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Abstract. Various nonlinear Schwarz domain decomposition methods were proposed to solve
the one–dimensional equidistribution principle in SINUM Vol. 50, Issue 4, pp. 2111-2135, 2012, DOI:
10.1137/110849936. A corrected proof of convergence for the linearized Schwarz algorithm presented
in Section 3.2, under additional hypotheses, is presented here. An alternative linearized Schwarz
algorithm for equidistributed grid generation is also provided.
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In [1] we analyzed various parallel domain decomposition (DD) methods applied
to the nonlinear boundary value problem formulation of the 1D equidistribution prin-
ciple.

If u(x) is a given function on Ωp = (0, 1), then an equidistributing mesh transfor-
mation is found by solving the nonlinear two–point boundary value problem (BVP)

d

dξ

(
M(x, u)

dx

dξ

)
= 0, x(0) = 0, x(1) = 1, (1)

on Ωc := (0, 1) for the mesh transformation x(ξ) : Ωc → Ωp. After analyzing nonlinear
Schwarz methods to solve this BVP, a Schwarz iteration requiring only a single linear
solve during each iteration was proposed in Section 3.2 of [1]. For this iteration, we
decompose the domain Ω = (0, 1) into two overlapping subdomains Ω1 = (0, β) and
Ω2 = (α, 1) with α < β. The proposed parallel Schwarz iteration then computes: for
n = 1, 2, . . .

(M(xn−1
1 )xn

1,ξ)ξ = 0, ξ ∈ Ω1, (M(xn−1
2 )xn

2,ξ)ξ = 0, ξ ∈ Ω2,

xn
1 (0) = 0, xn

2 (α) = xn−1
1 (α), (2)

xn
1 (β) = xn−1

2 (β), xn
2 (1) = 1.

The nonlinear mesh density function M(x) is frozen at the previous iteration, and
hence each Schwarz iteration involves the solution of a single linear BVP on each
subdomain.

Felix Kwok pointed out that the inequality used in [1] to majorize the series in
the expression for the subdomain solution xn

1 (ξ) does not hold in general, and in fact
we do not always have convergence of the sequence {xn

j (ξ)} for j = 1, 2. In fact, the
lack of convergence for some mesh density functions has been pointed out already in
[3] for the analogous (linearized) single domain iteration. We show below, however,
that the conclusion of Theorem 3.4 of [1] is correct under additional hypotheses on
the mesh density function M(x).

Suppose x(ξ) ∈ X, where X is the space of twice continuously differentiable
functions satisfying x(0) = 0, x(1) = 1 and 0 ≤ x(ξ) ≤ 1 for all ξ ∈ [0, 1]. Assume
M(x) is a continuously differentiable function of the mesh transformation x = x(ξ)
and that M is uniformly bounded away from zero and infinity, that is, there exists
constants m̌ and m̂ so that

0 < m̌ ≤ M(x) ≤ m̂ < ∞, for allx ∈ [0, 1]. (3)
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Defining N(x) := 1/M(x), the function N(x) satisfies

1

m̂
≤ N(x) ≤ 1

m̌
.

We now assume, in addition, N is Lipschitz with Lipschitz constant LN > 0,

|N(x)−N(y)| ≤ LN |x− y|, for all x, y ∈ [0, 1]. (4)

Hence for any ξ and x, y ∈ X we have

|N(x(ξ))−N(y(ξ))| ≤ LN∥x− y∥∞, (5)

where the ∥ · ∥∞ is the infinity norm over ξ.
Suppose X1 is the space of twice continuously differentiable functions on (0, β)

satisfying x(0) = 0 and X2 is the space of twice continuously differentiable functions
on (α, 1) satisfying x(1) = 1.

The following lemma, from [1], providing a representation of the subdomain so-
lutions in (2), is needed in the argument below.

Lemma 1. Assume M is continuously differentiable and satisfies (3) and (4).
The subdomain solutions, xn

1 (ξ) ∈ X1 and xn
2 (ξ) ∈ X2 of (2) are unique and given by

xn
1 (ξ) = xn−1

2 (β)G̃1(ξ, x
n−1
1 ) (6)

and

xn
2 (ξ) = xn−1

1 (α) + (1− xn−1
1 (α))G̃2(ξ, x

n−1
2 ), (7)

where

G̃1(ξ, x) :=
G1(ξ, x)

G1(β, x)
and G̃2(ξ, x) :=

G2(ξ, x)

G2(1, x)
,

with

G1(ξ, x) :=

∫ ξ

0

dξ̃

M(x(ξ̃))
and G2(ξ, x) :=

∫ ξ

α

dξ̃

M(x(ξ̃))
. (8)

The following fact, also from [1], will be useful in our analysis.
Lemma 2. For any initial guesses x0

1(β) and x0
2(α) satisfying 0 ≤ x0

1(β) ≤ 1 and
0 ≤ x0

2(α) ≤ 1, the subdomain solutions xn
1 (ξ) and xn

2 (ξ) defined in (6) and (7) are
members of X1 and X2 respectively. Furthermore, 0 ≤ G̃1(ξ, x) ≤ 1 for ξ ∈ (0, β) and
0 ≤ G̃2(ξ, x) ≤ 1 for ξ ∈ (α, 1) for functions x ∈ X1 and x ∈ X2 respectively.

To analyze the iteration we consider the double step as described in Lemma 3.
Lemma 3. Using the notation above, a double step of the iteration (2) may be

written as the mapping

(
xn
1 (ξ)

xn
2 (ξ)

)
=

(
F1(x

n−2
1 (ξ), xn−2

2 (ξ))
F2(x

n−2
1 (ξ), xn−2

2 (ξ))

)
, (9)

where

F1(x
n−2
1 , xn−2

2 ) :=
(
xn−2
1 (α) + (1− xn−2

1 (α))G̃2(β, x
n−2
2 )

)
G̃1

(
ξ, xn−2

2 (β)G̃1

(
ξ, xn−2

1

))
(10)
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F2(x
n−2
1 , xn−2

2 ) :=
(
1− xn−2

2 (β)G̃1(α, x
n−2
1 )

)
G̃2

(
ξ, xn−2

1 (α) + (1− xn−2
1 (α))G̃2(ξ, x

n−2
2 )

)
+ xn−2

2 (β)G̃1(α, x
n−2
1 ).

(11)

Proof. Substituting the expression for xn−1
2 (β) from (7) at iteration n − 1 into

(6) and substituting the expression for xn−1
1 (α) from (6) at iteration n − 1 into (7),

we obtain

xn
1 (ξ) = xn−1

2 (β)G̃1(ξ, x
n−1
1 ) = [xn−2

1 (α) + (1− xn−2
1 (α))G̃2(β, x

n−2
2 )]G̃1(ξ, x

n−1
1 )

xn
2 (ξ) = xn−1

1 (α) + (1− xn−1
1 (α))G̃2(ξ, x

n−1
2 )

= xn−2
2 (β)G̃1(α, x

n−2
1 )[1− G̃2(ξ, x

n−1
2 )] + G̃2(ξ, x

n−1
2 ).

Then substituting the expressions for xn−1
1 and xn−1

2 from (6) and (7) gives (9) with
F1 and F2 as in (10) and (11).

We prove that iteration (2) converges by showing that the mapping F = (F1, F2)
defined in (10) and (11) is a contraction in ∥ · ∥∞ under suitable restrictions on M .

We begin with some preliminary results.
Lemma 4. For any functions x ∈ X1 and y ∈ X2 we have

|G1(β, x)−G1(β, y)| ≤ βLN∥x− y∥∞

and

|G2(1, x)−G2(1, y)| ≤ (1− α)LN∥x− y∥∞.

Proof. We give the proof of the first inequality, the proof of the second is similar.
Basic inequalities and the Lipschitz condition (4) give

|G1(β, x)−G1(β, y)| =

∣∣∣∣∣
∫ β

0

N(x(ξ̃))−N(y(ξ̃)) dξ̃

∣∣∣∣∣ ≤
∫ β

0

∣∣∣N(x(ξ̃))−N(y(ξ̃))
∣∣∣ dξ̃

≤
∫ β

0

LN |x(ξ̃)− y(ξ̃)| dξ̃ ≤ βLN∥x− y∥∞.

Using the bounds on M and properties of definite integrals, the following bounds
on G1(β, x) and G2(1, x) hold.

Lemma 5. The quantities G1(β, x1) and G2(1, x2) satisfy

β

m̂
≤ G1(β, x1) ≤

β

m̌
,

m̌

β
≤ 1

G1(β, x1)
≤ m̂

β

for any function x1 ∈ X1 and

1− α

m̂
≤ G2(1, x2) ≤

1− α

m̌
,

m̌

1− α
≤ 1

G2(1, x2)
≤ m̂

1− α
,

for any function x2 ∈ X2,respectively.
The results in Lemma 4 and 5 allow us to prove the following pointwise bounds.
Lemma 6. For any x, y ∈ X the operators G̃1 and G̃2 satisfy

|G̃1(ξ, x)− G̃1(ξ, y)| ≤ LG̃1
(ξ)∥x− y∥∞,
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where

LG̃1
(ξ) =

2m̂2LNξ

m̌β
,

for any functions x, y ∈ X1, and

|G̃2(ξ, x)− G̃2(ξ, y)| ≤ LG̃2
(ξ)∥x− y∥∞,

where

LG̃2
(ξ) =

2m̂2LN (ξ − α)

m̌(1− α)
,

for any functions x, y ∈ X2.
Proof. We show the proof for G̃1, the proof for G̃2 is similar. The result is

obtained via the sequence of inequalities

|G̃1(ξ, x)− G̃1(ξ, y)| =

∣∣∣∣G1(ξ, x)

G1(β, x)
− G1(ξ, y)

G1(β, y)

∣∣∣∣
=

∣∣∣∣∣
∫ ξ

0
(N(x)G1(β, y)−N(y)G1(β, x)) dξ̃

G1(β, x)G1(β, y)

∣∣∣∣∣
≤

(
m̂

β

)2 ∫ ξ

0

|N(x)G1(β, y)−N(y)G1(β, x)| dξ̃

≤
(
m̂

β

)2 ∫ ξ

0

N(x)|G1(β, y)−G1(β, x)|+G1(β, x)|N(x)−N(y)|dξ̃

≤
(
m̂

β

)2
2βLNξ

m̌
∥x− y∥∞

=
2m̂2LNξ

m̌β
∥x− y∥∞.

We now state and prove the corrected convergence result for the linearized itera-
tion (2).

Theorem 7. Assume M is continuously differentiable and satisfies (3) and (4).
For any continuously differentiable initial guesses x0

1(ξ) ∈ X1 and x0
2(ξ) ∈ X2, the

linearized, parallel Schwarz iteration (2) will converge if, in addition, M is such that
the maximum of

LG̃1
(β)(1 + LG̃1

(β)) +
1

1 + β−α
1−β

m̌
m̂

+ LG̃2
(β), (12)

and

LG̃1
(α) +

1

1 + β−α
α

m̌
m̂

+ LG̃2
(1)
(
1 + LG̃2

(1)
)

(13)

is strictly less than one, where LG̃1
and LG̃2

are defined in Lemma 6.
Proof. We first note that in this linearized iteration, one gains regularity: if the

initial guess is continuously differentiable, the explicit solution formulas (6) and (7)
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show that after one iteration the iterates are already twice continuously differentiable,
and hence the algorithm produces a unique sequence of classical solutions.

We now show that F = (F1, F2)
T is a contraction, component–wise in norm ∥·∥∞

in the space X × X. Assume xj(ξ) and yj(ξ) are elements of Xj for j = 1, 2. For
brevity we introduce

Gx = G̃1(ξ, x2(β)G̃1(ξ, x1)) and Gy = G̃1(ξ, y2(β)G̃1(ξ, y1)).

Using (10), adding and subtracting (x1(α)+(1−x1(α))G̃2(β, y2))Gy, and applying
the triangle inequality gives

|F1(x1, x2)− F1(y1, y2)| =
∣∣∣(x1(α) + (1− x1(α))G̃2(β, x2)

)
Gx

−
(
y1(α) + (1− y1(α))G̃2(β, y2)

)
Gy

∣∣∣
≤

∣∣∣(x1(α) + (1− x1(α))G̃2(β, x2)
)
(Gx −Gy)

∣∣∣
+

∣∣∣((x1(α) + (1− x1(α))G̃2(β, x2)
)
−
(
y1(α) + (1− y1(α))G̃2(β, y2)

))
Gy

∣∣∣ .
We analyze each term in the sum above separately. Lemma 2 ensures 0 ≤ G̃2 ≤ 1

and since 0 ≤ x1,2, y1,2 ≤ 1 we have

x1(α) + (1− x1(α))G̃2(β, x2) ≤ x1(α) + (1− x1(α)) = 1.

Therefore, the first term in the sum above can be bounded by |Gx −Gy|.
From the definition of Gx and Gy and Lemma 6 we have

|Gx −Gy| =
∣∣∣G̃1(ξ, x2(β)G̃1(ξ, x1))− G̃1(ξ, y2(β)G̃1(ξ, y1))

∣∣∣
≤ LG̃1

(ξ)
∣∣∣x2(β)G̃1(ξ, x1)− y2(β)G̃1(ξ, y1)

∣∣∣ .
Adding and subtracting x2(β)G̃1(ξ, y1) inside the absolute value, using the triangle
inequality, Lemma 6, and the fact that |x2(β)| ≤ 1 and 0 ≤ G̃1 ≤ 1, we have∣∣∣x2(β)G̃1(ξ, x1)− y2(β)G̃1(ξ, y1)

∣∣∣ ≤ |x2(β)|
∣∣∣G̃1(ξ, x1)− G̃1(ξ, y1)

∣∣∣+ |G̃1(ξ, y1)| · |x2(β)− y2(β)|

≤ LG̃1
(ξ)∥x1 − y1∥∞ + |G̃1(ξ, y1)|∥x2 − y2∥∞,

≤ LG̃1
(β)∥x− y∥∞ + |G̃1(β, y1)|∥x− y∥∞, (14)

where LG̃1
is defined in the statement of Lemma 6 and we have now defined x, y ∈

X1 ×X2 as x := (x1, x2) and y := (y1, y2). Hence

|Gx −Gy| ≤ LG̃1
(β)
(
LG̃1

(β)∥x− y∥∞ + |G̃1(β, y1)|∥x− y∥∞
)
.

We now turn to the second term in the sum. Since |Gy| ≤ 1 we have∣∣∣((x1(α) + (1− x1(α))G̃2(β, x2)
)
−
(
y1(α) + (1− y1(α))G̃2(β, y2)

))
Gy

∣∣∣
≤

∣∣∣((x1(α) + (1− x1(α))G̃2(β, x2)
)
−
(
y1(α) + (1− y1(α))G̃2(β, y2)

))∣∣∣ .
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Adding and subtracting G̃2(β, y2)x1(α) we can rewrite this last expression as∣∣∣x1(α)− G̃2(β, x2)x1(α) + G̃2(β, y2)x1(α)− G̃2(β, y2)x1(α)

+ G̃2(β, x2)− y1(α) + G̃2(β, y2)y1(α)− G̃2(β, y2)
∣∣∣

=
∣∣∣(1− G̃2(β, y2))(x1(α)− y1(α)) + (1− x1(α))(G̃2(β, x2)− G̃2(β, y2))

∣∣∣
≤ (1− G̃2(β, y2))|x1 − y1|+ |G̃2(β, y2)− G̃2(β, x2)|.

Hence, using Lemma 6, we have

|F1(x1, x2)− F1(y1, y2)| ≤ |Gx −Gy|+ (1− G̃2(β, y2))|x1 − y1|+ |G̃2(β, y2)− G̃2(β, x2)|

≤ LG̃1
(β)
(
LG̃1

(β)∥x− y∥∞ + |G̃1(β, y1)|∥x− y∥∞
)

+ (1− G̃2(β, y2))∥x− y∥∞ + LG̃2
(β)∥x− y∥∞

≤
(
LG̃1

(β)(1 + LG̃1
(β)) + (1− G̃2(β, y2)) + LG̃2

(β)
)
· ∥x− y∥∞,

where x = (x1, x2) and y = (y1, y2).
Finally, the quantity 1− G̃2(β,w) can be rewritten as

1− G̃2(β,w) = 1−
∫ β

α
N(w(s))ds∫ 1

α
N(w(s))ds

=

∫ 1

β
N(w(s))ds∫ 1

α
N(w(s))ds

=
1

1 +
∫ β
α

N(w(s))ds∫ 1
β
N(w(s))ds

. (15)

Now ∫ β

α
N(w(s))ds∫ 1

β
N(w(s))ds

≥
(β − α) 1

m̂

(1− β) 1
m̌

.

Hence

1− G̃2(β, x) ≤
1

1 + β−α
1−β

m̌
m̂

.

Therefore, for all ξ, and functions x1(ξ), x2(ξ), y1(ξ) and y2(ξ), we have

|F1(x1, x2)−F1(y1, y2)| ≤

(
LG̃1

(β)(1 + LG̃1
(β)) +

1

1 + β−α
1−β

m̌
m̂

.+ LG̃2
(β)

)
·∥x−y∥∞.

The result for the second component of F follows in a similar fashion and the
proof is complete.

The sufficient condition that the expressions in (12) and (13) be less than one
imposes a rather stringent requirement on the function M ; for example the range
of M values, [m̌, m̂], and the derivative of M . And although the requirement is
not necessary in practice, there are indeed difficulties with convergence for highly
nonlinear mesh density functions.

An alternating Schwarz version of this linearized algorithm is presented in [2].
This alternating algorithm obtains faster convergence by using the most recently
computed boundary information at the subdomain interfaces. The second transmis-
sion condition in (2) would be changed to xn

2 (α) = xn
1 (α) to obtain the alternating
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Schwarz iteration. The improved convergence is obtained at the cost of losing obvious
parallelization. The technique in the proof above can be easily modified to handle the
alternating case and hence provide a corrigendum of the result in [2].

We conclude by pointing out that there is, in fact, a simpler linear Schwarz itera-
tion for the solution of the equidistributing mesh transformation which is convergent
without the restrictions on M stated in Theorem 7. This linear iteration, however,
gives the inverse mesh transformation, ξ(x), as its limit. The iteration is obtained by
rearranging the nonlinear BVP for x(ξ) to give the linear BVP

d

dx

(
1

M(x)

dξ

dx

)
= 0, ξ(0) = 0, ξ(1) = 1,

for ξ(x). As is well–known, for sufficiently smooth m̌ ≤ M(x) ≤ m̂ the maximum
principle gives the convergence result of the parallel or alternating Schwarz methods
applied to this linear problem. The drawback of this approach is that the limiting
solution ξ(x) then needs to be inverted numerically if the mesh locations in the physical
domain are required.
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