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Abstract We consider the solution of −∇ · (ν(x)∇u) = 0 by a non-overlapping optimized
Schwarz domain decomposition method, where the subdomains do not align with jumps in
the coefficient ν(x). Such a decomposition can be of interest when the jumps are geometri-
cally complex and/or an artifact of the measured data, in which case one would often prefer
a simpler decomposition that disregards the location of the discontinuities. For analysis pur-
poses, we focus on a model problem where the diffusivity is piecewise constant, and we ana-
lyze the convergence of optimized Schwarz for the two-subdomain case. We consider using
either a constant Robin parameter along the whole interface, or a parameter that is scaled
proportionally to the local diffusivity. We show that the convergence rate is not robust with
respect to the heterogeneity ratio when a constant Robin parameter is used; however, using
a scaled Robin parameter restores robustness. We then derive optimal scaling parameter and
the corresponding convergence factor. Numerical examples show that this choice also leads
to robust convergence behaviour for cases not covered by the analysis.

Keywords domain decomposition methods · optimized Schwarz methods · heterogeneous
problems · discontinuous coefficients

Mathematics Subject Classification (2010) 65N55 · 65F10 · 65N22

1 Introduction

Optimized Schwarz methods (OSM) first gained interest among researchers three decades
ago, when Lions used Robin interface conditions to overcome the non-convergence of clas-
sical Schwarz methods when the subdomains do not overlap [20]. The method was then ex-
tended into a class of Schwarz methods called optimized Schwarz methods, where more gen-
eral transmission conditions are considered on the artificial interfaces. Optimized Schwarz
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methods have been analyzed for the diffusion equations, Helmholtz equations, convection-
diffusion equations, etc.; see [24, 25, 19, 12, 9] and references therein. More recently, the
methods have also been applied to nonlinear problems [4, 2, 3, 17], and optimized trans-
mission conditions have been used to design a nonlinear preconditioner for dealing with
problems with strong local nonlinearities [16].

The choice of Robin parameters in the optimized transmission conditions has a huge
impact on the speed of convergence of the algorithm. Indeed, much work has been devoted
to analyzing the optimal choice of parameters for specific model problems, see for instance
[12, 1, 7]. In this paper, we are particularly interested in elliptic problems of the form −∇ ·
(ν(x)∇u) = 0, where the diffusivity ν can be discontinuous and/or highly oscillatory. When
ν is piecewise constant, a natural idea is to align the subdomains with the discontinuity to
obtain a nonoverlapping domain decomposition; see the systematic analysis in [10, 26] for
the OSM applied to the diffusion problem. More generally, the authors of [15] analyzed the
case when the diffusivity consists of piecewise countinuous functions ν−α(x) and ν+α(x)
respectively, where α(x) ∈ L∞(Ω) is a continuous function bounded away from zero. See
also the analysis in [22, 23] for the diffusion equation and [14] for the advection-diffusion
equation.

We point out, however, that there are situations where it is impractical or impossible to
align the subdomains boundaries to discontinuities in the diffusivity. One example is in oil
reservoir simulation, where ν is often highly oscillatory and given by data that is piecewise
constant per control volume/element [5]. The discontinuities are thus numerous, geometri-
cally complex, and may not represent meaningful changes in solution behaviour. In these
problems, it seems more reasonable to ignore the discontinuities and use a geometrically
simpler decomposition, such as into strips or an orthogonal subdivision into M×N subdo-
mains. In these cases, it is natural to let Robin parameters to vary along the interface, in
order to adapt to jumps in the diffusivity within the subdomain.

For analysis purposes, we consider in this paper a diffusion problem with piecewise
constant diffusivity ν− and ν+ (where we assume without loss of generality that ν− < ν+).
To model subdomains that do not align with discontinuities in ν , we consider a decom-
position into two subdomains with an interface that is perpendicular to the discontinuity.
We then apply Robin transmission conditions to communicate subdomain errors. Note that
the convergence of optimized Schwarz methods, even with more general positive definite
transmission conditions, has been proved in the sense of H1-norm; see [6, 8] and references
therein. Moreover, it was proved in [21] that for two subdomains separated by an interface
with essentially arbitrary geometry, a Robin parameter choice of O(h−1/2) leads to a con-
traction factor of 1−O((H/h)−1/2). However, when the diffusivity ν(x) varies in space, the
constant hidden in the big-O notation generally depends on the heterogeneity ratio ν+/ν−.
In this paper, we will derive the convergence rate for two possible choices of the Robin pa-
rameter: 1) a uniform Robin parameter along the artificial interface, 2) a spatially varying
Robin parameter, scaled so that it is proportional to the diffusivity along the artificial inter-
face. We will show that the first choice is not robust with respect to the heterogeneity ratio
ν+/ν−, whereas with the second choice, one can achieve the classical contraction factor of
1−O((H/h)−1/2) with a hidden constant that is independent of the heterogeneity ratio.

The rest of this paper is organized as follows. We introduce the model problem and de-
rive the discrete formulation in Section 2. We then derive in Section 3 the convergence rates
of the zeroth order optimized Schwarz method with two different choices of Robin parame-
ters separately; we also provide asymptotic expressions for the optimal Robin parameter for
these two choices. In Section 4, we extend our analysis to three dimensions, where we will
see that the same asymptotic expressions as those derived in two dimensions hold in the 3D
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case. In Section 5, numerical examples show that the proposed scaled Robin parameter is
also robust for more general heterogeneous problems not covered by the theory. We finally
conclude our work in Section 6. A few useful lemmas involving Sobolev-type estimates are
included in Appendix A; these lemmas will be used in the analysis in Sections 3 and 4.

2 Model Problem for Convergence Analysis

2.1 Continuous and Finite Element Formulation

Let H > 0 and Ω = (−H,H)× (−H,H) be a domain in R2. In this paper, we consider the
following model problem {

−∇ · (ν(x)∇u) = f in Ω ,

u = g on Γ̄ = ∂Ω ,
(1)

where

ν(x) =

{
ν
− in (−H,H)× (0,H),

ν
+ in (−H,H)× (−H,0),

with ν+ > ν− > 0. We look at a decomposition of the physical domain into two non-
overlapping subdomains

Ω1 = (−H,0)× (−H,H), Ω2 = (0,H)× (−H,H).

In this way, the artificial interface is across the discontinuity of the diffusivity rather than
being aligned with it, which leads to subdomains with non-conforming heterogeneities.

Given a set of initial guesses u0
1 and u0

2 on Ω1 and Ω2 respectively, we solve (1) by the
zeroth order optimized Schwarz method:

−∇ · (ν(x)∇un+1
i ) = f in Ωi,

un+1
i = g on Γ̄ ,(

ν(x)
∂

∂ni
+ pi(x)

)
un+1

i =

(
ν(x)

∂

∂ni
+ pi(x)

)
un

3−i on Γ = Ω̄1∩ Ω̄2,

(2)

where ni is the unit outer normal vector on the artificial interface of Ωi, and pi(x) is the
Robin parameter for Ωi, allowed to vary along the artificial interface. Since the underlying
problem is linear, it suffices for us to consider the homogeneous case, i.e., f = 0 and g = 0,
and to look at the convergence of {un

i } to zero.

We now derive the formulation of the zeroth order optimized Schwarz method for (2) at
the discrete level. Using Green’s formula for the governing equation in (2), we have∫

Ωi

ν(x)∇un+1
i ·∇ψ dx−

∫
Γ

ν(x)
∂un+1

i
∂ni

ψ dΓ = 0, for all ψ ∈ H1(Ωi) such that ψ = 0 on Γ̄ .

Imposing the boundary condition, we obtain∫
Ωi

ν(x)∇un+1
i ·∇ψ dx+

∫
Γ

pi(x)un+1
i ψ dΓ =−

∫
Ω3−i

ν(x)∇un
3−i ·∇ψ dx+

∫
Γ

pi(x)un
3−iψ dΓ .

(3)
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Fig. 1 Centrosymmetric triangular mesh.

We use the P1 finite element method to discretize (3), obtaining

Ãν ,iun+1
i := (Aν ,i +hLi)un+1

i = Biun
3−i, i = 1,2, (4)

where Aν ,i is the stiffness matrix for the first term in (3), Li is assumed to be a diagonal
matrix with its entries being zero everywhere except for those corresponding to the nodes
on the artificial interface, due to the second integral in (3), and the matrix Bi assembled from
the right-hand side of (3) extracts Robin contributions from the neighbouring subdomain.
We note that the assumption for Li makes sense if the second integral in (3) is computed
numerically by a lumped integration, see [18, §7.3.2]. In [13], the authors showed that with
this lumped integration rather than the consistent one (the one with accurate integration),
optimized Schwarz methods achieve faster convergence. Once lumped integration is applied,
the non-zero entries of Li are exactly Robin parameters at the nodes on the artificial interface.
Let Ri be the restriction operator from the set of degrees of freedom in Ω to that in Ωi, and
let RT

i be the corresponding prolongation operator. Then we have the following concrete
expression of Bi:

Bi := hLiRiRT
3−i−RiRT

3−iAν ,3−i;

see also details in [11].

2.2 Symmetry Assumptions and Substructured Formulation

To facilitate analysis, we make some additional geometric assumptions on our model prob-
lem, so that the iteration (4) can be rewritten in a substructured form that simplifies in our
convergence analysis later. We assume that our problem is discretized using a centrosym-
metric triangular mesh; see possible choices in Figure 1. Since the mesh and the underlying
problem are symmetric with respect to y-axis, it is possible to order the local nodes in a
symmetric way so that

Aν = Aν ,1 = Aν ,2, L = L1 = L2.

Moreover, we can order the unknowns in un
1 and un

2 in order to separate the interior nodes
(nodes not on the y-axis) from the interface nodes (nodes on the y-axis), so that

un
i =

[
un

i,I
un

i,Γ

]
, i=1,2,
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and

Aν =

[
Aν ,II Aν ,IΓ
Aν ,Γ I Aν ,Γ Γ

]
, L =

[
0 0
0 L̂

]
,

where the subscripts I and Γ correspond to the interior and interface nodes, respectively, and
L̂ is a diagonal matrix with size equal to the number of interface degrees of freedom, and
whose entries correspond to Robin parameters at the interface nodes. Then the iteration (4)
can be written as[

Aν ,II Aν ,IΓ
Aν ,Γ I Aν ,Γ Γ +hL̂

][
un+1

i,I
un+1

i,Γ

]
=

[
0 0

−Aν ,Γ I −Aν ,Γ Γ +hL̂

][
un

3−i,I
un

3−i,Γ

]

Note that the first block row says

Aν ,IIun+1
i,I +Aν ,IΓ un+1

i,Γ = 0,

which is valid for n = 0,1,2, . . . and i = 1,2. Therefore, for n ≥ 1, we can eliminate the
interior degrees of freedom un

i,I and obtain

(hL̂+Sν)un+1
i,Γ = (hL̂−Sν)un

3−i,Γ ,

where Sν = Aν ,Γ Γ −Aν ,Γ IA−1
ν ,IIAν ,IΓ is the Schur complement. Thus, to study how un

i con-
verges to zero, it suffices to study the spectral radius of the matrix

Mν = (hL̂+Sν)
−1(hL̂−Sν). (5)

Assuming that the diagonal entries of L̂ are positive (so that L̂1/2 exists and is invertible),
we see that

ρ(Mν) = ρ

(
L̂−1/2Sν(hL̂+Sν)

−1L̂1/2L̂−1/2(hL̂−Sν)S−1
ν L̂1/2

)
= ρ

(
(hL̂1/2S−1

ν L̂1/2 + I)−1(hL̂1/2S−1
ν L̂1/2− I)

)
= ρ

(
(I−G)(I +G)−1

)
,

where G = hL̂1/2S−1
ν L̂1/2 is symmetric positive definite, and hence has positive eigenvalues.

We are now ready to state a first convergence result.

Theorem 1 Let the initial guesses u0
1 and u0

2 be given. The subdomain solutions un
i gener-

ated by the optimized Schwarz method (4) converge to zero provided that all the non-zero
entries of diagonal matrix L̂ are positive.

Proof Since Mν has the same spectral radius as (I−G)(I+G)−1, it suffices to show that the
eigenvalues of (I−G)(I +G)−1 are less than 1 in absolute value. We have seen that all the
eigenvalues of G are positive; let λi > 0 be the i-th largest eigenvalue of G, for i = 1,2, . . . ,n.
Then the i-th largest eigenvalue of (I−G)(I +G)−1, denoted by µi, is given by

µi =
1−λn+1−i

1+λn+1−i
;

since λn+1−i > 0, we must have |µi|< 1 for all i, so ρ(Mν)< 1.
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3 Optimization of Robin Parameters

In order to study the choice of Robin parameters along the interface, let us further classify
the interface nodes as follows:

1. interface nodes on the top half of Γ (indexed by the subscript ‘1’);
2. interface node at (0,0) (indexed by the subscript ‘∗’);
3. interface nodes on the bottom half of Γ (indexed by the subscript ‘2’).

Partitioning the matrix Sν correspondingly yields

Sν = Aν ,Γ Γ −Aν ,Γ IA−1
ν ,IIAν ,IΓ =

S11 S1∗ S12
S∗1 S∗∗ S∗2
S21 S2∗ S22

 .

3.1 Two Choices of L̂

We have proved the convergence of the discrete zeroth order optimized Schwarz method. In
this section, we will discuss two choices of L̂. Note that different choices lead to different
convergence rates.

One possible choice is that we use uniform Robin parameter everywhere along the arti-
ficial interface Γ , i.e., L̂ = pI. In that case, G = hpS−1

ν , so it is simply a scaled version of
the inverse of the Schur complement.

We now introduce another possible choice of L̂. In [10], authors proved that for prob-
lems with constant diffusivity, the optimal Robin parameter should be proportional to the
diffusion coefficient. For our model, we can observe that in each half of the physical domain
Ω , i.e., in the top half or in the bottom half of Ω , the diffusivity is constant. This observation
gives us an idea of choosing the Robin parameter to be proportional to the diffusivity, i.e.,

L̂ = pD := p

ν−I
ν∗

ν+I

 ,
where ν∗ is the Robin parameter for the node at the discontinuity and will be discussed later.

In both cases, our aim is to choose the parameter p to minimize the spectral radius of
(I−G)(I +G)−1, which means that we need to consider the min-max problem of the form

min
p

max
i

∣∣∣∣1−λi(G)

1+λi(G)

∣∣∣∣= min
p

max
i

∣∣∣∣∣1−hpλi(Z−1)

1+hpλi(Z−1)

∣∣∣∣∣ , (6)

where Z = Sν for L̂ = pI, and Z = D−1/2Sν D−1/2 for L̂ = pD.

Theorem 2 Let [βmin,βmax]⊂ (0,∞) be any interval containing the spectrum of Z. Then the
choice

p∗ =

√
βminβmax

h
(7)

leads to a convergence factor of

ρ(Mν)≤
1− (βmin/βmax)

1/2

1+(βmin/βmax)1/2 ≤ 1−
√

βmin/βmax. (8)
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Fig. 2 Determining the optimal parameter p for given eigenvalues βmin and βmax of the matrix Z.

Additionally, if βmin = λmin(Z) and βmax = λmax(Z), then the first inequality in (8) is tight,
and the choice (7) is the optimal one that solves the min-max problem (6).

Proof The argument is classical and similar to the one for determining the optimal param-
eter for Richardson iterations, see [27, Example 4.1]. The eigenvalues of (I−G)(I +G)−1

all lie between
1−hp/λmin(Z)
1+hp/λmin(Z)

≥ 1−hp/βmin

1+hp/βmin
and

1−hp/λmax(Z)
1+hp/λmax(Z)

≤ 1−hp/βmax

1+hp/βmax
. This

suggests that we choose p that minimizes max

{∣∣∣∣1−hp/βmin

1+hp/βmin

∣∣∣∣ , ∣∣∣∣1−hp/βmax

1+hp/βmax

∣∣∣∣
}
, i.e., when

−1−hp/βmin

1+hp/βmin
=

1−hp/βmax

1+hp/βmax
, (9)

see Figure 2. The solution p∗ of (9) satisfies
hp∗

βmin
· hp∗

βmax
= 1, so plugging this solution into

the maximum leads to the estimate (8). Moreover, if the interval [βmin,βmax] is tight, then
any other choice of p will lead to an increase in the maximum, so the choice in (7) is optimal
and solves the min-max problem (6), as required. ut

Theorem 2 implies that the smaller the condition number κ(Z) = λmax(Z)/λmin(Z) of Z,
the faster the Robin iteration converges to the exact solution. Therefore, if we can estimate
the condition number of Z for our two choices of L̂, i.e., for Z = Sν or Z = D−1/2Sν D−1/2,
we can deduce the speed of convergence of our Robin method. We now state the two main
results of this section.

Theorem 3 For the choice L̂ = pI with the Robin parameter satisfying

p = p∗1 = O

(√
ν−ν+

Hh

)
, (10)

the contraction factor of the method is bounded by

ρ (Mν)≤ 1−C

√
ν−h
ν+H

, (11)

where C > 0 is independent of the mesh parameter h, the size of the domain H, and the
diffusivities ν−, ν+.
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Theorem 4 For the choice L̂ = p ·diag(ν−I,ν∗,ν+I), let ν∗ be chosen such that ν−+ν+ <
C∗ν∗ for some constant C∗ independent of the mesh parameter h and the coefficients ν−, ν+.
Then choosing the optimal parameter p = p∗ν to have the asymptotic expression

p∗ν = O

(
1√
Hh

)
, (12)

leads to a contraction factor of the method that is bounded by

ρ (Mν)≤ 1−C

√
h
H
,

where C > 0 is independent of the mesh parameter h, the size of the domain H, and the
diffusivities ν−, ν+.

In other words, choosing the Robin parameters to be proportional to the diffusivity
makes the Robin method robust with respect to the contrast in coefficients, which is not
the case for a uniform Robin parameter. The remainder of the section is devoted to prov-
ing these two results, with the help of Sobolev-type estimates applied to discrete harmonic
extensions. A list of useful Sobolev estimates is given in Appendix A.

3.2 Spectral Analysis

Since our analysis will rely heavily on discrete harmonic extensions, we introduce here
various notations related to such extensions. Let Ω̂ ⊂R2 be a bounded region with boundary
Γ̂ := ∂Ω̂ . (Later on, Ω̂ will be part of the domain Ω , and Γ̂ will be the interface between
Ω̂ and the rest of the domain.) Consider the bilinear form defined on H1(Ω̂),

a(u,v) =
∫

Ω̂

a(x)∇u ·∇vdx,

where 0 < amin ≤ a(x) ∈ L∞(Ω̂). Let u and v be piecewise linear finite element functions
defined on Ω̂ , so that they can be represented by the vectors u and v of their degrees of
freedom at the nodes.1 Then a(u,v) = vT Âu, where

Â =

[
ÂII ÂIΓ̂
Â

Γ̂ I Â
Γ̂ Γ̂

]
is the stiffness matrix corresponding to a(·, ·), suitably partitioned to distinguish the bound-
ary nodes (those on Γ̂ ) from the interior ones (everything else).

Now let u
Γ̂

be the trace of a finite element function on Γ̂ , and u
Γ̂

be its associated vector.
Then a vector u = (uT

I ,u
T
Γ̂
)T is called the discrete a(x)-harmonic extension of u

Γ̂
into Ω̂ if

ÂIIuI + ÂIΓ̂ u
Γ̂
= 0.

Note that since ÂII is invertible, there is a unique discrete a(x)-harmonic extension for any
given u

Γ̂
, which we denote by Ha(uΓ̂

). The main tool that will be used repeatedly in our
analysis is the fact that discrete harmonic extensions has the smallest energy norm among
all finite element functions that have the same boundary trace u

Γ̂
:

1 In the rest of this paper, we will use normal letters, e.g., u, to denote finite element functions or their
traces on the boundary, and use bold letters, e.g., u, to denote the vector corresponding to u. We will often
switch between normal and bold letters.
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Fig. 3 Notations for different portions of the subdomain and the interface, in the continuous and discrete
settings.

Lemma 1 ([28], Lemma 4.9) Let u = Ha(uΓ̂
) be the discrete a(x)-harmonic extension of

u
Γ̂

. Let Ŝ := Â
Γ̂ Γ̂
− Â

Γ̂ IÂ
−1
II ÂIΓ̂ be the Schur complement of Â after eliminating the interior

nodes. Then
u = argmina(v,v) = argminvT Âv,

s.t. v ∈ P1, v|Γ = u
Γ̂
,

and
uT

Γ̂
Ŝu

Γ̂
= uT Âu.

Next, we return to the centro-symmetric model problem and introduce some notation related
to the geometry of the subdomains, see Figure 3.

1. The top half and the bottom half of Ω1 are denoted by Ω̃1 and Ω̃2, respectively. The
corresponding artificial interfaces are denoted by Γ1 = ∂Ω̃1 ∩Γ and Γ2 = ∂Ω̃2 ∩Γ ,
respectively. Denote γ∗ = ∂Ω̃1∩∂Ω̃2.

2. The nodes that lie on the top half of the artificial interface are plotted in red. The corre-
sponding set of interface nodes is denoted by Γ ′1 . The nodes that lie on the bottom half
of the artificial interface are plotted in blue. The corresponding set of interface nodes is
denoted by Γ ′2 . The node that lies in the middle is plotted in purple and is denoted by Γ∗.

Note that for our model, the iterates are always zero on the physical boundary. As long
as we are given a trace function uΓ on the artificial interface Γ , we know the whole trace
on ∂Ω1. Therefore, we will omit the nodes on ∂Ω1 \Γ and still use the notation Ha(uΓ )
to denote the discrete harmonic extension. The subscript a will change based on the inner
product considered.

3.2.1 Spectrum of Z−1 = Sν

First, consider the homogenous case a(x) = 1. The inner product becomes

a1(u,v) =
∫

Ω1

∇u ·∇vdx. (13)

Denote the stiffness matrix associated to the scalar product in (13) and the corresponding
Schur complement matrix by A1 and S1, respectively. Given a trace uΓ on Γ , we define
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u1 = H1(uΓ ) as the discrete 1-harmonic extension of uΓ associated with the inner product
defined in (13). Then by Lemma 1 we know that

u1 = argmina1(u,u) = argminuT A1u,
s.t. u ∈ P1, u|Γ = uΓ ,

and
uT

Γ S1uΓ = uT
1 A1u1.

Next, consider our model a(x) = ν(x), where ν is piecewise constant on each of Ω̃1 and
Ω̃2. The inner product becomes

aν(u,u) =
∫

Ω1

ν(x)∇u ·∇udx = ν
−
∫

Ω̃1

∇u ·∇udx+ν
+
∫

Ω̃2

∇u ·∇udx. (14)

Note that ν−a1(u,u)≤ aν(u,u)≤ ν+a1(u,u) for any P1 function u. Similarly to the above,
we denote the stiffness matrix to (14) and the corresponding Schur complement matrix by
Aν and Sν , respectively. By the same reasoning as above, for any trace function uΓ on the
interface, the discrete ν-harmonic extension uν = Hν(uΓ ) satisfies

uν = argminaν(u,u) = argminuT Aν u,
s.t. u ∈ P1, u|Γ = uΓ ,

(15)

and
uT

Γ Sν uΓ = uT
ν Aν uν .

We are ready to show our first main result.

Theorem 5 Let uΓ be the trace of a finite element function on Γ , and let uΓ be the vector
corresponding to uΓ . Then their exist constants c and C, independent of h and H, such that

cν
−hH−1uT

Γ uΓ ≤ uT
Γ Sν uΓ ≤Cν

+uT
Γ uΓ , (16)

where h is the diameter of the element, and H is the diameter of Ωi. Thus, there exists a
constant C′ independent of h, H, ν− and ν+ such that

κ(Sν)<C′
ν+H
ν−h

. (17)

Proof Let u1 = H1(uΓ ) be the discrete 1-harmonic extension of uΓ into Ω1, and let uν =
Hν(uΓ ) be the discrete ν-harmonic extension of uΓ into Ω1. For any vector uΓ , since
u1|Γ = uν |Γ = uΓ , we have by the energy minimization property

uT
Γ Sν uΓ = uT

ν Aν uν = aν(uν ,uν)≤ aν(u1,u1)≤ ν
+a1(u1,u1) = ν

+uT
1 A1u1 = ν

+uT
Γ S1uΓ ,

and

uT
Γ Sν uΓ =uT

ν Aν uν = aν(uν ,uν)≥ ν
−a1(uν ,uν)≥ ν

−a1(u1,u1)= ν
−uT

1 A1u1 = ν
−uT

Γ S1uΓ .

Combining both inequalities, we have ν−uT
Γ

S1uΓ ≤ uT
Γ

Sν uΓ ≤ ν+uT
Γ

S1uΓ . Using Lemma
5, we estimate the terms involving S1 to obtain

c1H−1
ν
−‖u‖2

Γ
≤ uT

Γ Sν uΓ ≤C1ν
+h−1‖u‖2

Γ
, (18)
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for some constants c1 and C1, independent of h, H, ν− and ν+. Then by Lemma 3 on the
equivalence of the discrete and continuous L2 norms, we have

cν
−hH−1uT

Γ uΓ ≤ uT
Γ Sν uΓ ≤Cν

+uT
Γ uΓ ,

where we have substituted n = 2 in the Lemma for our two-dimensional case. Therefore,
there exists a constant C′ =C/c, independent of h, H, ν− and ν+, such that

κ(Sν)<C′
ν+H
ν−h

.

ut

The above result leads to an estimate on the eigenvalues of Sν , which in turn allows us
to prove the convergence rate of the Robin iteration stated in Theorem 3.

Proof (Theorem 3) By Theorem 5, the spectrum of Z = Sν lies within [β1,min,β1,max], where

β1,min = cν
−hH−1 and β1,max =Cν

+.

Hence Theorem 2 suggests choosing the parameter

p = p∗1 =
1
h

√
cν−hH−1 ·Cν+ = O

(√
ν−ν+

Hh

)
.

This choice leads to the condition number of Z = Sν being bounded by κ(Sν) ≤ C′ν+H
ν−h , so

Theorem 2 implies that the asymptotic expression of the convergence factor satisfies

ρ (Mν)≤ 1−
√

ν−h
C′ν+H

.

ut

3.2.2 Spectrum of Z−1 = D−1/2Sν D−1/2

We now analyze the spectrum of Z−1 = D−1/2Sν D−1/2 in order to deduce the convergence
of the method for the case of spatially-varying Robin parameters. To do so, we need to
provide upper and lower bounds for the quantity uT

Γ
D−1/2Sν D−1/2uΓ for any given trace

uΓ . For analysis purposes, we will define the scaled trace wΓ := D−1/2uΓ , as well as the
discrete ν-harmonic extension of wΓ into Ω1, which satisfies

wν = argminaν(w,w) = argminwT Aν w,
s.t. w ∈ P1, w|Γ = wΓ .

(19)

Here, wΓ is the trace of the finite element function corresponding to wΓ . With these defini-
tions, we see that

uT
Γ D−1/2Sν D−1/2uΓ = wΓ Sν wΓ = aν(wν ,wν) = wν Aν wν .

Before we prove our second main result, we first show how the matrices A1 and Aν are
related. Let us rewrite A1 in block form as:

A1 =

A11 A1γ 0
Aγ1 Aγγ Aγ2
0 A2γ A22

 , (20)

where the subscripts 1, γ and 2 correspond to the nodes above, on and below the x-axis,
respectively. For Aν with the same ordering, we have the following lemma.
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Lemma 2 Assume that the triangular mesh is centrosymmetric; see examples in Figure 1.
Then the block structure representation of the stiffness matrix Aν is

Aν =

Aν ,11 Aν ,1γ 0
Aν ,γ1 Aν ,γγ Aν ,γ2

0 Aν ,2γ Aν ,22

=

ν−A11 ν−A1γ 0
ν−Aγ1

ν−+ν+

2 Aγγ ν+Aγ2
0 ν+A2γ ν+A22

 . (21)

Proof Since the diffusion coefficient is ν− in Ω̃1 and is ν+ in Ω̃2, the expressions for all
sub-blocks except Aν ,γγ are obvious. For the sub-block Aν ,γγ , we can split it into Aν ,γγ =
Aν ,γγ1 +Aν ,γγ2, where Aν ,γγ1 and Aν ,γγ2 are partially assembled stiffness matrices in Ω̃1 and
Ω̃2, respectively. Then we can easily see that Aν ,γγ1 = ν−Aγγ1 and Aν ,γγ2 = ν+Aγγ2, where
we have used a similar splitting for Aγγ . If the mesh is centrosymmetric, we will immediately
have Aν ,γγ =

ν−+ν+

2 Aγγ . ut

Now we are ready to present our second main result.

Theorem 6 Let ν∗ satisfy ν−+ ν+ < C∗ν∗ for some constant C∗, independent of ν− and
ν+. Then there exist constants c and C, independent of h, H, ν− and ν+, such that

chH−1uT
Γ uΓ ≤ uT

Γ D−1/2Sν D−1/2uΓ ≤CuT
Γ uΓ . (22)

Consequently, there exists a constant C′ independent of h, H, ν− and ν+ such that

κ(D−1/2Sν D−1/2)<
C′H

h
. (23)

Proof We first derive the lower bound. To do so, we first split the term uT
Γ

uΓ into a sum
of two traces from the upper and lower parts of the interface. Using the definition of the
ν-harmonic extension wν = Hν(wΓ ), we obtain

uT
Γ uΓ = uT

Γ ′1
uΓ ′1

+uT
Γ2

uΓ2 ≤ c1
ν−

h
‖wν‖2

L2(Γ1)
+ c′1

ν+

h
‖wν‖2

L2(Γ2)
(24)

where the conversion from the discrete `2 norm to the continuous L2 norm uses Lemma 3,
with constants c1 and c′1 independent of h, H, ν− and ν+. For the first term on the right hand
side of (24), we have

c1
ν−

h
‖wν‖2

L2(Γ1)
≤ c1

ν−

h

(
‖wν‖2

L2(Γ1)
+‖wν‖2

L2(γ∗)

)
= c1

ν−

h
‖wν‖2

L2(∂Ω̃1)
. (25)

Since wν vanishes on the physical boundary, then by Lemma 8 and Lemma 6, we know that
there exist constants c2 and c3, independent of h, H, ν− and ν+, such that

c1
ν−

h
‖wν‖2

L2(∂Ω̃1)
≤ c1c2

Hν−

h
|wν |2H1/2(∂Ω̃1)

≤ c1c2c3
Hν−

h
|wν |2H1(Ω̃1)

. (26)

Similarly for the second term, we have

c′1
ν+

h
‖wν‖2

L2(∂Ω̃2)
≤ c′1c′2

Hν+

h
|wν |2H1/2(∂Ω̃2))

≤ c′1c′2c′3
Hν+

h
|wν |2H1(Ω̃2)

, (27)

for some constants c′1, c′2 and c′3, independent of h, H, ν− and ν+. Combining (24) and (27),
we have

uT
Γ uΓ ≤max{c1c2c3,c′1c′2c′3}

H
h

wT
ν Aν wν . (28)
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Finally, letting C = max{c1c2c3,c′1c′2c′3} and using the fact that wν is the ν-harmonic exten-
sion of wΓ , we conclude that

CH
h

wT
ν Aν wν =

CH
h

wT
Γ Sν wΓ =

CH
h

uT
Γ D−1/2Sν D−1/2uΓ . (29)

Therefore, there exists a constant c = 1/C, independent of h, H, ν− and ν+, such that

chH−1uT
Γ uΓ ≤ uT

Γ D−1/2Sν D−1/2uΓ . (30)

We now derive the upper bound. Using the energy minimization property of harmonic ex-
tensions, we see that for any finite element function u with u|Γ = uΓ , we have

uT
Γ D−1/2Sν D−1/2uΓ ≤ uT D̃−1/2Aν D̃−1/2u, (31)

where

D̃ =

ν−I
ν∗I

ν+I


is a diagonal matrix having the same size and block structures as A1 and Aν , but with zero
off-diagonal blocks. The matrix D̃−1/2Aν D̃−1/2 can be computed as follows.

D̃−1/2Aν D̃−1/2 =


1√
ν−

I
1√
ν∗

I
1√
ν+

I

Aν


1√
ν−

I
1√
ν∗

I
1√
ν+

I



=


A11

√
ν−
ν∗ A1γ√

ν−
ν∗ Aγ1

ν−+ν+

2ν∗ Aγγ

√
ν+

ν∗ Aγ2√
ν+

ν∗ A2γ A22

 .
The remaining work is to construct an appropriate vector u that agrees with uΓ on the in-

terface, so that there is a constant C independent of h, H, ν− and ν+ for which the inequality
uT D̃−1/2Aν D̃−1/2u≤CuT u holds. Concretely, we construct the vector u as follows.

1. Let u1 = Hν−((uT
Γ ′1
,0T

γ∗)
T ) be the discrete ν−-harmonic extension of (uT

Γ ′1
,0T

γ∗)
T into

Ω̃1, associated with the inner product aν−(u,v) = ν−
∫

Ω̃1
∇u ·∇vdx.

2. Let u2 = Hν+((uT
Γ ′2
,0T

γ∗)
T ) be the discrete ν+-harmonic extension of (uT

Γ ′2
,0T

γ∗)
T into

Ω̃2, associated with the inner product aν+(u,v) = ν+
∫

Ω̃2
∇u ·∇vdx.

3. Let u∗ be zero extension of u∗φ∗ into Ω1, where u∗ = uΓ |Γ∗ is the function value of uΓ

at the node Γ∗, and φ∗ is the basis function at the node Γ∗.

The vector u is then constructed to be u = RT
1 u1 +RT

2 u2 + u∗, where RT
1 is the extension

matrix from Ω̃1 to Ω1, and RT
2 is the extension matrix from Ω̃2 to Ω1. Then for any vector

norm ‖ · ‖, the triangle and Cauchy-Schwarz inequalities give

‖u‖2 ≤
(
‖RT

1 u1‖+‖RT
2 u2‖+‖u∗‖

)2
≤ 3

(
‖RT

1 u1‖2 +‖RT
2 u2‖2 +‖u∗‖2

)
. (32)
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We now use the fact that D̃−1/2Aν D̃−1/2 is symmetric positive definite, so that the mapping
v 7→ vT D̃−1/2Aν D̃−1/2v defines a norm; therefore, (32) becomes

uT D̃−1/2Aν D̃−1/2u ≤ 3
(

uT
1 R1D̃−1/2Aν D̃−1/2RT

1 u1

+ uT
2 R2D̃−1/2Aν D̃−1/2RT

2 u2 +uT
∗ D̃−1/2Aν D̃−1/2u∗

)
≤ 3

(
uT

1 A11u1 +uT
2 A22u2 +

ν−+ν+

2ν∗
u2
∗Aγγ

)

≤ 3

(
|u1|2H1(Ω̃1)

+|u2|2H1(Ω̃2)
+

ν−+ν+

2ν∗
u2
∗|φ∗|2H1(Ω1)

)
.

By Lemma 6, Lemma 7 and Lemma 3, we know that

1. there exist constants C1, C2 and C3, independent of h, H, ν− and ν+, such that

|u1|2H1(Ω̃1)
≤C1|u1|2H1/2(∂Ω̃1)

≤ C1C2

h
‖u1‖2

L2(Γ ′1 )
≤C1C2C3uT

Γ ′1
uΓ ′1

. (33)

2. there exist constants C′1, C′2 and C′3, independent of h, H, ν− and ν+, such that

|u2|2H1(Ω̃2)
≤C′1|u2|2H1/2(∂Ω̃2)

≤ C′1C′2
h
‖u2‖2

L2(Γ ′2 )
≤C′1C′2C′3uT

Γ ′2
uΓ ′2

. (34)

3. By direct calculation, we see that |φ∗|2H1(Ω1)
≤C′′1 for some constant C′′1 independent of

h and H.

Combining (31), (33), (34) and the condition for ν∗, we conclude that there exists a constant
C, independent of h, H, ν− and ν+, such that

uT
Γ D−1/2Sν D−1/2uΓ ≤CuT

Γ uΓ . (35)

This proves the upper bound in (22). The proof of the theorem is therefore completed
by noting that the condition number estimate (23) follows immediately from (22). ut

Remark 1 We observe from the proof that the lower bound in (22) is actually independent
of the choice of ν∗. However, the upper bound does depend on ν∗, so the overall condition
number depends on ν∗. This phenomenon can also be observed from the numerical experi-
ments in Table 1 in Section 5.

Proof (Theorem 4) By Theorem 6, the eigenvalues of Z−1 = D−1/2Sν D−1/2 are contained
in the interval [βν ,min,βν ,max], with

βν ,min = O(h/H) and βν ,max = O(1),

respectively. By Theorem 2, we deduce that if we choose the optimal parameter p to follow
the asymptotic expression

p = p∗ν =

√
βν ,minβν ,max

h
= O

(
1√
Hh

)
,

then the convergence factor is bounded by

ρ(Mν)≤ 1−
√

βν ,min/βν ,max = 1−C(h/H)1/2,

where C is some constant independent of h,H,ν− and ν+, as required. ut
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Remark 2 Theorem 6 indicates that if the Robin parameters are scaled along the artificial
interface provided that ν− + ν+ < C∗ν∗ for some constant C∗, independent of h, H, ν−

and ν+, then the convergence rate of the discrete zeroth order optimized Schwarz method
is independent of the diffusivity. Therefore, we can expect the algorithm to have the same
convergence rate as for the constant-coefficient Laplacian. Without this scaling, i.e., if the
Robin parameters were the same everywhere, the convergence rate would deteriorate as the
heterogeneity ratio ν+/ν− increases.

Moreover, Theorem 6 also indicates that the optimal parameter p∗ν is independent of the
heterogeneity, which is of importance in the numerical study. In practice, it is easier for us
to find the best parameter p∗ν on the scale of 1/

√
Hh. However, if we use the uniform Robin

parameter everywhere, we may have to find the optimal Robin parameter on an extremely
small or large scale since p∗1 = O(

√
ν−ν+) p∗ν .

4 Analysis for Three Dimensional Problems

Consider the problem {
−∇ · (ν∇u) = 0 in Ω ,

u = g on Γ̄ = ∂Ω ,

where H > 0, Ω = (−H,H)×(−H,H)×(−H,H) is decomposed into two non-overlapping
subdomains

Ω1 = (−H,0)× (−H,H)× (−H,H), Ω2 = (0,H)× (−H,H)× (−H,H),

and

ν =

{
ν
− in (−H,H)× (−H,H)× (0,H),

ν
+ in (−H,H)× (−H,H)× (−H,0).

Without loss of generality, we still assume that ν+ > ν− > 0.
The analysis for three dimensional problems is similar to that for two dimensional prob-

lems, thus we still use A1 and Aν to denote the stiffness matrices, L to denote the diagonal
matrix containing the Robin parameters, and S1, Sν to denote Schur complement matrices
after eliminating the interior nodes. The difference is that the matrix Ãν is now defined by
Ãν = Aν +h2L, since the artificial interface is now a surface. If we mimic the derivation in
two dimensions, we obtain

ρ(Mν) = ρ

(
(I−G)(I +G)−1

)
,

where G = h2L̂1/2S−1
ν L̂1/2 and L̂ is a positive diagonal matrix. The convergence of the op-

timized Schwarz method is still guaranteed, so we focus on the two possible choices of the
diagonal matrix L̂:

(i) L̂ = pI,
(ii) L̂ = pD = p ·diag(ν−In1 ,ν

∗In∗ ,ν
+In2) with appropriate sizes n1, n2 and n∗.

Here we use similar notations to those introduced in Section 3.1, see Figure 4. The difference
is that in three dimensions, Γ∗ is a line segment from (0,−H,0) to (0,H,0) rather than being
a node. Since the matrix G depends on h2 rather than h, the statement analogous to Theorem
2 is as follows:
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Fig. 4 Notation for different portions of the subdomain and interface for the 3D problem.

Theorem 7 Let Z be a symmetric positive definite matrix whose eigenvalues are contained
in the interval [βmin,βmax]⊂ (0,∞). Then for G = h2 pZ−1, the choice

p = p∗ =

√
βminβmax

h2 (36)

leads to the convergence factor

ρ(Mν)≤ 1− 1− (βmin/βmax)
1/2

1+(βmin/βmax)1/2 ≤ 1−
√

βmin/βmax, (37)

where Mν = (I−G)(I +G)−1 is the iteration matrix.

Note that the above theorem does not mean that the Robin parameters have a different
scaling in the 3D case, since the bounds βmin and βmax on the Schur complement spectrum
will also have a different scaling as a function of h. In fact, the next theorem shows that for
the choice L̂ = pI, i.e., the same Robin parameter everywhere, then the optimal parameter
has exactly the same scaling as in the 2D case:

Theorem 8 For the 3D problem (4) with uniform Robin parameter L̂ = pI, the choice

p = p∗1 = O

(√
ν−ν+

Hh

)
leads to the convergence factor

ρ (Mν)≤ 1−C

(√
ν−h
ν+H

)

for some constant C > 0 independent of h, H, ν− and ν+.

Proof By an argument that is essentially identical to the one in Theorem 5, we obtain the
spectral estimate

cν
−h2H−1uT

Γ uΓ ≤ uT
Γ Sν uΓ ≤Chν

+uT
Γ uΓ , (38)

where the only difference with (16) is the scaling in h, due to the problem now being posed
in 3D. Hence, the matrix Z = S−1

ν has eigenvalues lying inside the interval [β1,min,β1,max],
where

β1,min = O(ν−h2H−1) and β1,max = O(ν+h),



Optimized Schwarz for non-conforming heterogeneities 17

so Theorem 7 says we should choose

p∗1 =

√
β1,minβ1,max

h2 = O

(√
ν−ν+

Hh

)
.

The estimate for the convergence rate now follows from (37). ut

Our second main result in three dimensions deals with the case of the scaled Robin
parameter L̂ = pD = p · diag(ν−In1 ,ν

∗In∗ ,ν
+In2). Recall that the variables corresponding

to ν∗ is no longer a single node, but a line separating the upper and the lower parts of the
interface, see Figure 4.

Theorem 9 Let ν∗ satisfy ν−+ ν+ < C∗ν∗ for some constant C∗, independent of ν− and
ν+. Then there exist constants c and C, independent of h, H, ν− and ν+, such that

ch2H−1uT
Γ uΓ ≤ uT

Γ D−1/2Sν D−1/2uΓ ≤ChuT
Γ uΓ . (39)

Consequently, there exists a constant C′, independent of h, H, ν− and ν+, such that

κ(D−1/2Sν D−1/2)<
C′H

h
. (40)

Proof Since ch2uT
Γ

uΓ ≤ ‖uΓ ‖2
L2(Γ )

≤ Ch2uT
Γ

uΓ (see Lemma 3), we can derive the lower
bound by mimicking Theorem 6.

For the upper bound, let u1 = Hν−((uT
Γ ′1
,0T

γ∗)
T ) be the discrete ν−-harmonic extension

of (uT
Γ ′1
,0T

γ∗)
T into Ω̃1, let u2 = Hν+((uT

Γ ′2
,0T

γ∗)
T ) be the discrete ν+-harmonic extension of

(uT
Γ ′2
,0T

γ∗)
T into Ω̃2, and let u∗ be the zero extension of ∑x∗∈Γ∗ u∗(x∗)φ∗(x∗) into Ω1, where

x∗ is a node on Γ∗, u∗(x∗) = uΓ |x∗ and φ∗(x∗) is the basis function at x∗. We construct
u = RT

1 u1 +RT
2 u2 + u∗, where RT

1 is the extension matrix from Ω̃1 to Ω1, and RT
2 is the

extension matrix from Ω̃2 to Ω1. Then we have

uT
Γ D−1/2Sν D−1/2uΓ ≤ uT D̃−1/2Aν D̃−1/2u

≤ 3
(
|u1|2H1(Ω̃1)

+|u2|2H1(Ω̃2)
+

1
2

C∗uT
∗ Aγγ u∗

)
≤C1|u1|2H1/2(∂Ω̃1)

+C′1|u2|2H1/2(∂Ω̃2)
+

3
2

C∗uT
∗ Aγγ u∗

≤ C1C2

h
‖u1‖2

L2(Γ1)
+

C′1C′2
h
‖u2‖2

L2(Γ2)
+

3
2

C∗uT
∗ Aγγ u∗

≤C1C2C3huT
1 u1 +C′1C′2C′3huT

2 u2 +
3
2

C∗uT
∗ Aγγ u∗,

(41)

where we have mimicked Theorem 6 for the second inequality, and we have used Lemma 6,
Lemma 7 and Lemma 3 at the third, the fourth and the fifth inequality, respectively.

We now estimate the term uT
∗ Aγγ u∗ as follows. Since all the nodes on Γ∗ lie on a line,

we can order them contiguously as x1, . . . ,xN , so that xi and x j are neighbours whenever
|i− j|= 1. By doing so, we see that for any non-neighbouring nodes i and j, the supports of
their nodal basis functions do not overlap, so we have

a1(φi,φ j) =
∫

Ω1

∇φi ·∇φ j dx = 0 whenever|i− j| ≥ 2.
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For |i− j| ≤ 1, we have by direct calculation a1(φi,φ j)≤C′′1 h. Therefore, defining for nota-
tional convenience the two ghost values u∗(x0) = u∗(xN+1) = 0, we have

u′T∗ Aγγ u′∗ =
N

∑
i=1

N

∑
j=1

a(φi,φ j)u∗(xi)u∗(x j)

≤C′′1 h
N

∑
i=1

(∣∣u∗(xi−1)
∣∣∣∣u∗(xi)

∣∣+∣∣u∗(xi)
∣∣2 +∣∣u∗(xi)

∣∣∣∣u∗(xi+1)
∣∣)

≤ 3C′′1 h
N

∑
i=1

∣∣u∗(xi)
∣∣2

= 3C′′1 hu′T∗ u′∗.

(42)

Combining (41) and (42), we have for some constant C, independent of h, H, ν− and ν+

such that
uT

Γ D−1/2Sν D−1/2uΓ ≤ChuT
Γ uΓ .

Now we have proved (39), from which we obtain (40). ut

The above theorem implies that the matrix Z = D−1/2Sν D−1/2 has eigenvalues within the
interval [ch2H−1,Ch]. Theorem 7 can now be used to determine the optimal parameter p
and the resulting convergence rate.

Theorem 10 Consider the 3D problem (4) with the scaled Robin parameters

L̂ = p ·diag(ν−In1 ,ν
∗In∗ ,ν

+In2),

where n1, n2 and n∗ are the number of degrees of freedom in Γ ′1 , Γ ′2 and Γ∗ respectively, see
Figure 4. Then the choice

p = p∗ν = O

(
1√
Hh

)
(43)

leads to the convergence factor

ρ (Mν)≤ 1−C

√
h
H
, (44)

with the constant C independent of h, H, ν− and ν+.

5 Numerical Experiments

In this section, we will illustrate our theoretical results by applying the optimized Schwarz
method to some numerical examples. In particular, we will also consider examples where
the analysis assumptions do not hold, in order to see whether our recommended Robin pa-
rameters would make a good heuristic choice in more general cases. We will show numerical
results for the optimized Schwarz method both when used as a stationary method, and when
used as a preconditioner for GMRES.

For each test below, we generate a random initial guess between −1 and 1 so that the
initial error contains as many frequencies as possible. We discretize the problem using the
P1 finite element method and solve the resulting system with a tolerance TOL < 10−6 for
both stationary iteration and GMRES method.
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Test 1: Model Problem

In the first set of tests, we consider our model problem−∇ · (ν∇u) = 0 in Ω = (−π

2
,

π

2
)× (−π

2
,

π

2
),

u = 0 on ∂Ω ,
(45)

where

ν =


ν1 in (−π

2
,

π

2
)× (0,

π

2
),

ν2 in (−π

2
,

π

2
)× (−π

2
,0).

The domain is decomposed into two nonoverlapping subdomains Ω1 = (−π

2
,0)×(−π

2
,

π

2
)

and Ω2 = (0,
π

2
)× (−π

2
,

π

2
).

First of all, we look at the eigenvalues of the Schur complement matrix Sν with ν1 = 1
and H = π . We discretize the problem by the P1 finite element method and construct Sν

and D−1/2Sν D−1/2 by eliminating the interior nodes. We report the minimum and maxi-
mum eigenvalues in Table 1. We can observe that the numerical results match the theory,
especially in the following aspects:

1. For the smallest and the largest eigenvalues of Sν , i.e., β1,min and β1,max, we have
β1,min = O(h) and β1,max = O(ν2). Numerical results match both estimates well since
we can see that for a fixed heterogeneity ratio, the smallest eigenvalue β1,min decreases
linearly as we refine the mesh, while the largest eigenvalue β1,max is independent of
the mesh size; for a fixed mesh size, the largest eigenvalues increase as we enlarge the
heterogeneity ratio.

2. For the smallest and largest eigenvalues of D−1/2Sν D−1/2, i.e., βν ,min and βν ,max, we
have βν ,min = O(h) and βν ,max = O(1), provided ν1 +ν2 <C∗ν∗ for some constant C∗
independent of ν1 and ν2. To choose such ν∗, intuitively we have two choices: ν∗ =
ν1+ν2

2 or ν∗ = ν2. We report the results for both two choices. We can observe from the
table that the preconditioners are very robust as long as ν∗ is chosen to be one of these
two numbers, and the corresponding numerical results perfectly match the theory. We
also list the results when ν∗ = ν1. In that case, the condition for ν∗ is not satisfied. As a
result, the robustness of this preconditioner is deteriorated.

Next, we show the convergence results of OSM applied to the model problem. We refer
to (10) to find the best Robin parameter when it is uniform along the artificial interface, and
to (12) to find the scaled parameter.

Recall that we have two ways of computing the integral along the interface in the weak
form (3). One way is to use the lumped numerical integration, from which we can obtain
the diagonal matrix discussed in this paper. The other way is to use consistent integration
(i.e., exact integration), which yields a tri-diagonal matrix. We test (45) by OSM with the
scaled Robin parameter, with or without lumped integration along the interface, and report
the results in Table 2. We can observe that OSM with the lumped integration converges
faster than that without lumped integration. This is consistent with the discussion in [13]. In
the remaining tests, we will use the lumped integration.

In Table 3, we report the linear iteration counts needed by OSM with and without Krylov
acceleration for (45). For each mesh size, we also compare the results of OSM with the
scaled Robin parameter and with the uniform one. We can see that the results for the scaled
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Table 1 The smallest and the largest eigenvalues of Sν and D−1/2Sν D−1/2 with different mesh sizes, ν∗ and
heterogeneity ratios.

h ν1/ν2 β1,min β1,max ν∗ βν ,min βν ,max

π

20

1/10 0.2735 2.7881e+01
ν1 0.1671 9.5691

(ν1 +ν2)/2 0.1560 2.8176
ν2 0.1441 2.7885

1/100 0.2872 2.7879e+02
ν1 0.1691 8.3267e+01

(ν1 +ν2)/2 0.1560 2.8176
ν2 0.1416 2.7879

1/1000 0.2885 2.7879e+03
ν1 0.1693 8.2076e+02

(ν1 +ν2)/2 0.1560 2.8176
ν2 0.1414 2.7879

π

40

1/10 0.1425 2.8170e+01
ν1 0.0847 9.5633

(ν1 +ν2)/2 0.0816 2.8255
ν2 0.0783 2.8170

1/100 0.1497 2.8169e+02
ν1 0.0852 8.3187e+01

(ν1 +ν2)/2 0.0816 2.8255
ν2 0.0776 2.8169

1/1000 0.1504 2.8169e+03
ν1 0.0853 8.1994e+02

(ν1 +ν2)/2 0.0816 2.8255
ν2 0.0776 2.8169

π

80

1/10 0.0729 2.8254e+01
ν1 0.0426 9.5617

(ν1 +ν2)/2 0.0418 2.8276
ν2 0.0409 2.8254

1/100 0.0766 2.8254e+02
ν1 0.0427 8.3165e+01

(ν1 +ν2)/2 0.0418 2.8276
ν2 0.0407 2.8254

1/1000 0.0769 2.8254e+03
ν1 0.0428 8.1971e+02

(ν1 +ν2)/2 0.0418 2.8276
ν2 0.0407 2.8254

Table 2 The number of linear iterations needed by OSM with the scaled Robin parameter for the model
problem.

Optimized Schwarz method as an iterative method

h With Lumping
ν1/ν2 1/10 1/100 1/1000 1/10000

π

20
No 39 69 73 74
Yes 31 31 31 31

π

40
No 51 52 63 64
Yes 44 44 44 44

π

80
No 65 81 82 82
Yes 63 63 63 63

Robin parameter are better than those for the uniform Robin parameter. In addition, the
number of linear iterations remains unchanged as we increase the heterogeneity ratio when
we use the scaled Robin parameter. In contrast, the iteration count grows proportionally
to the square root of the heterogeneity ratio when we use the uniform Robin parameter,
thereby illustrating the deterioration of the convergence factor. When a Krylov method is
applied, we can observe great improvements in terms of the number of linear iterations
needed by two versions. But we can still see that the results for the scaled Robin parameter
outperforms those for the uniform one. Besides, we observe that the linear iteration counts
needed by Krylov accelerated OSM with the scaled Robin parameter remains approximately
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Table 3 The number of linear iterations needed by OSM with the scaled or the uniform Robin parameters
for the model problem.

Optimized Schwarz method as an iterative method

OSM Version H/h
ν1/ν2 1/10 1/100 1/1000 1/10000

uniform p
20 71 225 713 2256
40 105 334 1059 3348
80 147 464 1470 4648

scaled p
20 31 31 31 31
40 44 44 44 44
80 63 63 63 63

Optimized Schwarz method with Krylov acceleration

uniform p
20 22 30 31 31
40 28 40 47 48
80 34 52 65 66

scaled p
20 14 15 15 15
40 18 18 18 18
80 22 22 22 22

unchanged when the heterogeneity ratio increases, whereas the number needed by Krylov
accelerated OSM with the uniform Robin parameter grows with the heterogeneity ratio.

Test 2: Problem with Multiple Diffusivity Regions

In the second set of tests, we consider the problem−∇ · (ν∇u) = 0 in Ω = (−π

2
,

π

2
)× (−π

2
,

π

2
),

u = 0 on ∂Ω ,
(46)

where we now increase the number of discontinuities:

ν =



ν1 in (−π

2
,

π

2
)× (

π

4
,

π

2
),

ν2 in (−π

2
,

π

2
)× (0,

π

4
),

ν3 in (−π

2
,

π

2
)× (−π

4
,0),

ν4 in (−π

2
,

π

2
)× (−π

2
,−π

4
).

In this set of tests, we let ν1 = 1, ν2 = 10, ν3 = 1000 and ν4 = 50. In comparison test,
we change the order of the diffusivity, letting ν1 = 1, ν2 = 1000, ν3 = 50 and ν4 = 10.
Moreover, we will decompose the domain Ω into either N = 2 and N = 4 subdomains
consisting of vertical strips of equal width. In other words, we have Ωi = Ii× (−π/2,π/2)
with I1 = (−π/2,0), I2 = (0,π/2) for N = 2, and I1 = (−π/2,−π/4), I2 = (−π/4,0), etc.
for N = 4.

We can see in Table 4 that results for the scaled Robin parameter always outperforms
those for the uniform one, requiring much fewer linear iterations to converge. Besides, we
can observe for both N = 2 and N = 4 that the convergence of OSM with the scaled Robin
parameter is independent of the heterogeneity ratio, whereas the convergence of the uni-
form one depends on the smallest and the largest diffusion coefficients, no matter how these
coefficients are ordered.
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Table 4 The number of linear iterations needed by OSM with the scaled or the uniform Robin parameter for
the problem with four diffusivity regions and N = 2 or 4 subdomains.

Optimized Schwarz method as an iterative method

OSM Version H/h
ν1/ν2/ν3/ν4 N = 2 N = 4

1/10/1000/50 1/1000/50/10 1/10/1000/50 1/1000/50/10

uniform p
20 442 424 475 434
40 595 590 652 648
80 870 843 925 877

scaled p
20 37 37 40 39
40 50 53 60 58
80 71 72 81 84

Optimized Schwarz method with Krylov acceleration

uniform p
20 36 36 57 56
40 57 54 72 71
80 74 76 85 84

scaled p
20 15 15 19 19
40 18 18 23 23
80 22 22 28 28

Test 3: Three-Dimensional Problem

In the third set of tests, we study the numerical behavior of the optimized Schwarz method
for the following three dimensional problem−∇ · (ν∇u) = 0 in Ω = (−π

2
,

π

2
)× (−π

2
,

π

2
)× (−π

2
,

π

2
),

u = 0 on ∂Ω ,
(47)

where

ν =


ν1 in (−π

2
,

π

2
)× (−π

2
,

π

2
)× (0,

π

2
),

ν2 in (−π

2
,

π

2
)× (−π

2
,

π

2
)× (−π

2
,0),

The domain is decomposed into two nonoverlapping subdomains Ω1 =(−π

2
,0)×(−π

2
,

π

2
)×

(−π

2
,

π

2
) and Ω2 = (0,

π

2
)× (−π

2
,

π

2
)× (−π

2
,

π

2
).

The numerical results are shown in Table 5. We observe that the convergence of OSM
with the scaled Robin parameter only depends on the mesh size h, requiring for each mesh
size much fewer linear iterations than OSM with the uniform Robin parameter.

Test 4: Problem with Unstructured Mesh

In the fourth set of tests, we will show the results when the mesh is unstructured, so that the
subdomain boundary does not cut perpendicularly to the discontinuity.

The problem we consider in this set of tests is−∇ · (ν∇u) = 0 in Ω = (−π

2
,

π

2
)× (−π

2
,

π

2
),

u = 0 on ∂Ω ,
(48)
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Table 5 The number of linear iterations needed by OSM with the scaled or the uniform Robin parameter for
the three-dimensional problem.

Optimized Schwarz method as an iterative method

OSM Version H/h
ν1/ν2 1/10 1/100 1/1000 1/10000

uniform p
10 59 189 600 1897
20 86 274 868 2745
40 124 393 1245 3932

scaled p
20 20 20 20 20
40 27 27 27 27
80 41 41 41 41

Optimized Schwarz method with Krylov acceleration

uniform p
10 23 33 37 36
20 29 46 55 56
40 36 58 74 78

scaled p
10 13 13 13 13
20 17 18 18 18
40 22 22 22 22

Fig. 5 Heterogeneity and domain decomposition for Test 4.

with the heterogeneity defined by

ν =

{
ν1, x < 0,

ν2, x > 0,

We construct an unstructured mesh with approximately 20 degrees of freedom in each
direction. We cut the domain into two nonoverlapping subdomains approximately along
y = 0.8x+0.1. We show in Figure 5 the heterogeneity and the domain decomposition.

In Table 6, we show a comparison of two versions of OSM. Again we see the perfect
convergence behavior of OSM with the scaled Robin parameter, whereas the convergence of
OSM with the uniform Robin parameter deteriorates as we increase the heterogeneity ratio.
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Table 6 Linear counts needed by OSM with scaled or uniform Robin parameters for the problem with an
unstructured mesh. The tolerance is set to be 10−6.

Optimized Schwarz method as an iterative method

OSM Version H/h
ν1/ν2 1/10 1/100 1/1000 1/10000

uniform p
20 99 312 989 3134
40 116 377 1205 3822
80 183 563 1782 5642

scaled p
20 36 37 37 40
40 55 57 59 59
80 76 77 78 76

Optimized Schwarz method with Krylov acceleration

uniform p
20 27 38 41 41
40 33 47 54 54
80 40 61 75 78

scaled p
20 21 21 21 21
40 24 24 24 24
80 28 29 29 29

Test 5: Problem with Oscillatory Diffusivity

We now consider the problem−∇ · (ν(x,y)∇u) = 0 in Ω = (−π

2
,

π

2
)× (−π

2
,

π

2
),

u = 0 on ∂Ω ,
(49)

with ν(x,y) being defined by

ν(x,y) = (ν2−ν1)cos2(5(x+ y−1))+ν1,

where ν1 and ν2 are two positive constants. Note that the diffusion coefficient oscillates
over the whole domain. We cut the domain into two nonoverlapping subdomains Ω1 =

(−π

2
,0)× (−π

2
,

π

2
) and Ω2 = (0,

π

2
)× (−π

2
,

π

2
). In that case, at each grid point on the

artificial interface, the Robin parameter needs to be chosen carefully in order to satisfy the
condition for ν∗ in Theorem 6. To implement this, at each point on the interface, we choose
the largest among the function value at this node and those at the neighboring nodes. We
also show in Figure 6 a plot of the diffusivity, the domain decomposition and the mesh. The
number of linear iterations is reported in Table 7. We observe that the convergence of OSM
with the scaled Robin parameter is much faster than that of OSM with the uniform Robin
parameter for both the iterative and Krylov methods. However, when the optimized Schwarz
method is treated as an iterative method, the number of linear iterations also grows slightly
as we increase the heterogeneity ratio. The reason is that this choice of the scaled Robin
parameter only depends on the nodal diffusivity. In general, the maximum of the diffusivity
is not located at any of these nodes, so that there is a possibility that the average on a finite
element boundary on the artificial interface is larger than the Robin parameter we use for
Table 7. As a result, such nodally scaled Robin parameter may not satisfy the condition for
ν∗ in Theorem 6.

To fix the problem, we introduce a smoothly scaled Robin parameter for the current test.
On each finite element edge Γe on the artificial interface, we compute the average by

ν̄Γe =
1
|Γe|

∫
Γe

ν(x,y)dx. (50)
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Fig. 6 Left: diffusion coefficient in test 5 with ν1 = 1 and ν2 = 10. Right: 2D plot of the coefficient, the left
subdomain and the mesh with h = 1

20 on the left, glued to the right subdomain and the mesh on the right.

Fig. 7 Construction of smoothly scaled Robin parameters for oscillatory diffusivity.

The resulting piecewise constant (i.e., P0) finite element function on the artificial interface
is then interpolated linearly to a P1 finite element function. Note that this function can be
regarded as a smoothed expression of the diffusion coefficient. The smoothly scaled Robin
parameter is then chosen to be proportional to this smoothed diffusion coefficient, see Figure
7. We report the data in Table 8 where we compare the results for the smoothly scaled Robin
parameter with those for the nodally scaled Robin parameter (in bracket). We can see that
the results for the smoothly scaled Robin parameter are improved, and the number of linear
iterations remains almost unchanged when the optimized Schwarz method is treated as an
iterative solver.
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Table 7 Linear counts needed by with scaled or uniform Robin parameters for the problem with oscillatory
diffusivity. The tolerance is set to be 10−6.

Optimized Schwarz method as an iterative method

OSM Version H/h
ν1/ν2 1/10 1/100 1/1000 1/10000

uniform p
20 36 71 225 731
40 60 187 593 1873
80 97 306 970 3066

scaled p
20 31 36 37 37
40 46 51 52 52
80 72 77 83 84

Optimized Schwarz method with Krylov acceleration

uniform p
20 16 23 26 27
40 23 31 41 45
80 29 51 73 80

scaled p
20 15 16 16 16
40 21 22 23 23
80 21 28 28 28

Table 8 The number of linear counts needed by OSM with the smoothly scaled or the nodally scaled (in
brackets) Robin parameter for the problem with oscillatory diffusivity.

Optimized Schwarz method as an iterative method

H/h
ν1/ν2 1/10 1/100 1/1000 1/10000

20 28(31) 29(36) 29(37) 29(37)
40 43(46) 45(51) 46(52) 46(52)
80 71(72) 71(77) 73(83) 73(84)

Optimized Schwarz method with Krylov acceleration
20 15(15) 15(16) 15(16) 15(16)
40 20(21) 20(22) 21(23) 21(23)
80 25(27) 26(28) 27(28) 27(28)

Test 6: Problem with a cross point

Finally, we consider the problem of four subdomains meeting at a single coarse point. More
precisely, we consider the problem−∇ · (ν(x,y)∇u) = 0 in Ω = (−π

2
,

π

2
)× (−π

2
,

π

2
),

u = 0 on ∂Ω ,
(51)

with

ν(x,y) =

{
ν1, y ∈ (− π

4 ,0)∪ (
π

4 ,
π

2 ),

ν2, y ∈ (− π

2 ,−
π

4 )∪ (0,
π

4 ).

The four subdomains correspond to the part of the square within each quadrant, see Figure 8.
In this configuration, each subdomain contains two subregions with different diffusivities.
Long the interfaces Γ12 and Γ34, the diffusivity is discontinuous along the interface; we
therefore test our two choices of Robin parameter p, with either a constant parameter or a
scaling proportional to the local diffusivity. Along Γ23 and Γ14, the interface is aligned with
the discontinuity in the diffusivity; we therefore follow [10] and choose p to be proportional
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Fig. 8 Test case with four subdomains meeting at a cross point at the origin.

Table 9 The number of linear counts needed by OSM with the scaled or the uniform Robin parameter for the
decomposition with a cross point and with non-conforming heterogeneities.

Optimized Schwarz method as an iterative method

OSM Version H/h
ν1/ν2 1/10 1/100 1/1000 1/10000

uniform p
20 44 133 422 1334
40 66 206 654 2068
80 174 316 999 3160

scaled p
20 25 25 25 25
40 36 36 36 36
80 49 49 49 49

Optimized Schwarz method with Krylov acceleration

uniform p
20 23 36 38 39
40 28 48 59 63
80 37 63 89 97

scaled p
20 14 13 13 13
40 17 16 16 16
80 21 20 20 20

to the diffusivity of the neighbouring subdomain, e.g., for the subdomain Ω1, we impose

(
ν2

∂

∂n1
+ p∗ν1

)
un+1

1 =

(
ν2

∂

∂n1
+ p∗ν1

)
un

4 on Γ14

with p∗ ≈ 2.8/
√

h. The Robin parameter p0 at the origin is taken to be p0 = C√
h
· ν1+ν2

2 ,
with the best C determined numerically to be 0.42. The convergence of the resulting algo-
rithm is shown in Table 9. Just as in the other test cases, scaling the Robin parameter along
non-conforming interfaces leads to much lower iteration counts and a robust convergence
behaviour with respect to the heterogeneity ratio, which is not the case when a uniform
Robin parameter is used instead.
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6 Conclusions

In this paper, we have studied the zeroth order optimized Schwarz method for domains with
non-conforming heterogeneities. We have shown that the zeroth order optimized Schwarz
method with traditional uniform Robin parameter is not robust any more for highly hetero-
geneous problems. To overcome this difficulty, we propose a scaled Robin parameter which
is proportional to the diffusivity. The optimal Robin parameter is easy to find, and the result-
ing convergence rate is independent of the diffusivity. We have also tested several problems
in two and three dimensions numerically using our method. The method is shown to work
very well for all tests.
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A Useful Sobolev-type estimates

Lemma 3 ([28], Lemma B.5) Let φ be a basis function associated with a node of an element K ⊂Ω ⊂ Rn,
Then there exist constants c and C, independent of h, such that

chn ≤ ‖φ‖2
L2(K)

≤Chn.

Consequently, for any uΓ , the trace of a finite element function on Γ , there exist constants c1 and C1, inde-
pendent of h and H, such that

c1hn−1uT
Γ uΓ ≤ ‖uΓ ‖2

L2(Γ )
≤C1hn−1uT

Γ uΓ .

Lemma 4 ([28], Lemma A.14 and Corollary A.15) Let Ω be a Lipschitz continuous domain with diameter
H. Let Γ ∈ ∂Ω have nonvanishing measure. If u ∈ H1(Ω) vanishes on Γ , then there exists a constant C,
independent of H, such that

‖u‖2
L2(Ω) ≤C2H2|u|2H1(Ω) .

Moreover, if we define

‖u‖2
H1

s (Ω) := |u|2H1(Ω)+
1

H2 ‖u‖
2
L2(Ω)

as the scaled H1-norm, then we obtain the following estimate:

‖u‖2
H1

s (Ω) ≤ (1+C2)|u|2H1(Ω) .

Lemma 5 Let uΓ be the trace of a finite element function on Γ , and let uΓ be the vector corresponding to
uΓ . Let A1 be the stiffness matrix associated with the standard Laplacian bilinear form, and S1 be its Schur
complement after the interior nodes have been eliminated. Then there exist constants c and C, independent of
h and H, such that the following sharp estimate holds:

cH−1‖uΓ ‖2
L2(Γ ) ≤ uT

Γ S1uΓ ≤Ch−1‖uΓ ‖2
L2(Γ ) , (52)
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where h is the diameter of the finite element, and H is the diameter of the subdomain. Consequently, there
exists a constant C′, independent of h and H, such that

κ(S1)<C′
H
h
. (53)

Proof The proof is based on Lemma 4.11 in [28], where the authors have derived the upper bound. For the
lower bound, they have also proved that

H‖u‖2
L2(Γ ) ≤ H2‖u‖2

H1/2(Γ )
≤C2

t

(
H2|u|2H1(Ωi)

+‖u‖2
L2(Ωi)

)
,

where Ct is a constant independent of h and H. Simplification of the above inequality gives

H−1‖u‖2
L2(Γ ) ≤C2

t

(
|u|2H1(Ωi)

+
1

H2 ‖u‖
2
L2(Ωi)

)
=C2

t ‖u‖
2
H1

s (Ωi)
,

where we have used the definition of the scaled H1-norm (see also (4.4) in [28]). By Lemma 4, we obtain

H−1‖u‖2
L2(Γ ) ≤C|u|2H1(Ωi)

. (54)

Since uT
Γ

S1uΓ = |u|2H1(Ωi)
, actually we have finished the proof for the lower bound.

The condition number estimate is then a direct result from the spectral estimates. Note that κ(S1) is none
other than the condition number of the Schur complement matrix for the Laplace operator. ut

Lemma 6 ([28], Lemma 4.10) Let Ω be a domain, and let a finite element trace function uΓ be given on
the boundary Γ = ∂Ω . Let u = H1(uΓ ) be the discrete 1-harmonic extension of uΓ into Ω . Then there exist
constants c and C, independent of h and H, such that

c |uΓ |2H1/2(Γ )
≤ |u|2H1(Ω1)

≤C |uΓ |2H1/2(Γ )
. (55)

Lemma 7 ([11], Lemma 4.5) Let Ω be a domain, and let a finite element trace function uΓ be given on the
boundary Γ = ∂Ω . Then there exist a constant C, independent of h and H, such that

|uΓ |2H1/2(Γ )
≤ C

h
‖uΓ ‖2

L2(Γ ) . (56)

Lemma 8 ([28], Lemma A.17) Let Ω be a bounded Lipschitz continuous polygon or polyhedron with diam-
eter H. Then for any u ∈ H1/2(∂Ω) such that the measure of the set {x ∈ ∂Ω ;u(x) = 0.} is non-zero, there
exists a constant C, independent of h, such that

‖u‖2
L2(∂Ω) ≤CH|u|2H1/2(∂Ω)

. (57)
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