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Abstract. Teaching linear algebra routines for computing eigenvalues of a matrix can be well moti-
vated for students by using interesting examples. We propose in this paper to use vibrating
plates for two reasons: First, they have many interesting applications, from which we chose
the Chladni figures, representing sand ornaments which form on a vibrating plate, and the
Tacoma Bridge, one of the most spectacular bridge failures. Second, the partial differential
operator that arises from vibrating plates is the biharmonic operator, which one does not
encounter often in a first course on numerical partial differential equations, and which is
more challenging to discretize than the standard Laplacian seen in most textbooks. In
addition, the history of vibrating plates is interesting, and we will show both spectral
discretizations, leading to small dense matrix eigenvalue problems, and a finite difference
discretization, leading to large scale sparse matrix eigenvalue problems. Hence both the
QR-algorithm and Lanczos can be well illustrated.

Key words. Chladni figures, Ritz method, dense and sparse eigenvalue problems, biharmonic operator
discretization
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1. Introduction. In 1787, the musician and physicist Ernst Florence Friedrich
Chladni from Leipzig made an interesting discovery [6]: he noticed that when he tried
to excite a metal plate with the bow of his violin, he could make sounds of different
pitch, depending on where he touched the plate with the bow. The plate itself was
fixed only in the center, and when there was some dust or sand on the plate, for
each pitch a beautiful pattern appeared; see Figure 1.1. These figures, now called
Chladni figures after their inventor, attracted great attention among scientists and
laymen alike because of their intriguing beauty, but their calculation proved to be too
hard for more than a century. The first mathematical model for the deformation of
an elastic plate under an external force was formulated by Sophie Germain in a series
of unpublished papers (1811–1815); a summary of this work appeared in print a few
years later [10, 11]. Lagrange and Poisson then added corrections and improvements
to the mathematical model, but the definitive breakthrough was achieved by Kirchhoff
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574 MARTIN J. GANDER AND FELIX KWOK

Fig. 1.1 Drawings of the beautiful figures Chladni obtained when exciting an iron plate with some
sand on it using his violin bow [6].

in [16], who showed that Chladni figures on a square plate correspond to eigenpairs
(eigenvalues and corresponding eigenfunctions) of the biharmonic operator with free
boundary conditions. Kirchhoff also managed to solve the problem of Chladni figures
on a circular plate, where the many symmetries greatly simplify the problem and
solutions. At the turn of the twentieth century, the great expert on the theory of
sound, John William Strutt, later Baron Rayleigh, summarized the situation in his
monumental treatise [28]: “The Problem of a rectangular plate, whose edges are free,
is one of great difficulty, and has for the most part resisted attack.” It was only
the spectacular invention of Walther Ritz [25], conscious of his imminent death from
consumption, which led to the first accurate computation of Chladni figures on square
plates in 1909. For more details on the historical development, see [9].

Vibrating plates are very important in many applications. Ritz’s method was
used right after its invention by Timoshenko for the simulation of beams and plates
[29], by Bubnov in the design of submarines [5], and it led to the seminal paper of
Galerkin [8], also on the simulation of rods and plates. While Galerkin himself called
the method in his paper the Ritz method, after its inventor, it is nowadays better
known as the Galerkin method. We will adopt here the historically more correct
name, the Ritz–Galerkin method.

One of the most spectacular examples in engineering of the failure of a structure
due to vibrations is the collapse of the Tacoma Narrows Bridge in 1940:

At the time it opened for traffic in 1940, the Tacoma Narrows Bridge was
the third longest suspension bridge in the world. It was promptly nick-
named “Galloping Gertie,” due to its behavior in wind. Not only did the
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CHLADNI FIGURES AND THE TACOMA BRIDGE 575

deck sway sideways, but vertical undulations also appeared in quite mod-
erate winds. Drivers of cars reported that vehicles ahead of them would
completely disappear and reappear from view several times as they crossed
the bridge. Attempts were made to stabilize the structure with cables and
hydraulic buffers, but they were unsuccessful. On November 7, 1940, only
four months after it opened, the Tacoma Narrows Bridge collapsed in a
wind of 42 mph—even though the structure was designed to withstand
winds of up to 120 mph. [21]

The motion of the Tacoma Bridge, which led to its collapse, can be seen in a
spectacular movie available on the web.1 From the movie, we observe that the shape
of the center span of the bridge bears a strong resemblance to a thin plate vibrating in
one of its eigenmodes; this is also observed in the Ibáñez suspension bridge in Puerto
Aysén, Chile, where the bridge motion excited by an earthquake again resembles
qualitatively an eigenmode of the thin plate, albeit a different one.2 If we were
interested in approximating the shape of the vibrating bridge span, a very simplified
model would be to treat it as a thin vibrating plate and consider the eigenmodes of
the biharmonic operator acting on it. This model clearly ignores many structural
features of the suspension bridge; in particular, it cannot explain how the bridge
was excited in the first place. While many physics textbooks treat this as a classical
example of forced resonance, this explanation was shown to be incorrect in [3]; in fact,
a simple physical experiment using a fan and a cardboard box clearly demonstrates
that oscillations can be started without periodic forcing [26]. In addition, there is
much controversy on whether a linear model can give rise to such large sustained
oscillations, or whether a nonlinear one that considers cables and other structures is
needed; see [19, 20]. Nonetheless, the vibrating plate model’s simplicity and its ability
to qualitatively approximate the observed shapes of the vibrating bridges makes it
particularly well suited for capturing the student’s attention in the context of an
introduction to PDE eigenvalue problems.

2. Mathematical Model of Vibrations.

2.1. Equations of Motion. Suppose we have a thin elastic plate Ω ⊂ R
2 with

unit mass density everywhere (i.e., ρ(x, y) ≡ ρ = 1). Intuitively, we say that the
plate is vibrating when, after having been set in motion by an initial displacement or
external force, the plate continues to bend and oscillate for a very long time without
further excitation. One can imagine that the plate would continue to vibrate forever
if there were no friction or other damping forces to slow the vibration down. In this
case, the only forces that cause the plate to oscillate come from the strain (or bending)
energy that has been stored in the plate itself. In particular, the force acting on a
given point on the plate depends only on the local shape of the plate. Thus, if we let
z = z(x, y, t) be the vertical position of the plate at point (x, y) at time t, then the
vertical force acting on this point can be written as

F (x, y, t) = −Lz,
where L is a spatial differential operator acting on z. Since there are no other forces,
Newton’s law of motion says that

(2.1)
∂2z

∂t2
= −Lz.

1http://www.youtube.com/watch?v=3mclp9QmCGs
2http://www.youtube.com/watch?v=t9kR9T9wZsM
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576 MARTIN J. GANDER AND FELIX KWOK

We now show how to derive the operator L. Sophie Germain argued on physical
grounds that the strain energy for a small plate element must be proportional to the
square of its curvature; Kirchhoff then refined the model and determined that the
energy stored in a bent plate with shape u(x, y) is given by

(2.2) J [u(x, y)] :=
1

2

∫∫
Ω

([∂2u

∂x2
+

∂2u

∂y2

]2
− 2(1− μ)

[∂2u

∂x2

∂2u

∂y2
−
( ∂2u

∂x∂y

)2])
dx dy,

where μ ∈ (0, 1) is the material constant (which Ritz took to be 0.225 in order to
match Chladni’s results). Now suppose that we want to deform the plate slightly to
obtain a different shape u(x, y)+εv(x, y). To do so, we need to put in extra energy to
overcome the force −Lu along the distance εv; this extra energy will then be stored
in the strain energy of the plate. Thus, we see that

(2.3) J [u+ εv] = J [u] + ε

∫∫
Ω

(Lu)v dx dy +O(ε2).

If we rearrange (2.3) and let ε tend to zero, we get

(2.4)

∫∫
Ω

(Lu)v dx dy = lim
ε→0

J [u+ εv]− J [u]

ε
=

dJ [u+ εv]

dε

∣∣∣
ε=0

,

and hence

(2.5)

∫∫
Ω

(Lu)v dx dy =

∫∫
Ω

([∂2u

∂x2
+

∂2u

∂y2

][∂2v

∂x2
+

∂2v

∂y2

]

− (1− μ)
[∂2u

∂x2

∂2v

∂y2
+

∂2u

∂y2
∂2v

∂x2
− 2

∂2u

∂x∂y

∂2v

∂x∂y

])
dx dy.

Thus, we have described the force function Lu by how it acts when integrated with
an arbitrary function v; this is known as the weak or variational form of the operator.
We can also derive the strong form of the operator if we integrate by parts twice to
remove all derivatives of v (cf. section 2.3).

2.2. An Eigenvalue Problem. In general, a vibrating motion of a plate will con-
sist of a superposition of many modes, each vibrating at a different frequency. Thus,
in order to solve (2.1) for z(x, y, t), we will first look for separable solutions, i.e.,
solutions of the form

z(x, y, t) = u(x, y) · T (t).
These solutions are also called standing waves, because only the amplitude, and not
the shape of the wave, changes over time. Substituting into (2.1) gives

u(x, y)T ′′(t) = −(Lu)(x, y)T (t).
Assuming T (t) �= 0 and u(x, y) �= 0, we can rearrange the above equation to get

(2.6) −T ′′(t)
T (t)

=
Lu(x, y)
u(x, y)

= λ.

Here λ must be a constant, since the left-hand side is independent of (x, y) and the
right-hand side is independent of t. Thus, T (t) must satisfy the ordinary differential
equation (ODE)

T ′′(t) + λT (t) = 0.
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CHLADNI FIGURES AND THE TACOMA BRIDGE 577

Since the energy of the system must be bounded, we must have T (t) bounded over
all time. Thus, λ must be nonnegative, so we can write λ = ω2 with

T (t) = A cosωt+B sinωt.

As for u(x, y), (2.6) gives Lu = λu or, when integrated with an arbitrary v,

(2.7)

∫∫
Ω

(Lu)v dx dy = λ

∫∫
Ω

uv dx dy,

where the left-hand side is given by (2.5). This is the variational form of an eigenvalue
problem, for which we must find a nonzero eigenfunction u(x, y).

2.3. Strong Form. We will now derive the strong form of the problem (2.7). We
will start by rewriting (2.5) using the subscript notation for partial derivatives:
(2.8)∫∫

Ω

(Lu)v dx dy =

∫∫
Ω

[
uxxvxx+uyyvyy+μ(uyyvxx+uxxvyy)+2(1−μ)uxyvxy

]
dx dy.

Assuming that the eigenfunction u is sufficiently differentiable and ∂Ω is sufficiently
smooth, we can integrate each term by parts in order to remove the derivatives on v.
We can derive the appropriate integration formulas using the divergence theorem∫∫

Ω

∇ ·F dx dy =

∫
∂Ω

F · n ds,

where F is a vector field and n = (nx, ny) is the unit outward normal vector. If we
substitute F = (fg, 0) and F = (0, fg), respectively, for scalar functions f and g, then
we get ∫∫

Ω

fgx dx dy =

∫
∂Ω

fg nx ds−
∫∫

Ω

fxg dx dy,(2.9)

∫∫
Ω

fgy dx dy =

∫
∂Ω

fg ny ds−
∫∫

Ω

fyg dx dy.(2.10)

We can now integrate each term on the right-hand side of (2.8):∫∫
Ω

uxxvxx dx dy =

∫
∂Ω

uxxvxnx ds−
∫
∂Ω

uxxxv nx ds+

∫∫
Ω

uxxxxv dx dy,(2.11)

∫∫
Ω

uyyvyy dx dy =

∫
∂Ω

uyyvyny ds−
∫
∂Ω

uyyyv ny ds+

∫∫
Ω

uyyyyv dx dy,(2.12)

∫∫
Ω

uyyvxx dx dy =

∫
∂Ω

uyyvxnx ds−
∫
∂Ω

uxyyv nx ds+

∫∫
Ω

uxxyyv dx dy,(2.13)

∫∫
Ω

uxxvyy dx dy =

∫
∂Ω

uxxvyny ds−
∫
∂Ω

uxxyv ny ds+

∫∫
Ω

uxxyyv dx dy,(2.14)

∫∫
Ω

uxyvxy dx dy =

∫
∂Ω

uxyvxny ds−
∫
∂Ω

uxyyv nx ds+

∫∫
Ω

uxxyyv dx dy.(2.15)
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578 MARTIN J. GANDER AND FELIX KWOK

In the case of a rectangular plate, i.e., for Ω = (−L,L) × (−H,H), (2.15) can be
further transformed as follows. The boundary integral∫

∂Ω

uxyvxny ds

vanishes along the edges x = ±L since ny = 0 there. In addition, ny is constant along
each of the remaining edges. Thus, the integral can be rewritten as∫

∂Ω

uxyvxny ds =

∫ L

−L

uxy(x,H)vx(x,H) dx−
∫ L

−L

uxy(x,−H)vx(x,−H) dx

= −
∫
∂Ω

uxxyv ny ds+ uxy(L,H)v(L,H)− uxy(−L,H)v(−L,H)

− uxy(L,−H)v(L,−H) + uxy(−L,−H)v(−L,−H).(2.16)

Substituting (2.11)–(2.14) and (2.16) into (2.7) gives

0 =

∫∫
Ω

(Lu − λu)v dx dy

=

∫∫
Ω

(uxxxx + 2uxxyy + uyyyy − λu)v dx dy

+

∫
∂Ω

[
uxx + μuyy

]
vxnx ds−

∫
∂Ω

[
uxxx + (2− μ)uxyy

]
v nx ds

+

∫
∂Ω

[
μuxx + uyy

]
vyny ds−

∫
∂Ω

[
uyyy + (2 − μ)uxxy

]
v ny ds

+ 2(1− μ)
[
uxy(L,H)v(L,H)− uxy(−L,H)v(−L,H)

− uxy(L,−H)v(L,−H) + uxy(−L,−H)v(−L,−H)
]
.(2.17)

We see that the right-hand side above contains four types of terms:
• interior terms (those inside the double integral),
• terms along the edges x = ±L (where ny = 0),
• terms along the edges y = ±H (where nx = 0),
• corner terms (x, y) = (±L,±H).

By picking the appropriate test functions v, for example, from all functions that have
square integrable derivatives up to second order, we obtain the PDE and boundary
conditions for the strong form of the eigenvalue problem: find a nontrivial function u
and a corresponding value of λ that satisfy the following conditions.

• Interior:

uxxxx+2uxxyy + uyyyy = λu, (x, y) ∈ Ω.(2.18)

• Edges:

uxx + μuyy = 0, uxxx + (2 − μ)uxyy = 0, x = ±L, y ∈ (−H,H),
(2.19)

uyy + μuxx = 0, uyyy + (2− μ)uxxy = 0, y = ±H, x ∈ (−L,L).
(2.20)

• Corners:

uxy = 0, (x, y) = (±L,±H).(2.21)

D
ow

nl
oa

de
d 

08
/0

8/
12

 to
 1

29
.1

94
.8

.7
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CHLADNI FIGURES AND THE TACOMA BRIDGE 579

Historically, the interior equation (2.18) was already known by Sophie Germain, but
her edge conditions were incorrect; this is because her energy functional lacked the
μ-dependent cross terms that influence the boundary but not the interior equations.
The correct edge conditions (2.19), (2.20) were derived in 1850 by Kirchhoff [16], but
one had to wait another four decades for the appearance of the corner conditions in
the work of Lamb [18] in order to have the complete set of boundary conditions for a
thin plate whose boundaries are completely free to move.

2.4. Minimax Principle. Another characterization of the eigenvalues of L is given
by the minimax principle [30, 27]. Assume that the eigenvalues are indexed in ascend-
ing order of magnitude, i.e., λ1 ≤ λ2 ≤ · · · . Then the kth eigenvalue λk satisfies

(2.22) λk = min
dimU=k

max
u∈U
u�=0

〈u,Lu〉
〈u, u〉 ,

where the inner product 〈·, ·〉 is defined as

〈u, v〉 :=
∫∫

Ω

uv dx dy,

and U is a subspace of dimension k consisting of functions that have square integrable
derivatives up to second order.3 The quantity being maximized in (2.22) is called the
Rayleigh quotient, and the outer minimum is taken over all k-dimensional subspaces of
trial functions. Note that one does not need to impose the natural or free boundary
conditions (2.19), (2.20), and (2.21) in the space U , since they are automatically
satisfied by the solution to the min-max problem; see, for example, [14].

To see why the min-max formulation (2.22) makes sense, suppose we choose U
to be spanned by the first k eigenfunctions u1, . . . , uk. Then the largest Rayleigh
quotient is attained by setting u = uk. On the other hand, assume U to be any
other k-dimensional subspace spanned by {w1, . . . , wk}. Our goal is to pick a w ∈ U
that gives a Rayleigh quotient that is larger than λk. Indeed, there is a nontrivial
w =

∑k
i=1 αiwi ∈ U such that 〈w, uj〉 = 0 for j = 1, . . . , k − 1, since the (k − 1)× k

homogeneous linear system

k∑
i=1

αi〈wi, uj〉 = 0, j = 1, . . . , k − 1,

has a nontrivial solution α = (α1, . . . , αk)
T . Now if we express w in the eigenbasis

{u1, u2, . . .}, we get

w =

∞∑
i=k

βiui,

since the first k − 1 coefficients are zero due to orthogonality. Thus, we obtain

〈w,Lw〉 =
∞∑
i=k

β2
i λi ≥ λk

∞∑
i=k

β2
i = λk〈w,w〉.

3Although the appearance of Lu in the inner product seems to require higher regularity for u,
only second derivatives are really needed, since 〈u,Lu〉 should be interpreted in the weak sense, i.e.,
in the sense of (2.5).
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580 MARTIN J. GANDER AND FELIX KWOK

Hence, for any k-dimensional subspace U , the maximum Rayleigh quotient is neces-
sarily greater than or equal to λk, which proves the minimax principle.

By choosing the k-dimensional subspace U wisely, it is possible to obtain very
good approximations of the eigenvalues and eigenfunctions of L. In section 3.1, we
will show how Ritz achieved this.

3. Discretization.

3.1. The Idea of Ritz. Walther Ritz presented in [25] what one would probably
nowadays call a spectral method for the computation of vibration modes of a plate;
indeed, he was the first person to be able to compute these modes. The main idea
of Ritz was not to directly tackle the strong form of the eigenvalue problem (2.18),
but instead to try to approximate the eigenvalues using the minimax principle (2.22)
with a well-chosen finite-dimensional subspace of functions, which leads naturally to a
numerical method.4 As we have seen, any choice of subspace U results in approximate
eigenvalues that are overestimations of the exact ones.

We first need to relate 〈u,Lu〉 to the energy functional J [u] defined in (2.2). By
letting v = u in (2.4), we have∫∫

Ω

u(Lu) dx dy =
dJ [(1 + ε)u]

dε

∣∣∣
ε=0

.

But from (2.2), we see that

J [(1 + ε)u] = (1 + ε)2J [u],

so that

(3.1) 〈u,Lu〉 = 2J [u] =

∫∫
Ω

([∂2u

∂x2
+
∂2u

∂y2

]2
−2(1−μ)

[∂2u

∂x2

∂2u

∂y2
−
( ∂2u

∂x∂y

)2])
dx dy.

The full min-max problem (2.22) is too hard to solve, since we need to consider
all possible k-dimensional subspaces of an infinite-dimensional function space. To
make the problem more tractable, Ritz decided to solve a smaller min-max problem
in which the minimum is taken only over k-dimensional subspaces of a well-chosen
finite-dimensional function space Us. He opted for linear combinations of functions of
the form

wmn(x, y) = um(x)un(y),

where um(x) are the eigenfunctions of a free one-dimensional bar,

d4um

dx4
= k4mum, with

d2um

dx2
= 0,

d3um

dx3
= 0 at x = {−1, 1}.

With his physical insight, Ritz expected these functions to give very good approxima-
tions to the exact two-dimensional eigenfunctions, leading to very accurate eigenvalue
approximations. The one-dimensional eigenfunctions are known in closed form [28]:
(3.2)

um(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

coshkm cos kmx+ cos km cosh kmx√
cosh2 km + cos2 km

, tan km + tanh km = 0, m even,

sinh km sin kmx+ sin km sinh kmx√
sinh2 km − sin2 km

, tan km − tanh km = 0, m odd.

4In fact, Ritz focused on the first eigenmode and used a Lagrange multiplier for the normalization
constraint; see [25] for this concrete formulation and also [9]. However, he noted that higher modes
could also be obtained using further orthogonalization constraints.
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CHLADNI FIGURES AND THE TACOMA BRIDGE 581

By restricting our search to functions of this type, we are in fact solving the smaller
min-max problem

(3.3) λ̂k = min
dimU=k
U⊂Us

max
u∈U
u�=0

〈u,Lu〉
〈u, u〉 ,

where Us consists of functions of the form

(3.4) ws(x, y) :=

s∑
m=0

s∑
n=0

amnum(x)un(y).

Again, these functions do not satisfy the free boundary conditions (2.19), (2.20), and
(2.21), but they do not need to. Since the ws are parameterized by the coefficients
amn, (3.3) can be rewritten as

(3.5) λ̂k = min
dimU=k
U⊂R

N

max
a∈U
a �=0

aT K̃a

aTa
,

where a := [a00, a01, a10, . . .] ∈ R
N , N = (s+ 1)2, and K̃ is the N ×N matrix

K̃ :=

⎡
⎢⎢⎢⎢⎣

k0000 k0001 k0010 . . .

k0100 k0101 k0110 . . .

k1000 k1001 k1010 . . .
...

...
...

. . .

⎤
⎥⎥⎥⎥⎦ .

The coefficients kpqmn are obtained by inserting ws into the quadratic form 〈ws,Lws〉 =
2J [ws]:

kpqmn : =

∫ 1

−1

∫ 1

−1

∂2um(x)

∂x2
un(y)

∂2up(x)

∂x2
uq(y)dxdy + um(x)

∂2un(y)

∂y2
up(x)

∂2uq(y)

∂y2
dxdy

+ 2μ
∂2um(x)

∂x2
un(y)

∂2uq(y)

∂y2
up(x) + 2(1− μ)

∂um(x)

∂x

∂un(y)

∂y

∂up(x)

∂x

∂uq(y)

∂y
dxdy.

But (3.5) is the minimax characterization of a matrix eigenvalue problem, namely,

(3.6) Ka = λ̂a,

where K := 1
2 (K̃ + K̃T ) is a symmetric matrix of size N × N . For each eigenvalue

λ̂�, we get an associated eigenvector a� = [a�00, a
�
01, . . .], and thus the corresponding

approximate eigenfunction

w�
s =

s∑
m=0

s∑
n=0

a�mnum(x)un(y).

Since K is a small dense matrix and we want to compute all (or most of) its eigen-
values, a method such as the QR algorithm would be appropriate for this purpose.
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582 MARTIN J. GANDER AND FELIX KWOK

In order to compute concrete examples, it is best to use a symbolic computing
program, since the evaluation of the integrals is quite tedious. We start by defining
the one-dimensional vibration modes using Maple:

k:=m->if type(m,even) then

fsolve(tan(x)+tanh(x)=0,x=m*Pi/2-Pi/4)

else

fsolve(tan(x)-tanh(x)=0,x=(m-1/2)*Pi/2)

end if;

u:=(m,x)->if m=0 then

1/sqrt(2)

elif m=1 then

sqrt(3/2)*x

elif type(m,even) then

(cosh(k(m))*cos(k(m)*x)+cos(k(m))*cosh(k(m)*x))

/sqrt((cosh(k(m)))^2+(cos(k(m)))^2)

else

(sinh(k(m))*sin(k(m)*x)+sin(k(m))*sinh(k(m)*x))

/sqrt((sinh(k(m)))^2-(sin(k(m)))^2)

end if;

We can now evaluate the various integrals in order to obtain the coefficients kpqmn,

which are then stored in the matrix K̃:

with(LinearAlgebra):

N:=6; # number of modes in each direction

mu:=0.225; # material parameter

Kt := Matrix(1..(N+1)^2,1..(N+1)^2);

i:=0;

for m from 0 to N do

for n from 0 to N do

i:=i+1; j:=0;

for p from 0 to N do

for q from 0 to N do

j:=j+1;

if type(m+p,even) and type(n+q,even) then #Do not calculate zeros

Kt[i,j]:=evalf(Int(Int(diff(u(m,x),x,x)*u(n,y)*diff(u(p,x),x,x)*u(q,y),

x=-1..1),y=-1..1)

+Int(Int(diff(u(n,y),y,y)*u(m,x)*diff(u(q,y),y,y)*u(p,x),

x=-1..1),y=-1..1)

+2*mu*Int(Int(diff(u(m,x),x,x)*u(n,y)*diff(u(q,y),y,y)*u(p,x),

x=-1..1),y=-1..1)

+2*(1-mu)*Int(Int(diff(u(m,x),x)*diff(u(n,y),y)*diff(u(p,x),x)*diff(u(q,y),y),

x=-1..1),y=-1..1));

fi;

od;

od;

od;

od;

Observe that there is an if-statement inside the quadruple loop that only executes
when m and p (resp., n and q) have the same parity (i.e., when they are both even
or both odd). This is because all other coefficients must be zero; the proof uses the
many orthogonality relations satisfied by the one-dimensional eigenfunctions um(x)
(cf. [25]). Thus, we can save computing time by omitting the calculation of these zero
entries.

We can now compute the eigenvalues and eigenvectors of K and then construct
the approximate eigenfunctions:
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V,E:=Eigenvectors(Matrix((Kt+Transpose(Kt))/2,shape=symmetric));

for i from 1 to (N+1)^2 do

j:=0:

U[i]:=0:

for m from 0 to N do

for n from 0 to N do

j:=j+1:

U[i]:=U[i]+E[j,i]*u(m,x)*u(n,y):

od:

od:

od:

It remains to draw the zero level set of the approximate eigenfunctions we have con-
structed, which is achieved by the Maple commands

with(plots):

for i from 4 to (N+1)^2 do

contourplot(U[i],x=-1..1,y=-1..1,grid=[200,200],contours=[0],axes=boxed,

view=[-1..1,-1..1]);

od;

This leads to the results shown in Figure 4.1.

3.2. Finite Difference Discretization. A different approach would be to dis-
cretize the strong form of the eigenvalue problem (2.18)–(2.21) using finite differences.
The fact that the PDE contains the biharmonic operator Δ2 suggests that we should
build the discretization by composing the discrete 5-point Laplacian operator Δh with
itself; indeed, this will give the correct stencil for nodes away from the boundary, as we
will see in (3.9). However, the discretization of the free boundary conditions (2.19)–
(2.21), which are necessary in the strong form, is less obvious. Our approach here is
to use a finite volume method to deal with these cases systematically.

Let Ω = (−1, 1)× (−1, 1) be the square plate, which we discretize on a uniform
(N+1)×(N+1) grid, including nodes on the boundary. Then the grid points (xi, yj),
0 ≤ i, j ≤ N , satisfy

xi = −1 + ih, yj = −1 + jh, h = 2/N.

Let u(x, y) be the exact solution of the eigenvalue problem and uij ≈ u(xi, yj) be its
finite difference approximation. We first define w(x, y) = −Δu(x, y) and its discrete
analogue

(3.7) wij =
4uij − ui−1,j − ui+1,j − ui,j−1 − ui,j+1

h2
.

Note that in order to define wij along an edge, we need values of uij that fall outside
Ω, i.e., for i, j ∈ {−1, N + 1}. These are called ghost points and are not part of the
original problem; they will need to be eliminated using boundary conditions before
we solve the discrete eigenvalue problem. Once we have defined w(x, y), the strong
form of the PDE now says

Δ2u = λu ⇐⇒ −Δw = λu.

To obtain a finite volume method, we need to integrate over a control volume Vij

around each grid point. Figure 3.1 shows the control volumes for an interior point,
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584 MARTIN J. GANDER AND FELIX KWOK

wijwi−1,j wi+1,j

wi,j−1

wi,j+1

Vij

Γ1

Γ2

Γ3

Γ4

(a)

w0j w1j

w0,j−1

w0,j+1

Vij

Γ1

Γ2

Γ3

Γ4

(b)

w00 w10

w01

Vij Γ1

Γ2

Γ3

Γ4

(c)

Fig. 3.1 Control volumes for different types of nodes: (a) interior nodes, (b) edge nodes, (c) corner
nodes.

an edge point, and a corner point. Integrating the strong form of the PDE over Vij

gives

−
∫∫

Vij

Δw dxdy = λ

∫∫
Vij

u(x, y) dx dy,

to which we can apply the divergence theorem to get

−
∫
∂Vij

∂w

∂n
ds = λ

∫∫
Vij

u(x, y) dx dy.

The integral on the right-hand side is approximated by (cf. Figure 3.1)

(3.8)

∫∫
Vij

u(x, y) dx dy ≈ |Vij |uij =

⎧⎪⎨
⎪⎩
h2uij for interior nodes,
1
2h

2uij for edge nodes,
1
4h

2uij for corner nodes.

The fluxes
∫

∂w
∂n dx on the left-hand side must be approximated differently for the

different types of nodes.

3.2.1. Interior Nodes. The flux along each piece of ∂Vij is simply approximated
by a finite difference. For example, along Γ1 shown in Figure 3.1(a) we take

∫
Γ1

∂w

∂n
ds ≈ h · wi+1,j − wij

h
,

which leads to the standard finite difference stencil for w:

(3.9) −
∫
∂Vij

∂w

∂n
ds ≈ 4wij − wi−1,j − wi+1,j − wi,j−1 − wi,j+1.

Thus, the interior stencil is indeed the discrete Laplacian squared, i.e., we approximate
Δ2 by Δ2

h.
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CHLADNI FIGURES AND THE TACOMA BRIDGE 585

3.2.2. Edge Nodes. We consider a control volume along the left edge x = x0 =
−1, as shown in Figure 3.1(b); the other edges are treated similarly. The fluxes along
Γ1, Γ2, and Γ3 are approximated in the same way as for interior nodes, except there
is a factor of 1/2 for the top and bottom contributions, since the length of those edges
is only h/2. Thus, we get

(3.10) −
∫
∂V0j

∂w

∂n
ds ≈ 2w0j − w1j − 1

2
w0,j−1 − 1

2
w0,j+1 −

∫
Γ4

∂w

∂n
ds.

To approximate the integral along Γ4, we must make use of the boundary conditions.
We have

∫
Γ4

∂w

∂n
ds =

∫ yj+1/2

yj−1/2

∂

∂x
(uxx + uyy) dy

=

∫ yj+1/2

yj−1/2

[
uxxx + (2− μ)uxyy︸ ︷︷ ︸

=0

−(1− μ)uxyy

]
dy

= −(1− μ)

∫ yj+1/2

yj−1/2

uxyy dy

= −(1− μ)
[
uxy(x0, yj+1/2)− uxy(x0, yj−1/2)

]
.

The mixed derivatives uxy can now be approximated by finite differences, e.g.,

(3.11) uxy(x0, yj−1/2) ≈ u1,j − u−1,j − u1,j−1 + u−1,j−1

2h2
.

3.2.3. Corner Nodes. The control volume corresponding to a corner node has
two edges in the interior of Ω and two edges along ∂Ω. Thus, for the corner cell in
Figure 3.1(c), we have

(3.12) −
∫
∂Vij

∂w

∂n
ds ≈ w00 − 1

2
w10 − 1

2
w01 −

∫
Γ3

∂w

∂n
ds−

∫
Γ4

∂w

∂n
ds.

To evaluate the integrals along Γ3 and Γ4, we perform the same calculations as for
the edge case to obtain, for instance,

∫
Γ4

∂w

∂n
ds = −(1− μ)

[
uxy(x0, y1/2)− uxy(x0, y0)

]
.

But uxy = 0 at the corner; thus, the second term on the right-hand side simply drops
out, and we in fact have

∫
∂Vij

∂w

∂n
ds ≈ w00 − 1

2
w10 − 1

2
w01 + (1− μ)uxy(x0, y1/2) + (1− μ)uxy(x1/2, y0),

where the mixed derivatives are discretized as in (3.11).
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586 MARTIN J. GANDER AND FELIX KWOK

3.2.4. Ghost Points. As mentioned before, values of uij that fall outside the
physical domain Ω are simply defined for convenience and must be eliminated before
the eigenvalue problem is solved. Fortunately, this can be done easily using the edge
boundary conditions

uxx + μuyy = 0 for x = ±1, uyy + μuxx = 0 for y = ±1.

Thus, for a ghost point along the left edge x = −1, we have

(3.13) u−1,j = 2(1 + μ)u0j − u1j − μu0,j−1 − μu0,j+1.

Similar relations can be derived for other ghost points away from the corner. Near the
corner, there will be a coupling between the two ghost points attached to the corner,
e.g.,

u−1,0 + μu0,−1 = 2(1 + μ)u00 − u10 − μu01,

μu−1,0 + u0,−1 = 2(1 + μ)u00 − μu10 − u01.

Since μ �= 1, we can solve a 2× 2 system to obtain equations for u−1,0 and u0,−1 that
depend only on u00, u01, and u10. However, as we will see in the next section, it is
unnecessary to do this calculation by hand in an actual MATLAB implementation.

3.2.5. MATLAB Implementation. MATLAB contains built-in commands for
generating a grid on a square and calculating the 5-point Laplacian with Dirichlet
boundary conditions:

G = numgrid(’S’, n+2); % Generate square grid with n points per side

D = delsq(G); % Construct 5-point Laplacian for G

We could attempt to construct the bi-Laplacian operator by simply calculating D*D,
but this would give the wrong discretization near the boundary. Our goal is to con-
struct the correct discrete eigenvalue problem by making only minor modifications to
D. In particular, we will construct two operators N and L that are identical to D
away from the boundary, such that w = Lu and the product Nw = NLu gives the
correct stencil everywhere.

First, we must carefully identify the grid points in G corresponding to interior,
boundary, and ghost points. The following commands lead to the labeling in Fig-
ure 3.2:

% Define boundary and ghost points

bl = G(3:n,3); br = G(3:n,n); bt = G(3,3:n)’; bb = G(n,3:n)’;

gl = G(3:n,2); gr = G(3:n,n+1); gt = G(2,3:n)’; gb = G(n+1,3:n)’;

We now construct the matrices N and L. By (3.9), the part ofN corresponding to
interior points coincides with the standard 5-point Laplacian matrix. Thus, by setting
N = D, only rows corresponding to boundary and ghost points need to be adjusted.

Boundary Point Adjustment. If we define w−1,j :=
∫
Γ4

∂w
∂n ds, then (3.10) be-

comes

(3.14) −
∫
∂V0j

∂w

∂n
ds ≈ 2w0j − w1j − 1

2
w0,j−1 − 1

2
w0,j+1 − w−1,j .
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0 0 0 0 0 0 0 0 0 0

0 . g g g g g g . 0

0 g b b b b b b g 0

0 g b x x x x b g 0

0 g b x x x x b g 0

0 g b x x x x b g 0

0 g b x x x x b g 0

0 g b b b b b b g 0

0 . g g g g g g . 0

0 0 0 0 0 0 0 0 0 0

Fig. 3.2 Position of interior nodes (x), boundary nodes (b), and ghost points (g) for n = 8.

Thus, when compared with the interior stencil, the coefficients with respect to bound-
ary variables need to be halved, whereas those corresponding to interior or ghost points
remain unchanged. For the left boundary, this adjustment can be done simply using

N(bl,bl) = N(bl,bl)/2;

The other boundaries are adjusted similarly. Note that corner points will be adjusted
twice (once for each edge they touch), which is exactly what we want: the stencil
(3.12) can be rewritten as

(3.15) −
∫
∂Vij

∂w

∂n
ds ≈ w00 − 1

2
w10 − 1

2
w01 − w0,−1 − w−1,0,

where w0,−1 :=
∫
Γ3

∂w
∂n ds, w−1,0 :=

∫
Γ4

∂w
∂n ds. Thus, we need to divide each of the

boundary coefficients by 2 and the diagonal by 4, which is equivalent to adjusting for
each edge separately.

Defining w at Ghost Points. For interior and boundary points, w is defined by
(3.7) as minus the discrete Laplacian of u. In principle, w is not defined at ghost
points; however, (3.14) and (3.15) suggest that it would be convenient to define them
as fluxes across the physical boundary, which involve mixed derivatives uxy at half
points (x0, yj+1/2). In other words, we need to replace the rows of L corresponding to
ghost points by stencils for uxy. Note that the term uxy(x0, yj+1/2) appears in both
w−1,j and w−1,j+1, which means we only need to calculate its stencil once. The fol-
lowing loop computes the stencil corresponding to uxy(x0, yj+1/2) and updates both
rows j and j + 1 at the same time. (This trick is similar to assembling finite element
matrices by looping through the elements instead of the nodes.)

for j=gl(1:end-1)’, % left boundary

L([j,j+1],[j,j+1,j+2*n,j+2*n+1]) = ...

L([j,j+1],[j,j+1,j+2*n,j+2*n+1]) + (mu-1)/2*[1,-1,-1,1;-1,1,1,-1];

end;

Eliminating Ghost Points. If we now form the product A = N*L, the stencil
would be correct everywhere. However, this system is too large: the eigenvalue prob-
lem should only contain points in the physical domain and not ghost points. Thus,
we need to eliminate the ghost points using boundary conditions of the type (3.13).
Since the rows of A corresponding to ghost points are spurious anyway, we can replace
them by equations of the type (3.13):
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588 MARTIN J. GANDER AND FELIX KWOK

A(gl,:) = 0; % left ghost points

for i=gl’,

A(i,[i+n,i,i+n-1,i+n+1,i+2*n]) = [2*(1+mu), -1, -mu, -mu, -1];

end;

Once all the boundary conditions are in place, we are ready to eliminate the ghost
points to obtain a system that contains only points in the physical domain. This is
done by taking a Schur complement with respect to the ghost points:

phys = G(3:n,3:n); phys = phys(:); % put all physical nodes in a vector

ghost = [gl; gr; gt; gb];

A0 = A(phys,phys) - A(phys,ghost)/A(ghost,ghost)*A(ghost,phys);

It remains now to solve the generalized eigenvalue problem

A0u = λBu,

where B is a diagonal matrix with h2 for interior points, h2/2 for edge points, and
h2/4 for corner points (cf. (3.8)). The full program is shown in the appendix. Note
that A0 is a very large but sparse matrix of size (N + 1)2 × (N + 1)2 but with each
row containing at most 13 nonzero entries. In addition, we are only interested in
the first few eigenmodes (the lowest 50 or so), since the higher modes are very poor
approximations of the continuous eigenfunctions. This means one should use a method
such as Lanczos to compute these eigenvalues.

4. Numerical Results.

4.1. Chladni Figures. If we compare the two sets of Chladni figures obtained
by the spectral (Figure 4.1) and finite difference (Figure 4.2) methods, we notice the
following differences:

• For simple modes (eigenvalues with multiplicity 1, which correspond to m+n
even), the figures are identical except when both m and n are large. This
confirms that the two approaches really do solve the same eigenvalue problem,
since the resulting eigenvectors are the same.

• For double modes (eigenvalues with multiplicity 2, which occur when m+ n
is odd), the two sets of figures have a similar shape, but they could be mirror
images and/or slight perturbations of one another. This happens because the
choice of orthogonal basis for the corresponding eigenspace is not unique.

• For higher modes (m,n ≥ 5), the figures generated by the spectral method
begin to lose detail, e.g., nodal lines begin to intersect when they should curve
and avoid each other. This is because we only used a small number of spectral
basis functions 0 ≤ m,n ≤ 6. By increasing the number of basis functions, we
recover the same Chladni figures as in the finite difference case, which used
100 grid points per direction (see Figure 4.3).

4.2. Comparison with Chladni and Ritz. We now compare the eigenvalues we
computed with the historical results of Chladni and Ritz. Table 4.1 shows the first 15
eigenvalues computed by the two methods. Observe that the spectral eigenvalues form
a decreasing sequence, whereas the finite difference ones form an increasing sequence.
Thus, when the relative gap is small (e.g., less than 1%), we can be confident that
the true eigenvalue lies within this interval and is well approximated by the average
of the two values.
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Fig. 4.1 Chladni figures computed using the spectral method invented by Ritz, arranged according
to the leading mode wmn, m,n ≤ 6.

Taking this approximation as the “true” eigenvalue, we compare our results with
the published results of Chladni [7] and Ritz [25]. In Figure 4.4, the height of the
marker indicates the eigenvalue found by either Chladni or Ritz, plotted against our
computed values along the x-axis. We see that both men obtained exceptionally
accurate results, considering Chladni relied on his ear for the frequencies and Ritz
solved the eigenvalue problems without the help of a computer!

We further observe that Ritz tended to overestimate the eigenvalues (cf. the be-
ginning of section 3.1), whereas Chladni tended to underestimate them. The overesti-
mation by Ritz can be explained mathematically: since he is replacing a minimization
problem in an infinite-dimensional function space by an approximate minimization in
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Fig. 4.2 Chladni figures computed using the finite difference method with 100 grid points per direc-
tion, arranged in the same way as Figure 4.1.
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Fig. 4.3 Chladni figures obtained by the spectral method using 10 basis functions per direction (0 ≤
m,n ≤ 9).

a finite-dimensional subspace, the approximate minimum must be larger than the
true minimum. Thus, his values are necessarily overestimations of the true values.
The same reasoning also explains why the eigenvalues we obtained using the spec-
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Table 4.1 First 15 eigenvalues obtained using the spectral and finite difference discretizations, to-
gether with their position in Figures 4.1 and 4.2; an asterisk means the row corresponds
to a double eigenvalue. For the spectral method, N is the number of basis functions in
each direction in the Galerkin approximation; for finite differences, N is the number of
grid points in each direction. The relative gap between the two methods (with the largest
N) is shown.

Spectral Finite Difference Gap
N 7 8 9 10 100 200 400

(1,1) 12.5 12.5 12.5 12.5 12.4 12.5 12.5 0.08%
(0,2) 26.2 26.1 26.1 26.1 26.0 26.0 26.0 0.46%
(2,0) 35.8 35.8 35.8 35.8 35.6 35.6 35.6 0.36%
(2,1)* 81.3 81.2 81.2 81.2 80.8 80.9 80.9 0.36%
(3,0)* 236.7 236.4 236.4 236.3 234.9 235.3 235.4 0.39%
(2,2) 271.0 270.2 270.2 270.0 269.0 269.3 269.3 0.24%
(1,3) 322.5 322.5 322.4 322.4 320.1 320.5 320.7 0.53%
(3,1) 377.8 377.8 377.2 377.2 374.6 375.1 375.2 0.53%
(3,2)* 734.8 733.6 732.8 732.4 728.7 729.8 730.0 0.33%
(0,4) 881.2 880.3 880.3 879.8 873.3 875.5 876.1 0.42%
(4,0) 938.0 937.2 937.2 936.7 930.8 933.1 933.6 0.33%
(4,1)* 1111.4 1111.0 1109.9 1109.7 1099.8 1102.5 1103.2 0.59%
(3,3) 1538.0 1538.0 1532.0 1532.0 1522.3 1525.0 1525.7 0.42%
(2,4) 1707.2 1705.4 1705.4 1705.0 1695.4 1699.5 1700.5 0.26%
(4,2) 1837.3 1826.0 1826.0 1821.6 1807.7 1811.8 1812.8 0.49%
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Chladni
Ritz

Fig. 4.4 Eigenvalues found by Chladni and Ritz.

tral method form a decreasing sequence: by increasing the number of basis functions,
we are searching in an ever larger subspace, over which the minimum must become
smaller. As for Chladni’s underestimation, remember that his results come from ob-
served frequencies produced with an experimental apparatus. Thus, we contend that
the error stems from friction in the real physical system, since friction tends to lower
the frequency of vibration when compared with the ideal (frictionless) system.
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4.3. Suspension Bridges. If we want to calculate the eigenmodes of a thin plate
that qualitatively resembles the shape of an oscillating bridge, different boundary
conditions must be applied at the two ends of the bridge, since the bridge must be
fixed and not allowed to move freely there. If we observe the video of the Tacoma
Bridge carefully, we see that the center span of the bridge is supported by girders
located at the two towers. This means there is no vertical displacement at the towers
(i.e., at the two ends of the center span), so we must impose the boundary condition

(4.1) u = 0, x = ±L, y ∈ (−H,H).

Note that this is an essential boundary condition, meaning that it must be included
as a constraint in the min-max problem (2.22), i.e., all the functions in the space U
must satisfy it. This is because the admissible deformations εv(x, y) in (2.3) must
also satisfy v = 0 at the two ends, so that deformations that change the position of
the bridge at the anchor points are disallowed. Thus, the constrained minima of the
energy functional are different (with the value of the functional necessarily higher)
than the unconstrained minima.

To derive the complete set of boundary conditions for the strong form, we refer
back to (2.17). Since v = 0 at x = ±L, the term∫

∂Ω

[
uxxx + (2 − μ)uxyy

]
vnx ds

must vanish along x = ±L. This means the edge conditions (2.19) must be replaced
by

u = 0, uxx + μuyy = 0, x = ±L, y ∈ (−H,H),

or, using the fact that u = 0 implies uyy = 0 along the edge,

(4.2) u = uxx = 0, x = ±L, y ∈ (−H,H).

Note that without the variational form, it would be difficult to know exactly which
boundary condition to keep and which one to remove.

If we were to use Ritz’s method to solve the bridge problem, we would need to
use one-dimensional eigenfunctions that satisfy (4.2) in the x-direction rather than
(3.2), i.e., different integrals will need to be evaluated. On the other hand, the finite
difference code can be adapted much more easily: all we need to do is to impose
u = uxx = 0 on two of the four boundaries:

A(bl,:) = 0; A(bl,bl) = speye(length(bl)); % left boundary points

A(br,:) = 0; A(br,br) = speye(length(br)); % right boundary points

for i=gl’, %left ghost points

A(i,:) = 0; A(i,[i+1,i,i+2]) = [2, -1, -1];

end;

for i=gr’, %right ghost points

A(i,:) = 0; A(i,[i-1,i,i-2]) = [2, -1, -1];

end;

We can now eliminate the boundary points (in addition to the ghost points) by taking
a Schur complement. We run the modified code to obtain the two eigenmodes that
qualitatively approximate the vibrations in our two bridge examples. The plots are
shown in Figure 4.5, along with photos of the two bridges extracted from the videos.
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Fig. 4.5 Top: A comparison of an eigenmode of a thin plate to the shape of the Tacoma Bridge
shortly before its collapse. Bottom: A comparison of an eigenmode of a thin plate with the
shape of the bridge oscillation excited by an earthquake in Puerto Aysén, Chile.

5. Related Problems and Further Reading. PDE eigenvalue problems are a
fascinating subject, and we have touched on only a few aspects in this paper. In
connection with nodal lines and Chladni figures, there is the famous nodal line theo-
rem: for the simple case of a vibrating string, it is well known that it is divided into
exactly k nodal intervals by the zeros of its kth eigenfunction. For a two-dimensional
membrane modeled by the Laplace equation, Courant’s nodal line theorem states that
k is an upper bound for the number of nodal domains of the kth eigenfunction; see,
for example, [22] and [1]. It would be interesting to see whether this conclusion also
holds for the elastic plate, which is modeled by the biharmonic equation. One can
also go a step further and ask if it is possible to find the potential from given nodal
lines, also known as the inverse nodal problem [12]. A closely related inverse problem
for the Laplace operator is whether one can hear the shape of a drum; see the famous
article by Mark Kac [15]. Ritz did in fact solve an inverse problem himself: to match
his calculations with Chladni’s experimental data, he needed the value of the material
density. However, Chladni had not stated in his work whether the plates he used were
made of glass, or metal, or both. So in order to determine this, Ritz compared his
pitch calculations to the pitch values in the tables of Chladni and found that, for
agreement, the density must have been that of glass.5

Last, we would like to note that we have only considered one particular spectral
method and one finite difference method for the biharmonic operator. There are many

5. . . im allgemeinen jedoch zeigt die Übereinstimmung mit unserer für Glas ausgeführten Rech-
nung, dass er Glasplatten benutzt hat.
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other discrete formulations; in particular, we would like to mention the finite element
methods presented in [13] and the finite difference methods proposed by [4, 17, 23, 24];
see also the recent paper [2].

Appendix. MATLAB Code for Chladni Figures.

n = 100; % Number of points per direction (includes ghost points)

mu = 0.225; % Material constant

h = 2/(n-3); % Distance between grid points

M = 90; % Number of eigenvalues desired

% Set up grid

G = numgrid(’S’,n+2); D = delsq(G);

% Define boundary and ghost points

bl = G(3:n,3); br = G(3:n,n); bt = G(3,3:n)’; bb = G(n,3:n)’;

gl = G(3:n,2); gr = G(3:n,n+1); gt = G(2,3:n)’; gb = G(n+1,3:n)’;

% Initialize N and L to the discrete Laplacian

L = D; N = D;

% Correct outer Laplacian N for boundary conditions

N(bl,bl) = N(bl,bl)/2; N(br,br) = N(br,br)/2;

N(bt,bt) = N(bt,bt)/2; N(bb,bb) = N(bb,bb)/2;

% Trick: Modify the stencil in L at the ghost points to approximate

% ddu/dndt, which gives the correct boundary conditions

L([gl;gr;gt;gb],:) = 0;

for i=gl(1:end-1)’, %left

L([i,i+1],[i,i+1,i+2*n,i+2*n+1]) = ...

L([i,i+1],[i,i+1,i+2*n,i+2*n+1]) + (mu-1)/2*[1,-1,-1,1;-1,1,1,-1];

end;

for i=gr(1:end-1)’, %right

L([i,i+1],[i,i+1,i-2*n,i-2*n+1]) = ...

L([i,i+1],[i,i+1,i-2*n,i-2*n+1]) + (mu-1)/2*[1,-1,-1,1;-1,1,1,-1];

end;

for i=gt(1:end-1)’, %top

L([i,i+n],[i+n,i,i+n+2,i+2]) = ...

L([i,i+n],[i+n,i,i+n+2,i+2]) - (mu-1)/2*[1,-1,-1,1;-1,1,1,-1];

end;

for i=gb(1:end-1)’, %bottom

L([i,i+n],[i+n,i,i+n-2,i-2]) = ...

L([i,i+n],[i+n,i,i+n-2,i-2]) - (mu-1)/2*[1,-1,-1,1;-1,1,1,-1];

end;

% Compose N and L to get 4th order operator

A = N*L;

% Use boundary conditions to eliminate ghost points

A([gl; gr; gt; gb],:) = 0;

for i=gl’, %left
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A(i,[i+n,i,i+n-1,i+n+1,i+2*n]) = [2*(1+mu), -1, -mu, -mu, -1];

end;

for i=gr’, %right

A(i,[i-n,i,i-n-1,i-n+1,i-2*n]) = [2*(1+mu), -1, -mu, -mu, -1];

end;

for i=gt’, %top

A(i,[i+1,i,i+1+n,i+1-n,i+2]) = [2*(1+mu), -1, -mu, -mu, -1];

end;

for i=gb’, %bottom

A(i,[i-1,i,i-1+n,i-1-n,i-2]) = [2*(1+mu), -1, -mu, -mu, -1];

end;

% Eliminate ghost points

phys = G(3:n,3:n); phys = phys(:); % put all physical nodes in a vector

ghost = [gl; gr; gt; gb];

A0 = A(phys,phys) - A(phys,ghost)/A(ghost,ghost)*A(ghost,phys);

% RHS: take into account half cells and quarter cells

B = speye(n^2);

B(bl,bl) = B(bl,bl)/2; B(br,br) = B(br,br)/2;

B(bt,bt) = B(bt,bt)/2; B(bb,bb) = B(bb,bb)/2;

B0 = B(phys,phys);

% Generalized eigenvalue problem

[V,Lambda] = eigs(A0/h^4,B0,M,’SM’);

[y,p] = sort(diag(Lambda));

x=[-1:2/(n-3):1];

for i=4:M, % plot Chladni figures

contour(x,x,reshape(V(:,p(i)),n-2,n-2),[0 0],’k-’);

axis equal

end;
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