in (3.23),

∇uH = −∇uf +GT
uλ = −∇uL, (3.33)

implies that an identi
al ne
essary 
ondition for an interior minimum in the


ontrols u 
an be obtained from both the Lagrangian and the Hamiltonian.

Instead of minimizing the Lagrangian (3.23) with respe
t to the 
ontrols

u, whi
h means minimizing the obje
tive fun
tion on an optimal traje
tory

satisfying g(y,u) = 0

∫ T

0

f(y,u)dt −→ min with respe
t to u(t), (3.34)

one 
ould also maximize the Hamiltonian (3.30)

H(y,u,λ) −→ max with respe
t to u(t), (3.35)

pointwise for ea
h t ∈ [0, T ]. Minimizing the Lagrangian (3.34) just leads ba
k

to the original problem formulation (3.19�3.22), sin
e λ disappears from the

8
This was already dis
overed by Carathéodory [16℄, see also subse
tion 3.7
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Figure 17. Hestenes' dis
overy that the Hamiltonian must

be maximized along a minimizing solution in the RAND re-

port from 1950.

optimality system (3.27�3.29) when (3.27) is repla
ed by (3.34). However,

maximizing the Hamiltonian (3.35) leads to a new problem formulation

H(y,u,λ) −→ max with respe
t to u(t), (3.36)

ẏ = ∇λH(y,u,λ), (3.37)

λ̇ = −∇yH(y,u,λ), (3.38)

sin
e λ does not disappear from this new optimality system (3.36-3.38). This

was already noti
ed by Hestenes in his famous RAND report from 1950,

see Figure 17. At the time, due to the la
k of 
omputing power, Hestenes

was unable to solve the optimality system numeri
ally. However, it was only

a matter of time before digital 
omputers be
ame available, and Hestenes

already anti
ipated this development in his manual to engineers, see Plail

[46℄.

There is however a very important issue we did not address so far in

the above attempt for optimizing the 
ontrols: the 
ontrols u of the airplane

may not take on arbitrary values, but are instead 
on�ned to a 
losed and

bounded set, sin
e the thrust of the engine 
annot be arbitrarily large, and

the 
ontrol vanes of the airplane 
annot turn arbitrarily far. The optimality

system (3.27�3.29) is therefore only a ne
essary 
ondition if the solution lies

in the interior of the domain of 
ontrols; the formulation in its present form


annot identify potential optima on the boundary of the range of the 
ontrols

be
ause (3.27), whi
h 
omes from requiring the derivative with respe
t to

the 
ontrols u to be zero, need not hold on the boundary. We see however

that the new optimality system (3.36�3.38), written with the Hamiltonian,

does not have this problem and deals with the optimal traje
tories 
orre
tly,

even when the 
ontrol u lies on the boundary, sin
e the minimization is not


hara
terized by a derivative. Next, we will see how this insight was found

histori
ally, and led to the famous maximum prin
iple of Pontryagin.

3.3. Early non-
lassi
al optimal 
ontrol problems

An interesting problem, very mu
h related to the fa
t that the 
ontrols in

many real appli
ations must be bounded, was studied by Feldbaum in Russia

in [22℄: he 
onsidered the problem of guiding an obje
t from one position to

another with a 
ontrol that 
an only take two states, a so-
alled �bang-bang
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Figure 18. Solutions of the bang-bang system of Feldbaum

from 1949 on the left, and an original drawing of Feldbaum

from 1949 leading to his understanding of the bang-bang

solution

system� of se
ond order. This was modeled by the equation of motion

ÿ = ±M, (3.39)

and the goal was to determine, for a given 
ontrol strength 
onstantM , when

to 
hoose the positive and when to 
hoose the negative sign in order to go as

qui
kly as possible from an initial position y(0) at initial speed ẏ(0) ba
k to

the origin at rest, i.e. y(T ) = ẏ(T ) = 0. Here, the 
ontrols are a dis
rete set,

and depending on the sign 
hosen, we get the general solution bran
hes by

integration,

ẏ± = ±Mt+ C±
1 ,

y± = ±
1

2M
(±Mt+ C±

1 )2 + C±
2 = ±

1

2M
(ẏ±)2 + C±

2 .

Be
ause y± is a quadrati
 fun
tion of ẏ±, these solution bran
hes are best

drawn in phase spa
e, where y± is a parabola as a fun
tion of ẏ± 
entered

at ẏ± = 0, as illustrated in Figure 18 on the left.

On the red dashed 
urves, the 
ontrol −M is a
tive, and we are moving

from the right to the left. On the blue dashed-dotted 
urves, the 
ontrol M
is a
tive, and we are moving from left to right. There are only two 
urves,

shown as solid lines, that pass through the target y(T ) = ẏ(T ) = 0, namely

y± = ± 1
2M (ẏ±), and from any point along these 
urves, the fastest is just to

stay on these 
urves with the 
orresponding 
ontrol. Now from any point in

the phase spa
e to the right of this solid 
urve, one 
an use the 
ontrol −M
to arrive as qui
kly as possible on the blue solid 
urve, where the 
ontrol has

to be swit
hed to M to arrive at the origin. An example of su
h a traje
tory

is shown in Figure 18 in bla
k. Similarly, from any point in the phase spa
e

to the left of the solid 
urve, one 
an use the 
ontrol M to arrive as qui
kly
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as possible on the red solid 
urve, where the 
ontrol has to be swit
hed to

−M to arrive at the origin. In a follow-up paper [23℄ published four years

later, Feldbaum made the key step of allowing not only the dis
rete set of


ontrols {−M,M}, but the entire 
ontinuum of all 
ontrols in the 
losed

interval [−M,M ], and the problem (3.39) be
ame

ÿ = ±u, |u| ≤M. (3.40)

It was at this moment that the notational 
onvention of using u for the


ontrol was born. Feldbaum gave a pre
ise mathemati
al formulation of the

minimum time problem for (3.40), and proved that for every initial point

in the phase spa
e, there exists a unique time-optimal 
ontrol u(t) whi
h

is still the bang-bang solution found for the 
ontrol problem with only two

dis
rete 
ontrols (3.39): on the optimal traje
tory, the 
ontrol is never used

from within the interior of the interval [−M,M ]! This was the �rst solution
of what Boltyanski 
alls in his review [9℄ a non-
lassi
al variational problem.

Bushaw made a similar dis
overy in his PhD thesis [13℄, see also [14℄. Feld-

baum then generalized this result in two follow-up papers [24, 25℄ to higher

order problems of the form

y(n) = −
n−1
∑

j=0

ajy
(j) + u, |u| ≤M,

and proved what he 
alled the n-interval theorem, namely that the optimal


ontrol is still pie
ewise 
onstant with values ±M , and that there are no

more than n distin
t intervals where the 
ontrol u is 
onstant. Feldbaum

was therefore undoubtedly one of the pioneers in the �eld of optimal 
ontrol

where the domain of the 
ontrols is a 
losed set.

Around the same time, Lerner, also in Russia, 
onsidered putting a


onstraint on the phase 
oordinates, restri
ting them to be in a 
losed set

[35, 36℄. He 
onsidered the same problem as Feldbaum (3.40), but now also

with the additional 
onstraint a1 ≤ y ≤ a2. Figure 19 shows the solution

in that 
ase from his publi
ation [36℄. Note that the traje
tory 
onstraint is

sometimes a
tive, and sometimes not, whereas the 
ontrol is always on the

boundary, i.e., its 
onstraint is always a
tive.

3.4. Invention of the Maximum Prin
iple

This fa
t appears in many 
ases as a general prin
iple, whi
h we 
all

the maximum prin
iple (translated from Boltyanski, Gamkrelidze and

Pontryagin 1956 [10℄, see Figure 22 for the original)

It was in this 
ontext that Pontryagin started to work with his students

Boltyanski and Gamkrelidze on optimal 
ontrol.

9
Pontryagin was known

worldwide at the time for his work on homotopi
 topology, even though he

had be
ome blind after an a

ident involving an explosion at the age of twelve.

However, around the 1950s, his results in homotopi
 topology started to be

9
For more details on the histori
al 
ontext for this development, see Plail [46℄ and also

[45℄.
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Figure 19. Lerner's solution to problem (3.39) with an ad-

ditional inequality 
onstraint on the traje
tory

surpassed by the a
hievements of the Fren
h s
hool around Leray, Serre and

Cartan [9℄, and Pontryagin de
ided to leave this area of resear
h and fo
us

on the very di�erent area of optimal 
ontrol. This was in part due to his

friendship with A. Andronov, with whom Pontryagin had worked on rough

systems, but also be
ause the university administration and the 
ommunist

party organization en
ouraged more applied resear
h. Together with his stu-

dents, Pontryagin started an a
tive resear
h seminar to whi
h engineers were

also invited, and where the talks always had to have an applied side. Feld-

baum also spoke several times at this seminar about his resear
h on optimal


ontrol problems. In 1955, Pontryagin's group met Colonel Dobrohotov from

the military a
ademy of the Russian air for
e, and this 
onta
t led them to

the important problem of guiding a �ying obje
t in minimal time in air 
om-

bat. Even though the problems were not formulated as su
h, Pontryagin and

his group realized immediately that the framework of optimal 
ontrol was

mathemati
ally the 
orre
t one.

In their �rst publi
ation in 1956, see [10℄, Pontryagin, Boltyanski and

Gamkrelidze present the ideas whi
h led them to formulate the maximum

prin
iple. There is only one referen
e in this paper, to Feldbaum's paper from

1955 [24℄, and the authors refer to the referen
es given there. The problem

they 
onsider is to 
ontrol in a time optimal way the system governed by the

equations

dy

dt
= g(y,u), y(0) = y0, y(T ) = yT , (3.41)

whi
h des
ribe the traje
tory y : R → R
m

of the obje
t for a given set of


ontrol fun
tions u : R → R
n−m

. The pre
ise problem formulation is to �nd

among all admissible 
ontrols u(t) the one that leads to the shortest travel

time, i.e. T = T (u) should be minimized. The authors say right at the begin-

ning that the 
ontrols often have to satisfy further 
onstraints, for example
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|uj| ≤ 1. They therefore introdu
e an open set Ω where the 
ontrols live, and

also its 
losure Ω̄, and 
arefully distinguish these two 
ases for the 
ontrol.

They start with the 
ontrol in the open set Ω, where one 
ould easily derive

optimality 
onditions using Lagrange multipliers. However, sin
e the group of

Pontryagin had their roots in a di�erent �eld from variational 
al
ulus, they

derive the optimality 
onditions with their bare hands: they assume existen
e

of an optimal 
ontrol u, and derive a ne
essary optimality 
ondition by 
on-

sidering a variation of the 
ontrol u(t) + δu(t) and the asso
iated variation

in the traje
tory y(t)+ δy(t). Inserting these variations into the equations of
motion (3.41), we obtain

dy

dt
+
dδy

dt
= g(y + δy,u+ δu) = g(y,u) +Gyδy +Guδu,

and therefore the variation in the traje
tory satis�es the linear inhomoge-

neous system of ordinary di�erential equations

dδy

dt
= Gyδy +Guδu, (3.42)

where Guδu plays the role of the for
ing term. Now the initial 
ondition

for the motion is �xed, and therefore the initial variation δy(0) must van-

ish. Using the te
hnique of variation of 
onstants, we 
an solve the system

(3.42) as follows: if we denote by the matrix Y (t) the solution of the linear

homogeneous system

Ẏ = GyY, Y (0) = I (I the identity),

the general solution of the homogeneous part of (3.42) is given by Y c for an
arbitrary 
onstant ve
tor c. Now varying the 
onstant by setting z := Y c(t),
we get

ż = Ẏ c+ Y ċ = Gyz + Y ċ.

By letting z = δy and 
omparing with (3.42), we get Y ċ = Guδu, and

hen
e c = c0 +
∫ t

0 Y
−1(τ)Guδu(τ)dτ . The solution of (3.42) is thus given by

δy = Y c, and with the zero initial 
ondition, we obtain

δy(t) = Y (t)

∫ t

0

Y −1(τ)Guδu(τ)dτ. (3.43)

Now the end point is �xed as well, y(T ) = yT , but the time at whi
h the

solution traje
tory passes through this endpoint is not. Pontryagin argues as

shown in Figure 20, whi
h translated to English says (we use in the translation

the symbols and equation numbers used in our presentation, instead of the

original ones):

Be
ause of the linearity of system (3.42), the points y(T ) + δy(T )
whi
h 
orrespond to any su�
iently small perturbation δu �ll the

whole range of some linear mapping P ′
, whi
h passes through y(T ).

From the optimality of the traje
tory y(t), it is easy to see that

the dimension of the range of P ′
does not ex
eed m − 1, and P ′

,

in general, does not tou
h the traje
tory y(t). Let P (T ) be some

m − 1 dimensional surfa
e whi
h 
ontains P ′
and does not tou
h
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Figure 20. Geometri
 idea of Pontryagin, leading to the

adjoint equation without knowing about Lagrange multipli-

ers (see text for a translation)

PSfrag repla
ements
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Figure 21. Explanation of Pontryagin's geometri
 idea.

the traje
tory y(t). Let the 
ovariant 
oordinates of this m − 1
dimensional surfa
e P (T ) be a1, a2, . . . , am. Then aT δy(T ) = 0.

It seems that this insight was obtained by Pontryagin very rapidly over two

or three sleepless nights, see [46, 27℄

10
. To understand his argument, Figure

21 is useful: If the traje
tory y(t) is optimal, no variation δu(t) is allowed

to produ
e a traje
tory ỹ(t) with ỹ(T ) beyond y(T ), sin
e otherwise this

traje
tory 
ould have arrived at y(T ) at a time t < T . Therefore, variations
are only allowed to be orthogonal to the optimal traje
tory

11
, in a manifold P ′

of dimension at most m− 1, where m = 2 in the two dimensional example in

10
Personal 
ommuni
ation of Plail with Boltyanski, and explanation by Gamkrelidze in

his paper about the dis
overy of the maximum prin
iple:

11
In fa
t, sin
e the endpoint is �xed as well, no variations are allowed at the endpoint either,

but then Pontryagin 
ould not have obtained the solution (3.43) of the then overdetermined

system of ordinary di�erential equations (3.42), and thus he de
ided to �rst only �x the

starting point [27, page 442℄. This �aw was only later �xed by Boltyanski, see the end of

this subse
tion.
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Figure 21. There must therefore exist a ve
tor a orthogonal to this manifold,

aT δy(T ) = 0. Sin
e we know the solutions for the variations from (3.43), we


an 
ompute

aT δy(T ) = aTY (T )

∫ T

0

Y −1(τ)Guδu(τ)dτ =

∫ T

0

ψT (τ)Guδu(τ)dτ = 0,

(3.44)

where we de�ned the ve
tor ψ(t) := Y −T (t)Y T (T )a. This ve
tor is solution
to a di�erential equation: taking a time derivative of the identity Y −1Y = I,
we get

˙(Y −1)Y + Y −1Ẏ = 0 =⇒ ˙(Y −1) = −Y −1Gy =⇒ ˙(Y −T ) = −GT
y Y

−T ,

and hen
e ψ is the solution of the di�erential equation

ψ̇ = −GT
y (y,u)ψ, (3.45)

with �nal 
ondition ψ(T ) = Y T (T )a. Sin
e the variation δu is arbitrary in

(3.44), the term under the integral sign must vanish, and Pontryagin and his

students obtained the 
lassi
al ne
essary 
onditions for an interior maximum

ψTGu(y,u) = 0, (3.46)

ψ̇ = −GT
y (y,u)ψ, (3.47)

ẏ = g(y,u), y(0) = y0, y(T ) = yT , (3.48)

whi
h is just a spe
ial 
ase of (3.27�3.29)

12
, with ψ playing the role of the

Lagrange multiplier λ, and with an obje
tive fun
tion f that depends neither

on y nor on u. Pontryagin, however, did not know of the relation between this

and the Lagrangian at the time of publi
ation; a

ording to Boltyanski [9℄,

they only learned about this several months later when reading the Russian

translation of Bliss' monograph [5℄ from 1946.

Next, the authors note that the fun
tions ψ 
an be multiplied by a


onvenient 
onstant in order to obtain ψT g(y,u)|t=0 > 0 without 
ausing

any 
hanges to the ne
essary 
onditions for optimality (3.46�3.48), sin
e this

quantity is 
onserved along optimal traje
tories, see (3.32). This then implies

ψTg(y,u) > 0 for all t. Now if the 
ontrol u is only allowed to vary in the


losed set Ω̄, the authors explain that the �rst 
ondition (3.46) needs to be

repla
ed by

ψTGu(y,u)δu ≤ 0 (3.49)

for all admissible variations u+δu that remain in Ω̄. With this modi�
ation,

the optimal 
ontrol may now also be on the boundary. This remark 
ould

have led them dire
tly to the KKT system (3.16).

12
To solve the time optimal 
ontrol problem 
orre
tly using Lagrange multipliers, we need

to introdu
e the time variable as a state variable, y0(t) := t, whi
h implies ẏ0 = 1, y0(0) =

0. The 
orre
t Lagrangian then be
omes L(y,λ,u) = y0(T )+
∫
T

0
λT (ẏ−g(y,u))dt, where

all ve
tors are now one element longer. Computing the variational derivative with respe
t

to y, we obtain now in addition to the earlier equations λ̇0 = 0 and z0(T )+λ0(T )z0(T ) = 0
for arbitrary variation z0, whi
h implies λ0(T ) = −1 and hen
e λ0(t) = −1 to 
omplete

the time optimality system with y0(t) := t.
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Figure 22. The histori
al moment when the maximum

prin
iple was invented

The se
ond result in [10℄ is a su�
ient 
ondition for optimality, ob-

tained a

ording to [9℄ by Gamkrelidze, and again only for points in the

interior of the 
ontrol domain. The result is based on se
ond variations of

the fun
tion ψTg(y,u), whose �rst derivative with respe
t to u was in the

ne
essary 
ondition for optimality in (3.46). With the 
hange in sign su
h

that ψT g(y,u) > 0, Gamkrelidze showed that if, in addition to (3.46�3.48),

the Hessian of ψTg(y,u) with respe
t to u is negative de�nite at t = 0, then
the 
ontrol u(t) and asso
iated traje
tory y(t) are optimal in a neighbor-

hood of t = 0. This su�
ient 
ondition was not a new result either, as it is a

parti
ular 
ase of the su�
ient 
ondition of Legendre type [5, Chapter IX℄,

whi
h the authors did not know at that time. They then however note that

if the Hessian is inde�nite, then there is no optimal 
ontrol in the interior of

Ω, so any optimal 
ontrol inside the 
losed set Ω̄ of admissible 
ontrols must

o

ur on the boundary.

The authors then 
on
lude, based on the ne
essary 
onditions (3.46�

3.48) and the fa
t that the Hessian of ψT g(y,u) with respe
t to u must be

negative de�nite for optimality, that the HamiltonianH(y,u,ψ) := ψTg(y,u)
must attain a lo
al maximum in u(t) for �xed y(t) and ψ(t) satisfying (3.46�
3.48): under the 
ondition that the variations δu are admissible and small

enough, the inequality

ψT g(y,u) ≥ ψTg(y,u+ δu) (3.50)

must hold for all time whenever (3.46�3.48) are satis�ed and the Hessian is

negative de�nite.

This was the histori
al moment of the invention of the maximum prin-


iple. The Hamiltonian 
ould also be used to de�ne the important di�erential

equations involved, see Figure 22 for the original paragraph in Russian, whi
h
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translates as (we use again the notation from our text in the translation):

This fa
t appears in many 
ases as a general prin
iple, whi
h we


all the maximum prin
iple (we have only proved this prin
iple so

far for several spe
ial 
ases): Let H(y,u) = ψTg(y,u) have, for
arbitrary but �xed y, ψ a maximum as u varies within the 
losed

set Ω̄. We denote this maximum byM(y,ψ). If the 2m-dimensional

ve
tor (y,ψ) is a solution of the Hamiltonian system

ẏ = g(y,u) = ∇ψH,

ψ̇ = −GT
yψ = −∇yH,

and a pie
ewise 
ontinuous ve
tor u(t) satis�es for ea
h point in

time

H(y(t),ψ(t),u(t)) =M(y(t),ψ(t)) > 0,

then u(t) is the optimal 
ontrol and y(t) the 
orresponding (lo-


ally) optimal traje
tory of system (3.41).

This �rst publi
ation only gave a 
riterion for the solution of the time

optimal 
ontrol problem, and it was formulated as a su�
ient 
ondition.

Pontryagin also hoped that the 
riterion would give the global optimal 
on-

trol, and put the word �lo
ally� in parentheses [9℄, see also Figure 22. The

maximum prin
iple allowed the authors to immediately solve the Bushaw-

Feldbaum problem we have seen earlier,

ÿ = u, |u| ≤ 1,

as follows: we �rst transform the system to �rst order

ẏ1 = y2, ẏ2 = u,

and the Hamiltonian be
omes

H = ψ1y2 + ψ2u.

For the auxiliary fun
tions, we obtain the di�erential equations

ψ̇1 = 0, ψ̇2 = −ψ1.

These equations 
an be easily integrated to give ψ1(t) = C1 and ψ2(t) =
C2−C1t, where C1 and C2 are 
onstants. To maximizeH under the 
ondition

that |u| ≤ 1, the 
ontrol must satisfy

u(t) = sign(ψ2(t)) = sign(C2 − C1t),

and is therefore pie
ewise 
onstant and 
an 
hange at most on
e, sin
e ψ2(t)
is a linear fun
tion of t. We thus obtain pre
isely the bang-bang solution

found by Feldbaum for this problem, but in a very simple way with the

maximum prin
iple. The maximum prin
iple also worked very well for many

similar problems that 
ould not be solved earlier, whi
h explains the high

hopes Pontryagin had for it.

After this �rst publi
ation, the work was divided by Pontryagin as fol-

lows: Gamkrelidze was asked to generalize the results obtained during the
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al
ulation of examples, and he qui
kly found the work by Bellman, Gli
ks-

berg and Gross [2℄, who had established a ne
essary and su�
ient 
ondition

for the linear 
ase

ẏ = Ay +Bu, |uj| ≤ 1,

and the time optimal 
ontrol to get to y = 0. For 
onstant matri
es A and

B, where the eigenvalues of A have negative real parts, the optimal 
ontrol

is uT (t) = sign(bTY (t)), where Y (t) = X−1(t)B and X solves the matrix

equation Ẋ = AX . Here b is an appropriately 
hosen ve
tor, and the result

holds under a general position 
ondition, see [2℄. Gamkrelidze managed to

show that this ne
essary and su�
ient 
ondition 
oin
ides with the maximum

prin
iple, and hen
e for linear problems, the maximum prin
iple is indeed a

ne
essary and su�
ient 
ondition for optimality.

Boltyanski was supposed to work out in detail the results in the �rst

paper [10℄, and Pontryagin was supposed to �nd a general justi�
ation of the

maximum prin
iple. Boltyanski started working on the �rst result in [10℄ and

tried to formulate it di�erently from the 
lassi
al analysis textbook style in

whi
h the argument was given, and sear
hed for a geometri
al proof. After a

more 
areful study of the se
ond, su�
ient 
ondition in [10℄, Boltyanski �nally

arrived, �in a brilliant half hour� [9℄, at the 
on
lusion that the maximum

prin
iple was only a ne
essary 
ondition. He immediately 
alled Pontryagin in

his apartment and told him that the maximum prin
iple was only a ne
essary


ondition, but a global one. Pontryagin was angry when he re
eived the 
all

be
ause it had woken him up from his afternoon nap, but he 
alled ba
k �ve

minutes later to say that if Boltyanski had really found a proof, this would be

of great interest, so it had to be 
he
ked 
arefully. Gamkrelidze did the 
areful


he
king, and the argument was 
orre
t, so Boltyanski asked Pontryagin if

he 
ould publish the results [9℄:

�It was proposed to publish it, as a joint paper of four authors. I

refused point-blank. Then it was proposed (i) to name that theo-

rem Pontryagin's maximum prin
iple, and (ii) to add at the end

of my paper a paragraph di
tated by Pontryagin that pointed out

his role in 
reation of the prin
iple. Pontryagin was the head of

the laboratory in the Steklov Mathemati
al Institute, and at that

time 
ould insist on his interests. I had to agree. After that, my

paper was presented to Doklady AN SSSR [8℄.

Boltyanski indeed named the maximum prin
iple after Pontryagin in the

single authored paper [8℄:

The maximum prin
iple suggested by Pontryagin as a hypothe-

sis. . .

and we also show in Figure 23 the �nal paragraph di
tated by Pontryagin

to Boltyanski from the end of the same paper. The literal translation of this

paragraph is:
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Figure 23. The last paragraph Boltyanski had to add in his

single authored paper, di
tated by Pontryagin (see transla-

tion in the text)

Figure 24. Original drawing by Boltyanski removing the

initial �aw of variations at the endpoint in the proof of the

maximum prin
iple

I got the results whi
h are published in this paper working in the

Pontryagin seminar on the theory of os
illations and automati


regulation. Pontryagin pointed out to me one simpli�
ation in the

proof of the maximum prin
iple, and be
ause of that my proof

be
ame appli
able to arbitrary topologi
al spa
es U (the �rst vari-

ant of the proof 
ontained an unne
essary, a
tually nowhere used,


onstru
tion that for
ed the restri
tion on the 
ase, when U is a


losed domain in a ve
tor spa
e with pie
ewise-smooth boundary

and 
onvex inner 
orners in breaking points).

As we have seen already in footnote 11, the initial argument of Pontryagin,

whi
h allowed the end point to vary in a lower dimensional manifold, was not

quite 
orre
t. To remove this �aw, Boltyanski resorted in [8℄ to the tool of

needle variations, whi
h already appeared in M
Shane in 1939 [40℄; however,

Boltyanski insists that he was unaware of M
Shane's work at the time and


ame up with the te
hnique independently [7℄. We show in Figure 24 the hand

drawing of Boltyanski from [9℄. One 
an 
learly see that a 
one appears,

instead of the variations orthogonal to the traje
tory, and the role of the
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manifold is now played by Γ at the tip of the 
one. The 
omplete original

proof also relies on te
hniques from topology, the �eld of origin of the group.

It is quite long and te
hni
al; details 
an be found in the histori
al book

by the four authors from 1962 [48℄, whi
h was qui
kly translated into many

languages and made Pontryagin and the Russian s
hool of optimal 
ontrol

famous with their maximum prin
iple. However, from Boltyanski's point of

view, it was he who formulated and proved the maximum prin
iple 
orre
tly.

Pontryagin's insisten
e on publishing the result as a joint paper led to a

period of deep bitterness for Boltyanski, during whi
h he 
ould not even do

mathemati
s any more, as he tells in [9℄.

3.5. General formulation of the Maximum Prin
iple

The times t0 and t1, in this statement of the problem, are not �xed. We

only require that the obje
t should be in state x0 at the initial time, and

at state x1 at the �nal time, and that the fun
tional should a
hieve a

minimum. ( Pontryagin, Boltyanski, Gamkrelidze and Mish
henko 1962

[48℄)

Pontryagin and his students then generalized the problem of minimizing

travel time to one of minimizing an arbitrary fun
tion [11℄. The model for

the te
hni
al obje
t is again the system of ordinary di�erential equations

dy

dt
= g(y,u), y(t0) = y

0
(3.51)

for the traje
tory y : R → R
m

of the obje
t, depending on the 
ontrol

fun
tions u : R → R
n−m

. These 
ontrols are supposed to be 
hosen su
h that

when the obje
t arrives at time t1 at a given lo
ation y(t1) = y
1
, the general

fun
tional

J :=

∫ t1

t0

g0(y(t),u(t))dt (3.52)

is minimized. Here the s
alar fun
tion g0 : Rm ×R
n−m → R was on purpose

denoted by the index zero, sin
e a �rst step was then to de�ne an additional

ordinary di�erential equation

dy0
dt

= g0(y,u), y0(t0) = 0.

Appending this equation to the system of ordinary di�erential equations for

the te
hni
al obje
t as the zeroth 
oordinate, ỹ := (y0, y1, . . . , ym), and sim-

ilarly g̃ := (g0, g1, . . . , gm), the new system of ordinary di�erential equations

dỹ

dt
= g̃(ỹ,u), ỹ(t0) = (0,y0) (3.53)

en
odes, in addition to the traje
tory, also the 
urrent value of the obje
tive

fun
tion in its zeroth 
omponent:

y0(t) =

∫ t

t0

g0(y(t),u(t))dt.

The authors now give a geometri
 interpretation of the optimal 
ontrol prob-

lem in this higher dimensional spa
e: given an initial point y0 and a target y1
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PSfrag repla
ements

y1

y2

y0

y0

y1

optimal y(t)

optimal ỹ(t)

Figure 25. Interpretation of the optimal 
ontrol problem in

the higher dimensional spa
e in
luding the obje
tive fun
tion


oordinate y0

in R
m
, as shown in Figure 25, among all the traje
tories solution of (3.53) and

ending at y1 (dashed line examples in Figure 25), �nd the one that 
rosses

the verti
al line in the y0 dire
tion above with the lowest 
oordinate value

y0(t1) possible (see solid line in Figure 25). Next, they explain several proper-

ties of this optimal 
ontrol problem: �rst, the problem is time invariant, sin
e

the right hand side of the state equation and the obje
tive fun
tion do not

depend on time. One 
an therefore do translations in time without 
hanging

the problem, see Figure 26 from their book [48℄. Be
ause of this, one 
an also


onsider several points in phase spa
e, and sear
h for 
ontrols separately to

move from one to the next sequentially, and then 
on
atenate the 
ontrols in

order to get a single 
ontrol to go from the �rst to the last point in phase

spa
e. Doing this, one just has to sum the lo
al obje
tive fun
tion values

to obtain the global value of the obje
tive fun
tion. Con
atenating the 
on-

trols this way, however, is not possible in the spa
e of 
ontinuous 
ontrols in

general, and therefore one must expe
t the optimal 
ontrol to be pie
ewise


ontinuous only, as illustrated in Figure 27 from [48℄. Finally, in preparation

of their proof, they argue that the optimal traje
tory must also be lo
ally op-

timal: if it were not optimal on a sub-interval, then one 
ould simply repla
e

Figure 26. Graph to illustrate time translation invarian
e

from [48℄
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Figure 27. Graph to illustrate that the optimal 
ontrols

are pie
ewise 
ontinuous, from [48℄

the 
ontrol there by a better one, and sin
e the obje
tive fun
tions are just

summed, the global obje
tive fun
tion would de
rease, see Figure 28 from

[48℄ for an illustration of this.

For the formal statement of the maximum prin
iple, the authors intro-

du
e as before the adjoint system (but now without explanation)

dψ̃i

dt
= −

m
∑

j=0

∂gj(y,u)

∂yi
ψ̃j , i = 0, 1, . . . ,m (3.54)

and the Hamiltonian

H(ψ̃, ỹ,u) := ψ̃
T
g̃(y,u), (3.55)

but now the maximum prin
iple is no longer stated as a su�
ient 
ondition:

a ne
essary 
ondition for the 
ontrol u and asso
iated traje
tory y to be

optimal is that there exist ψ su
h that the Hamiltonian system

dyi
dt

=
∂H

∂ψ̃i

, i = 0, 1, . . . ,m (3.56)

dψ̃i

dt
= −

∂H

∂yi
, i = 0, 1, . . . ,m (3.57)

Figure 28. Graph to illustrate that the solution must be

lo
ally optimal, from [48℄
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holds and that for ea
h admissible 
ontrol v the inequality

H(ψ̃, ỹ,v) ≤ H(ψ̃, ỹ,u) (3.58)

be satis�ed, i.e. the optimal 
ontrol u is the value of v maximizing the Hamil-

tonian.

Suppose now that the optimum is in the interior of the domain. Then the

inequality (3.58) implies that we are at a stationary point, i.e. the derivative

with respe
t to u must vanish,

ψ̃
T
G̃u(y,u) = 0 ⇐⇒ ψ0∇ug0(y,u) +GT

u (y,u)ψ = 0.

Sin
e the Hamiltonian does not depend on y0, ψ0 is just a 
onstant, ψ0 =
−1 and we �nd naturally the 
ondition (3.27) from the Lagrange multiplier

approa
h

13
. So the maximum prin
iple stating that the Hamiltonian has to

be maximized is equivalent to stating expli
itly that the Lagrangian has to

be minimized, and not just at a stationary point, and the reason why it is

a maximum for the Hamiltonian and a minimum for the Lagrangian 
omes

just from the sign 
hange in the de�nition of the Hamiltonian (3.30).

3.6. Example of an ODE Control Problem

We illustrate the use of Pontryagin's maximum prin
iple on the following

example. Suppose we have a system with a state variable y = y(t) ∈ R and a


ontrol variable u = u(t) ∈ R governed by

ẏ = u, y(0) = 0,

subje
t to the box 
onstraints |u(t)| ≤ 1 for all t. We would like to �nd the


ontrol u(t) su
h that y(1) = 1
2 and whi
h minimizes the 
ost

J(y, u) =
1

2

∫ 1

0

y2 dt.

Without the 
onstraint on the 
ontrol, the optimality system (3.27�3.29)

leads to ẏ = u, ψ̇ = y, 0 = 1 · ψ and thus ψ = 0, y = 0 and u = 0. Sin
e we
must however have y(1) = 1

2 , one 
an for
e the solution in the last moment

with a very large 
ontrol to this value, and make the integral

∫

y2dt arbitrarily
small. With the 
onstraint on the 
ontrol, the best one 
an do is use u = 1,
and we need to use this 
ontrol over the se
ond half of the interval to get

ẏ = 1, in order to rea
h y(1) = 1
2 , whi
h is the optimal solution, see Figure

29.

Lets now see how Pontryagin's maximum prin
iple guides us to this

solution: it says that if u(t) is the optimal 
ontrol, then for every t ∈ (0, 1),
we have

H(y(t), u(t), ψ(t)) = max
|ξ|≤1

H(y(t), ξ, ψ(t)),

13
see also Footnote 12
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Figure 29. Solution of the simple optimal 
ontrol problem.

where y(t) and ψ(t) are the state and adjoint state of the optimal traje
tory

at time t, and H is the Hamiltonian

H(y, u, ψ) = ψu−
1

2
y2.

Thus, by inspe
tion, we have

u(t) =

{

1, if ψ(t) > 0,

−1 if ψ(t) < 0.

If ψ(t) = 0, then we get no information from the maximum prin
iple. We

now dedu
e the optimal 
ontrol and traje
tory based on these properties.

1. We know that y(1) = 1
2 , so by the adjoint equation ψ̇ = y, we see that

ψ has a positive slope in a neighborhood of t = 1, so it 
annot vanish

identi
ally there. So if we assume that ψ(1) ≤ 0, then ψ(t) < 0 in some

interval t ∈ (t1, 1) with t1 = 1−δ, δ > 0, so u(t) = −1 there. This yields

y(t) = y(1)−

∫ 1

t

ẏ(τ)dτ = y(1) + 1− t =
3

2
− t. (3.59)

Thus, y(t) ≥ 1
2 for all t ∈ (t1, 1), so ψ(t) is a stri
tly in
reasing fun
tion

with ψ(1) ≤ 0, implying that ψ(t) < 0 for all t ∈ (t1, 1). In parti
ular,

ψ(t1) < 0, so 
ontinuing this argument now over the interval (t1− δ, t1),
et
. shows that (3.59) in fa
t holds for the whole interval (0, 1). This
implies y(0) = 3

2 , whi
h 
ontradi
ts the initial 
ondition y(0) = 0. Hen
e
ψ(1) 
annot be negative (or zero).

2. Suppose now that ψ(1) = ψ1 > 0. Then there exists a neighborhood

around t = 1 in whi
h ψ(t) > 0. Let t∗ ∈ [0, 1) be the smallest t su
h
that ψ(t) > 0 whenever t > t∗. Then by the 
ontinuity of ψ, we have

ψ(t∗) = 0. Moreover, u = 1 on (t∗, 1), whi
h implies

y(t) = y(1)−

∫ 1

t

u(τ)dτ = y(1)− 1 + t = t−
1

2
(3.60)



Constrained Optimization 37

whenever t ∈ (t∗, 1].
3. We show that y(t∗) = 0 by ex
luding both y(t∗) > 0 and y(t∗) < 0. If
y(t∗) > 0, then ψ(t∗ − δ) < 0 for δ > 0 small enough, so u = −1 on the

interval (t∗−δ, t∗). This means y(t∗−δ) > y(t∗) > 0; 
ontinuing this ar-
gument ba
kwards in time, we obtain y(0) > y(t∗) > 0, a 
ontradi
tion.

On the other hand, if we assume that y(t∗) < 0, then ψ̇(t∗) < 0 and

ψ(t∗) = 0 together implies that ψ(t∗ + δ) < 0 for δ > 0 small enough,

whi
h 
ontradi
ts the de�nition of t∗. Thus, y(t∗) = 0. Sin
e (3.60) is

satis�ed for all t ∈ (t∗, 1], we dedu
e that t∗ = 1
2 .

4. The optimal traje
tory and 
ontrol are now determined for the interval

[ 12 , 1]. Sin
e
∫ 1

1/2 y
2 dt is now �xed, we are left with the minimization

problem

∫ 1/2

0

y2 dt→ min s.t. y(0) = y(12 ) = 0,

where ẏ = u and |u(t)| ≤ 1. The optimal solution is obviously

y(t) ≡ 0, u(t) ≡ 0 ∀t ∈ (0, 12 ).

Note that the adjoint state must also vanish, sin
e u would not be

allowed to take on values di�erent from ±1 otherwise.

We thus obtain the same solution from Figure 29. Note that unlike problems

with a pure bang-bang solution, our optimal 
ontrol 
ontains both an interior

part (u = 0 on t ∈ (0, 12 )) and a boundary part (u = 1 on t ∈ (12 , 1)). We

also see that in this 
ase, the maximum prin
iple is useful in the sense that

it guides us towards the optimal solution bit by bit, but it does not provide

an algorithm for 
omputing the optimal 
ontrol dire
tly.

3.7. Caratheodory

Auf den folgenden Seiten soll auf das allgemeine Problem der Variations-

re
hnung in einem (n+1)-dimensionalen Raum mit p gewöhnli
hen Dif-

ferentialglei
hungen als Nebenbedingungen die Methode der geodätis-


hen Äquidistanten angewandt werden

14
(Carathéodory 1926 [16℄)

Constantin Carthéodory had already worked in his PhD thesis on dis-


ontinuous solutions in the 
al
ulus of variations [15℄, and be
ame one of the

eminent resear
hers in this �eld. In a paper published in 1926, see also the

quote above, he set out to solve pre
isely the same type of problem we have

seen before, but thirty years earlier. He studied the minimization problem

I :=

∫ t2

t1

L(t,x, ẋ)dt −→ min

under the 
onstraints given by impli
it di�erential equations

G(t,x, ẋ) = 0, (3.61)

14
On the following pages we will solve the general problem of variational 
al
ulus in an

(n + 1) dimensional spa
e with p ordinary di�erential equations as 
onstraints, using the

method of geodesi
 equal distan
es
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Figure 30. Formulation of ne
essary 
onditions using the

Hamiltonian for optimal 
ontrol problems already found in

the work by Carathéodory from 1926

where L : R × R
n × R

n → R, and G : R × R
n × R

n → R
p
. Using geodesi


arguments, he was led to de�ne the s
alar quantity

M(t,x, ẋ,µ) := L(t,x, ẋ) + µTG(t,x, ẋ),

for some parameter fun
tions µ. He then applied the Legendre transform to

M , whi
h led him to the Hamiltonian

H(t,x,y) := −M(t,x,ϕ,χ) + yTϕ.

Here, ϕ represents the right hand side when the impli
it di�erential equation

(3.61) is solved to obtain an expli
it form ẋi = ϕi(t,x), and χ = µ, whi
h

gives

H(t,x,y) = −L(t,x,ϕ)− χTG(t,x,ϕ) + yTϕ.

Now along a solution satisfying the 
onstraint, we have G(t,x,ϕ) = 0, and
Carathéodory obtains as the main result

15
, as we have seen earlier, that the

solution 
andidates must satisfy the di�erential equations

ẋ = ∇yH, ẏ = −∇xH, (3.62)

whi
h he says play su
h a prominent role in me
hani
s, see also the original

formulas in Figure 30. In 
ontrast to Pontryagin later, he does however only


onsider lo
al optima in open sets. For more explanations on the derivation

of the Hamiltonian formulation of Carathéodory, see [44℄, and also the very

interesting des
ription of the history of the maximum prin
iple and optimal


ontrol in [46℄, see also [45, 43℄.

4. PDE Constrained Optimization

We have seen in the previous se
tion how the desire to optimize the traje
-

tory of a system governed by ODEs gave birth to the �eld of optimal 
ontrol.

In many appli
ations, however, the system is not governed by ODEs, but by

partial di�erential equations (PDEs), and the desire to optimize 
ertain out-

puts leads to PDE 
onstrained optimization problems. This �eld is nowadays

an a
tive resear
h area, as attested by the many 
onferen
es and papers in

15
Das Hauptresultat besteht darin, dass unsere Gefällkurven mit den Cau
hys
hen Charak-

teristiken zusammenfallen und Lösungen der kanonis
hen Di�erentialglei
hungen (3.62)

sind, die in der Me
hanik eine so bedeutende Rolle spielen
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re
ent years. Here we mention only three sample appli
ations; other appli-


ations abound and new ones arise every day, so it is impossible to mention

them all.

• Oil reservoir management: the �ow of �uids in an oil �eld satis�es a

system nonlinear PDEs that models the 
onservation of 
hemi
al spe
ies

transported by di�erent �uid phases. Here, the only intera
tion with

the subsurfa
e oil �eld is through wells, either by inje
ting �uid (water

or gas) into the ground or by 
ontrolling how mu
h �uid (typi
ally a

mixture of oil, water and gas) 
an 
ome out of it. Thus, the goal 
ould be,

for instan
e, to optimize the oil output over the lifetime of the reservoir

by optimizing over the 
ontrol variables, su
h as the inje
tion rate of

water or gas at an inje
tion well, or the �uid pressure or produ
tion rate

at the produ
tion wells. Here the 
ontrol variables 
an be fun
tions of

time, just like in the ODE 
ase.

• Shape and topology optimization: 
onsider the design of an airfoil. De-

pending on the purpose of the airfoil, one 
an maximize the lift, minimize

the drag, or minimize the vorti
es 
reated by the airfoil when air �ows

around it. Thus, the obje
tive fun
tion depends on the solution of the

PDE governing the �ow of air around the airfoil, e.g., a Lapla
e-type

potential �ow equation, or the full Navier�Stokes equation. Here, the


ontrol variable is the �shape� of the airfoil, i.e., the fun
tion that de-

�nes the boundary of the domain, and the PDE 
onstraint is the Lapla
e

or Navier�Stokes equation.

• Inverse problems: 
onsider an underground ro
k formation, of whi
h we

would like to understand its internal 
omposition (types of ro
k, exis-

ten
e of layers and faults, et
.) One way of obtaining information with-

out drilling is to send seismi
 or ele
tromagneti
 waves into the ground

and install dete
tors on the surfa
e to measure the re�e
ted waves. If the

ro
k parameters were known ahead of time, then the re�e
ted waves 
an

by 
al
ulated by solving a PDE (elasti
ity or wave equation). However,

sin
e our goal is pre
isely to estimate these parameters, we must solve

an optimization problem by 
hoosing the parameters that minimize the

dis
repan
y between the predi
ted and measured waves, subje
t to the


onstraint that the waves satisfy a PDE.

4.1. Early Work

The dis
overy of Pontryagin's maximum prin
iple and its ability to explain

bang-bang type solutions generated great interest in the optimal 
ontrol 
om-

munity. In parti
ular, starting from the 1960s, there was a push to generalize

both results to systems des
ribed by PDE rather than ODE 
onstraints. The

earliest referen
e appears to be a series of papers by Egorov [18℄�[19℄ starting

in 1962, whi
h 
ontains a detailed study of the minimal time problem for the
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paraboli
 
ontrol problem of the type

∂y

∂t
+Ay + b(u)y = f + u on Ω× (0, T ),

y = 0 on ∂Ω× (0, T ),
(4.1)

with initial 
ondition y(t0;u) = y0 and target y(t1;u) = yT , but the argu-

ments therein are rather opaque

16
.

Stateside, a proof of the bang-bang property when b = 0 and u is re-

stri
ted to the set

Uad = {u : |u(t)| ≤ 1 a.e.}

was given in 1964 by Fattorini [21℄, who wrote his Ph.D. thesis on the topi


under the supervision of P. D. Lax. The proof pro
eeds in two steps. First,

Fattorini writes y(τ ;u) in terms of the Green's fun
tion

y(τ ;u) = G(τ)y0 +

∫ τ

0

G(τ − σ)u(σ) dσ.

Using this representation, he shows that if |u(t)| ≤ 1−ǫ for some ǫ > 0 almost

everywhere in the interval (0, τ), then one 
an produ
e another 
ontrol v(t)
su
h that |v(t)| ≤ 1 and y(s; v) = yT with s < τ , so that τ is not the

optimal time. He then shows that even in the 
ase where |u(t)| ≤ 1 − ǫ
only on a subset e ⊂ (0, τ) of positive measure, u 
annot optimal. To show

this, let e be the subset in whi
h |u(t)| ≤ 1 − ǫ. Then using semi-group

theory, Fattorini shows that there exists a 
ontrol ḡ(t) with bounded values

and support in e su
h that y(τ ; ḡ) = y(τ ;u) = yT . By taking a weighted

average of u and ḡ, one obtains a new 
ontrol v = (1− θ)u+ θḡ that satis�es
|v(t)| ≤ 1− ǫ̂ everywhere for some ǫ̂ > 0, but without 
hanging the target yT ,
sin
e y(τ, v) = (1−θ)y(τ ;u)+θy(τ ; ḡ) = yT . Thus, by the previous argument,

τ is not the shortest time ne
essary to arrive at yT , so u is not time-optimal.

This proof does not use any variant of the Pontryagin's maximum prin
iple,

so none was formulated in the paper.

Proofs of the bang-bang property for other systems, notably bound-

ary 
ontrol problems, appeared subsequently, see for instan
e Friedman [26℄.

However, it was a resear
h monograph of Ja
ques-Louis Lions that laun
hed

the systemati
 study of optimal 
ontrol under PDE 
onstraints and shaped

the �eld as we know it today.

4.2. Lions

A new adventure began for Lions in the early 1960s, when he met (in

spirit) another of his intelle
tual mentors, John von Neumann. By then,

using 
omputers built from his early designs, von Neumann was devel-

oping numeri
al methods for the solution of PDEs from �uid me
hani
s

and meteorology. At a time when the Fren
h mathemati
al s
hool was

almost ex
lusively engaged in the development of the Bourbaki program,

Lions � virtually alone in Fran
e � dreamed of an important future

16
A

ording to J.-L. Lions: �Le travail de Yu. V. Egorov 
ontient une étude détaillée de 
e

problème, mais nous n'avons pas pu 
omprendre tous les points des démonstrations de 
et

auteur, les résultats étant très probablement tous 
orre
ts.�
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for mathemati
s in these new dire
tions; he threw himself into this new

work, while still 
ontinuing to produ
e high-level theoreti
al work on

PDEs. ( R. M. Temam, Obituary of Ja
ques-Louis Lions (SIAM News,

July 10, 2001)

Ja
ques-Louis Lions (1928�2001) was one of the most in�uential �gures

of his time in applied mathemati
s in Fran
e and throughout the world. Under

the in�uen
e of his PhD supervisor, the Fields medalist L. S
hwartz, Lions'

early work was of a theoreti
al nature, emphasizing the use of distributions

and appropriate fun
tion spa
es in the study and solution of PDEs. During

his time as s
ienti�
 dire
tor at IRIA

17
, he dis
overed �systems theory�, whi
h

subsequently be
ame a new 
omponent of his resear
h in the form of 
ontrol

theory. Given his expertise in PDEs and variational formulations, it is no

surprise that his theory of PDE 
onstrained optimization is heavily based on

fun
tion (espe
ially Sobolev) spa
es and variational arguments.

Lions' �rst 
ontribution in PDE 
onstrained optimization was a resear
h

monograph entitled �Contr�le optimal de systèmes gouvernés par des équa-

tions aux dérivées partielles� [37℄. It was published in 1968 and be
ame the

standard referen
e of the subje
t. In this volume, Lions developed his the-

ory systemati
ally by �rst 
onsidering the 
ontrol of ellipti
 problems, and

then moving on to time-dependent problems of the paraboli
 and hyperboli


types. The stated goals of the volume, whi
h appear in the introdu
tion, are

as follows:

1. to obtain ne
essary (and maybe also su�
ient) 
onditions for lo
al ex-

trema of the PDE 
onstrained optimization problems;

2. to study the stru
ture and properties of equations expressing su
h 
on-

ditions;

3. to obtain 
onstru
tive algorithms that 
an be used to 
al
ulate the op-

timal 
ontrols numeri
ally.

This last point was parti
ularly groundbreaking at a time when PDE

resear
h was mostly theoreti
al, see the quote above. It is espe
ially �tting

that variational formulations and Hilbert spa
es play a fundamental role in

the monograph, giving its results a natural algorithmi
 realization in the form

of �nite element methods, 
f. [28℄.

To illustrate his approa
h, let us 
onsider the problem of minimizing

the 
ost fun
tional

J(u) = ‖Cy(u)− zd‖
2
H + (Nu, u)U .

Here, the desired state zd belongs to a Hilbert spa
e H , where as the state

variable y = y(u) belongs to a possibly di�erent Hilbert spa
e V . The state

variable y(u) depends on the 
ontrol variable u via the PDE

Ay = f +Bu, (4.2)

17
Institut de Re
her
he en Informatique et Automatique, the pre
ursor of the modern

INRIA.
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where A : V → V ′
is generally taken to be a di�erential operator. The

minimization is done over all 
ontrols u lying in the admissible set Uad, a


losed 
onvex subset of a Hilbert spa
e U . The quadrati
 form (Nu, u)U , with
N self-adjoint and semi-positive de�nite, penalizes large 
ontrol variables u.
From the de�nition of J(u), we see that for all v ∈ Uad, we have

J(v) = (Cy(v) − zd, Cy(v)− zd)H + (Nv, v)U

= ‖Cy(u)− zd‖
2
H + 2(Cy(u)− zd, C(y(v) − y(u)))H + ‖C(y(v)− y(u))‖2H

+ (Nu, u)U + 2(Nu, v − u)U + (N(v − u), v − u)U

= J(u) + 2(Cy(u)− zd, C(y(v)− y(u)))H + 2(Nu, v − u)U

+ ‖C(y(v)− y(u))‖H + (N(v − u), v − u)U .

Now sin
e u is the minimizer, we must have J(v)− J(u) ≥ 0, so that

2(Cy(u)− zd, C(y(v) − y(u)))H + 2(Nu, v − u)U

+ ‖C(y(v)− y(u))‖2H + (N(v − u), v − u)U ≥ 0,

whi
h must hold for all v ∈ Uad. So if ‖v − u‖ = O(ǫ) and we let ǫ tend to

zero, the two quadrati
 terms be
ome negligible, so we obtain after division

by 2 the optimality 
ondition

(Cy(u)− zd, C(y(v) − y(u)))H + (Nu, v − u)U ≥ 0 ∀v ∈ Uad, (4.3)

whi
h is analogous to (3.16) in the KKT 
onditions. The inequality (4.3) 
an

be rewritten as

(C∗Λ(Cy(u)− zd), y(v) − y(u))V + (Nu, v − u)U ≥ 0 ∀v ∈ Uad, (4.4)

where Λ : H → H ′
is the 
anoni
al isomorphism from H to its dual spa
e

H ′
. Lions then de�nes the adjoint state p(v) ∈ V impli
itly via

A∗p(v) = C∗Λ(Cy(v) − zd), (4.5)

where A∗ : V → V ′
is the adjoint of A. Then substituting (4.5) into (4.4)

yields

(C∗Λ(Cy(u)− zd), y(v) − y(u))V + (Nu, v − u)U

= (A∗p(u), y(v)− y(u))V + (Nu, v − u)U

= (p(u), A(y(v) − y(u))V + (Nu, v − u)U

= (p(u), B(v − u))V + (Nu, v − u)U

= (Λ−1
U B∗p(u) +Nu, v − u)U ≥ 0 ∀v ∈ Uad, (4.6)

where B∗ : V → U ′
is the adjoint of B, ΛU : U → U ′

is the 
anoni
al

isomorphism from U to U ′
, and we have used the fa
t that

A(y(v) − y(u)) = f +Bv − (f +Bu) = B(v − u).

In other words, the de�nition of p(v) in (4.5) 
an be seen as an intelligent

guess that allows one to eliminate the state y(u) from the optimality 
ondition

(4.4), similar to the way we 
hose the Lagrange multiplier λ in Se
tion 3.1
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to eliminate the state y in the �nite-dimensional 
ase. Inequality (4.6) 
an

be reformulated as

(Λ−1
U B∗p(u) +Nu, u)U = inf

v∈Uad

(Λ−1
U B∗p(u) +Nu, v)U ,

whi
h then looks like an ellipti
 analogue of Pontryagin's maximum prin
i-

ple.

18

The advantage of the abstra
t Hilbert spa
e approa
h is that the results

are immediately appli
able to many di�erent types of 
ontrol problems. For

instan
e, 
onsider a problem in whi
h the 
ontrol fun
tion is Neumann data

on part of the boundary Γ0 ⊂ Γ = ∂Ω, and we want the Diri
hlet tra
e on

another part of the boundary Γ1 ⊂ ∂Ω, Γ0 ∩Γ1 = ∅ to be as 
lose as possible

to some desired tra
e zd. Then the analogue of (4.6) in the boundary 
ontrol


ase states that the optimal 
ontrol u ∈ Uad ⊂ L2(Γ) must satisfy

∫

Γ

p(u)(v − u) dΓ ≥ 0 ∀v ∈ Uad. (4.7)

If the set of admissible 
ontrols is de�ned by pointwise box 
onstraints, e.g.,

if

Uad = {v : Supp(v) ⊂ Γ0 and |v(x)| ≤ 1 a.e. on Γ0},

then a standard argument allows one to 
onvert the variational inequality

(4.7) into a pointwise one of the form

p(x;u)(ξ − u(x)) ≥ 0 ∀ξ ∈ [−1, 1]. (4.8)

Under some smoothness assumptions on the domain boundary Γ and the


oe�
ients of the ellipti
 PDE, Lions shows that the optimal 
ontrol u ∈ Uad

satis�es either p(x;u) ≡ 0, in whi
h 
ase y(u)|Γ1
= zd, or p(x;u) 6= 0 almost

everywhere. Then (4.8) implies

p(x;u) > 0 =⇒ u(x) = −1,

p(x;u) < 0 =⇒ u(x) = 1.

Thus, we have a bang-bang property in the ellipti
 
ase, a result whi
h, to

Lions' knowledge, had not been published at the time.

4.3. Derivation by Lagrange Multipliers

It was never expli
itly mentioned what motivated Lions to de�ne the adjoint

state p via (4.5). One possibility is that he was in�uen
ed by the work of

Pontryagin; another reason 
ould simply be that he wanted to eliminate the

state variables y(u) and y(v) algebrai
ally, just as we did in Se
tion 3.1. Here,

we show that the same variable p 
an be obtained using a formal Lagrange

multiplier argument. Let the Lagrangian be de�ned by

L(y, u, p) =
1

2
‖Cy − zd‖

2
H +

1

2
(Nu, u)U − (Ay − f −Bu, p)V ,

18
�La formulation (1.31) peut être 
onsidérée 
omme un analogue du � prin
ipe du

maximum de Pontryagin �, pour lequel nous référons [. . . ℄ à Pontryagin-Boltyanski-

Gamkrelidze-Mis
henko� [37℄.
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where p ∈ V now a
ts as the Lagrange multiplier. Next, we take the varia-

tional derivative with respe
t to y, i.e., we 
al
ulate

d

dǫ
L(y + ǫz, u, p)|ǫ=0 = (Cz,Cy − zd)H − (Az, p)V

!
= 0

for all z ∈ V . We thus have

(Cz,Cy − zd)H − (Az, p)V = (z, C∗Λ(Cy − zd))V − (z, A∗p)V = 0,

whi
h implies A∗p = C∗Λ(Cy − zd). So the adjoint state is nothing but the

Lagrange multiplier for the 
onstrained problem! We 
he
k that this formu-

lation gives the same optimality 
ondition for u: we want u to be a minimizer

of L(y, u, p), i.e., for all v ∈ Uad, we have

0 ≤ L(y, v, p)− L(y, u, p) = (B(v − u), p)V + (Nu, v − u)U +
1

2
(N(v − u), v − u)U

= (v − u,Λ−1
U B∗p+Nu)U +

1

2
(N(v − u), v − u)U .

In parti
ular, for v = u+ ǫw ∈ Uad, we have

ǫ(w,Nu + Λ−1
U B∗p)U +

ǫ2

2
(Nw,w)U ≥ 0,

so by letting ǫ→ 0, we obtain the same 
ondition as (4.6). One 
an only

spe
ulate whether Lions had this derivation in mind

19
.

4.4. Later developments

Lions' monograph only signaled the beginning of the rapid development of

PDE 
onstrained optimization as a modern �eld of resear
h. Fueled by pra
ti-


al needs in industry and advan
es in other bran
hes of applied mathemati
s,

the �eld saw major progress in terms of both theory and algorithms � this

is in addition to the number of appli
ation areas to whi
h PDE 
onstrained

optimization is applied. The following list is by no means exhaustive; the goal

is to show a sample of a
hievements in the intervening de
ades.

Theory. Mu
h of the theory in Lions' monograph, in
luding the exis-

ten
e and regularity of optimal 
ontrols and the maximum prin
iple, has

been extended to more general problems. For instan
e, Pontryagin's maxi-

mum prin
iple for linear paraboli
 problems has been generalized to semi-

linear paraboli
 problems by von Wolfersdorf [52, 53℄. It is also possible to

in
lude state 
onstraints, i.e., 
onstraints on the state variables y rather than
on the 
ontrol u. For a 
omprehensive modern introdu
tion to the subje
t,

see the re
ent book by Tröltzs
h [50℄.

Another major theoreti
al development, related to the existen
e of op-

timal 
ontrols, is the theory of 
ontrollability, where the goal is to determine

whether it is possible to �nd a 
ontrol fun
tion that steers an obje
t from any

initial state y0 to a given target state yT . An important result, whi
h appeared

in [38℄ in 1988, was proved by Lions himself: he introdu
ed what is known as

19
A

ording to J. Blum, it was R. Glowinski, one of the former students of Lions, who

showed Lions on
e on the board that the adjoint state 
an simply be interpreted as a

Lagrange multiplier. This was 
on�rmed by R. Glowinski (personal 
ommuni
ation)
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the Hilbert Uniqueness Method. The method takes a linear time-reversible

PDE (su
h as the wave equation), an initial state y0 and a target state yT ,
and 
onstru
ts a 
ontrol u (belonging to some spe
ially 
hosen Hilbert spa
e

H) that steers y0 to yT , provided that the system is observable and the time

horizon is long enough. For a more re
ent survey, see the arti
les by Zuazua

[54, 55℄.

Algorithms. There has also been signi�
ant development on the algo-

rithmi
 front: here, the goal is to dis
retize the in�nite-dimensional PDE


onstrained problem, e.g. using �nite element methods, in order to obtain a

�nite dimensional approximation, whi
h 
an then be solved numeri
ally. In

prin
iple, one 
an dis
retize the KKT formulation (3.16)�(3.18) and then use

standard optimization routines, su
h as line sear
h, trust region and interior

point methods to solve the �nite dimensional problem; however, one must be


areful to dis
retize the forward and adjoint problems 
onsistently to retain

optimality in the dis
rete setting, see [12℄. Using su
h routines allows one

to take advantage of advan
es in sparse matrix fa
torizations and pre
ondi-

tioners that have been developed for general saddle-point problems, see for

instan
e [3℄.

Shooting methods, or more pre
isely multiple shooting methods, were

originally developed for solving two-point boundary value problems [41, 32,

42℄. While the �nite element method has be
ome the method of 
hoi
e for

most boundary value problems (espe
ially of the ellipti
 type), multiple shoot-

ing remained a viable approa
h for optimal 
ontrol problems, sin
e they

are able to integrate systems that are highly unstable and very sensitive to


hanges in initial/�nal 
onditions, see the PhD thesis by Bo
k [6℄. More re-


ently, multiple shooting has been applied su

essfully to problems with PDE


onstraints, see for example [49℄, [29℄, [30℄, and the re
ent work by Ranna
her

et al. [17℄.

With the rapid in
rease in 
omputing power in the form of multi-
ore

pro
essors and parallel 
lusters, there is in
reasing interest in parallel algo-

rithms for solving PDE 
onstrained optimization and optimal 
ontrol prob-

lems. Methods su
h as domain de
omposition and multigrid, whi
h have been

developed and analyzed extensively for dis
retized PDE problems, are par-

ti
ularly suited for this purpose. For the use of domain de
omposition in

paraboli
 optimal 
ontrol problems, see Heinkens
hloss [29℄ and referen
es

therein.
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