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1. Introduction

The purpose of these notes is to introduce a few numerical methods for approx-
imating the eigenvalues and eigenfunctions of partial differential operators. Such
numerical approximations are often important in physics and engineering, as they
can be used to describe the vibrations of a physical structure.

1.1. Vibrations and Eigenvalues. Consider a thin membrane modelled as a
two-dimensional bounded, open subset Ω with boundary ∂Ω. We describe its vi-
brating motion over a time interval (0, tf ) in terms of its vertical displacement
z : Ω × (0, tf ) → R, starting from an initial displacement z0(x, y) and initial velo-
city v0(x, y). Assume that the boundary of the membrane is fixed, so that its
displacement is zero at all times. If there are no external forces acting on the mem-
brane, i.e., the only forces driving the vibrating motion are the restoring force due
to the deformation of the membrane, then Newton’s second law states that

∂2z

∂t2
= −L z, in Ω× (0, tf ],

where L is a spatial differential operator acting on z(x, y, t). The precise form of L
depends on the model used for the material and can often be derived from energy
considerations; see Section 5 for the vibrating plate. For the vibrating membrane,
a simple model uses the scaled Laplacian operator

L z = −c∆z := −c
(∂2z

∂x2
+
∂2z

∂y2

)
, c > 0,

which is a second-order linear elliptic differential operator. As a result, we get the
linear initial-boundary value problem

(1)

∂2z

∂t2
= c∆z in Ω× (0, tf )

z|t=0 = z0(x, y),
∂z

∂t

∣∣∣∣
t=0

= v0(x, y)

z|∂Ω = 0, t ∈ (0, tf ).

The requirement that z vanish along the boundary is known as a homogeneous
Dirichlet boundary condition on z.

1.2. Separation of Variables. A standing wave is any solution of (1) of the form

z(x, y, t) = u(x, y) · T (t).

Because of linearity, any linear combination of standing waves is also a solution of
(1). A classical technique for solving linear problems of this type is to first seek
a family of standing wave solutions, and then find a linear combination of these

1
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solutions that satisfies the initial conditions. This procedure is known as separation
of variables.

More concretely, if z(x, y, t) = u(x, y)T (t) is a standing wave solution, then
substituting into the PDE yields

T ′′(t)u(x, y) = −L u(x, y)T (t)

or

(2) −T
′′(t)
T (t)

=
L u(x, y)

u(x, y)
,

where we assumed that u(x, y) and T (t) do not vanish identically. Since the left-
hand side is independent of x and y, and the right-hand side independent of t, we
see that both sides are in fact constant; in particular, we have

(3)
L u(x, y)

u(x, y)
= λ or L u = λu,

i.e., u is an eigenfunction of L with eigenvalue λ, which are assumed to exist.1

Moreover, we see that λ is non-negative, since we can multiply (3) by u and integrate
to obtain ∫

Ω

λu2 dx = −c
∫

Ω

u∆u dx = c

∫
Ω

|∇u|2 dx,

where the boundary terms in Green’s identity vanishes because u|∂Ω = 0. Thus,
we see that

λ =
c
∫

Ω
|∇u|2 dx∫

Ω
u2dx

≥ 0.

Let un(x, y) be an eigenfunction with eigenvalue λn. Then (2) implies that the
corresponding time-dependent function T = Tn(t) satisfies

T ′′n (t) = −λTn(t) =⇒ Tn(t) = an cos(
√
λnt) + bn sin(

√
λnt).

Thus, the eigenvalues λn can be interpreted as the square of the frequencies of
vibration. Taking linear combinations over all such frequencies, we can write the
solution z(x, y, t) as

z(x, y, t) =

∞∑
n=1

an cos(
√
λnt)un(x, y) + bn sin(

√
λnt)un(x, y),

where the coefficients an and bn are determined by the initial conditions

z(x, y, 0) =

∞∑
n=1

anun(x, y) = z0(x, y),

∂z

∂t
(x, y, 0) =

∞∑
n=1

√
λnbnun(x, y) = v0(x, y).

Since the eigenfunctions {un}∞n=1 form an orthonormal basis of L2(Ω) by the
spectral theorem [31, Theorem 4.1], it is always possible to find an and bn such that
the above equality holds in the sense of L2-convergence for every z0, v0 ∈ L2(Ω).

For special geometries and boundary conditions, it is possible to solve the eigen-
value problem analytically. For example, if Ω = (0, 1) × (0, 1) is the unit square

1For the existence and uniqueness of eigenvalues and eigenvectors for the Laplacian operator

with Dirichlet boundary conditions, see Chapter 5 of Richard Laugesen’s notes on the spectral
theory of PDEs [31].
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and u = 0 on the boundary ∂Ω, then one can again use separation of variables and
find that the eigenfunctions of the negative Laplacian L = −∆ (with c = 1) are of
the form

umn(x, y) = sin(mπx) sin(nπy),

with corresponding eigenvalues λmn = π2(m2 + n2). Analytical solutions are also
available for rectangle, discs and sectors [40, Chapter 11]. For more complicated
geometries, however, one can only obtain approximations to the eigenvalues by
replacing the PDE eigenvalue problem by a finite-dimensional, approximate matrix
eigenvalue problem. As with any approximation, we are interested in the following
questions:

(1) How to approximate the continuous problem by a discrete one?
(2) How good is the approximation?
(3) How to solve the associated finite dimensional problem?

To answer the first question, we will consider two methods in these notes: the finite
difference method will be discussed in Section 2, and the finite element method
will be discussed in Section 3. For each method, we will study its approximation
properties and establish some convergence results for the Laplace problem. We will
briefly consider the third question in Section 4, where we explain the fundamentals
of numerical methods for matrix eigenvalue problems. Finally, in Section 5, we
consider a more complicated example with a fourth order biharmonic operator and
different types of boundary conditions. Section 6 provides some suggestions for
further reading, and Section 7 contains practice problems given during the CRM
Summer School on Spectral Theory and Applications, held in Quebec City, Canada
in August 2016.

2. Finite Difference Methods

The finite difference method is perhaps the simplest discretization that can be
used to approximate a PDE eigenvalue problem. In essence, one uses a Taylor-based
approximation to replace partial derivatives by partial differences, and then solves
the transformed eigenvalue problem, which is now finite dimensional. As we will
see, the method works best for domains whose boundaries align with a rectangular
grid.

2.1. Finite Difference for the 2D Laplacian Operator. Consider the eigen-
value problem on the unit square Ω = (0, 1)× (0, 1)

−∆u = λu, u = 0 on ∂Ω

Instead of seeking u(x, y) everywhere, we seek an approximation of it on a uniform
grid

uij ≈ u(xi, yj), 1 ≤ i, j,≤ n− 1

with xi = ih, yj = jh, h = 1/n. This {uij}Ni,j=0 is called a grid function, since it is

a function defined on the grid {(xi, yj)}Ni,j=0. If uij represents exact values of u at
the grid points, then the second derivatives uxx and uyy can be written as

uxx =
ui−1,j − 2uij + ui+1,j

h2
+O(h2), uyy =

ui,j−1 − 2uij + ui,j+1

h2
+O(h2),
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Figure 1. A five-point finite difference stencil on a regular grid,
shown in red.

which can be verified readily using Taylor expansions. Substituting these approxi-
mations into the PDE eigenvalue problem and dropping the O(h2) terms, we obtain
the discrete eigenvalue problem

(4)
4uij − ui−1,j − ui+1,j − ui,j−1 − ui,j+1

h2
= λ̃uij

for 1 ≤ i, j ≤ n− 1, with boundary conditions

ui,0 = ui,n = u0,j = un,j = 0.

In Figure 1, we show the location of the five unknowns involved in the equation (4)
associated with the point w. If we gather all (n − 1)2 linear equations and write
them in matrix form, we obtain the matrix eigenvalue problem

Au = λ̃u,

where u is a vector obtained from the grid function uij by removing the boundary
nodes (whose values are known to be zero), and by imposing a contiguous ordering
on the remaining nodes, from 1 to (n−1)2. For example, if we use the lexicographical
ordering

uT = (u11, . . . , un−1,1 | u12, . . . , un−1,2 | · · · | u1,n−1, . . . , un−1,n−1)T ,

then the matrix A has the form

A =


T −I
−I T −I

. . .
. . .

. . .

−I T −I
−I T

 , where T =


4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4


and I is the (n− 1)× (n− 1) identity matrix. Note that A is a sparse matrix with
at most five entries per row, since each equation only contains five unknowns. This
motivates the use of eigenvalue solvers for sparse matrices, which we will discuss in
Section 4.

2.2. Discrete Eigenvalues. For the simple case of a unit square, it is in fact
possible to calculate the eigenvalues and eigenvectors analytically. Let u be the
vector corresponding to the grid function (uij) of the form

uij = sin(iθ) sin(jφ),
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where θ and φ are fixed constants. Note that this vector satisfies the boundary
conditions

ui,0 = u0,j = 0.

Using some elementary trigonometric identities, we can show that

4uij − ui−1,j − ui+1,j − ui,j−1 − ui,j+1 = (4− 2 cos(θ)− 2 cos(φ))uij ,

so that (4) implies, for uij 6= 0, that

λ̃ =
4− 2 cos(θ)− 2 cos(φ)

h2
=

4

h2

[
sin2(θ/2) + sin2(φ/2)

]
.

To determine θ and φ, we use the remaining boundary conditions

un,j = 0 =⇒ sin(nθ) = 0

ui,n = 0 =⇒ sin(nφ) = 0

Thus, the possible θ and φ values are

θk =
kπ

n
, φ` =

`π

n
for 1 ≤ k, l ≤ n− 1.

It is possible to show that for different (k, `) pairs, the resulting eigenfunctions are
mutually orthogonal, so they are linearly independent. The associated eigenvalues
are

λ̃k` = 4n2

[
sin2

(kπ
2n

)
+ sin2

( `π
2n

)]
for k = 1, . . . , n − 1, ` = 1, . . . , n − 1. Because discrete sine functions of different
frequencies are mutually orthogonal, we have found (n − 1)2 linearly independent
eigenfunctions, so we have found all the eigenvalues. Note that some of them have
multiplicities higher than 1, because of the symmetry between k and `.

We now compare with the discrete eigenvalues with those of the continuous
problem, which we found in Section 1 to be

λk` = π2(k2 + `2).

Theorem 2.1 (Convergence of discrete eigenvalues). For the Laplacian problem

on the unit square, the discrete eigenvalues λ̃k` obtained from a finite difference
discretization with mesh size h = 1/n, n > k, l, satisfy λ̃k` ≤ λk` with

|λ̃k` − λk`|
|λk`|

≤ C(k, `)h2,

where C(k, `) = 1
12 max(k2, `2) is independent of h but dependent on k and `.

Proof. Using the definition h = 1/n, we calculate

(5) λk` − λ̃k` = k2π2

[
1−

( 2

kπh
sin(kπh/2)

)2
]

+ `2π2

[
1−

( 2

`πh
sin(`πh/2)

)2
]
.

Noting that for 0 < θ < π/2, we have

1− θ2

6
≤ sin θ

θ
≤ 1,

we immediately deduce that λ̃k` ≤ λk` for any choice of k and `. Moreover, we have

1− sin2 θ

θ2
=

(
1− sin θ

θ

)(
1 +

sin θ

θ

)
≤ θ2

6
· 2 =

θ2

3
,
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Figure 2. Relative error of the eigenvalues on the unit square
obtained from a finite difference discretization for different mesh
sizes.

so applying this estimate to (5) with θ = kπh/2 and θ = `πh/2 leads to

0 ≤ λk` − λ̃k` ≤
(kπ)4 + (`π)4

12
h2 ≤ max(k2, `2)π2

12
λk`h

2,

from which the conclusion follows. �

To illustrate Theorem 2.1, we plot in Figure 2 the relative error |λk`− λ̃k`|/|λk`|
of discrete eigenvalues λ̃k` for different values of n. We see that as we increase n,
the relative error becomes smaller, meaning they become more and more accurate.
Nonetheless, the smallest eigenvalues are much better approximated than the larger
ones, especially for small n. Indeed, the relative error is much worse for the larger
eigenvalues than for the small ones. This is consistent with the statement of the
theorem, where the constant in front of the relative error grows with k and `.
Thus, for the larger eigenvalues, a much finer grid is needed to obtain a good
approximation.

2.3. L-shaped Domain. The real power of numerical methods lies in their ability
to produce approximate eigenvalues when they cannot be computed analytically.
Consider the L-shaped domain shown in the left panel of Figure 3. We wish to
study the eigenvalues of the Laplacian on this domain with Dirichlet boundary
conditions; in other words, we consider

−∆u = λu,

u|∂Ω = 0.

The finite difference method with a regular grid (4) can be used here, with the only
differences being that there are no unknowns corresponding to points in the second
quadrant, and that all nodes along the edges {0} × [0, 1] and [−1, 0] × {0} need
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Figure 3. Left: an L-shaped domain. Right: Error of the first
four eigenvalues as a function of the grid size n.

to take on the value zero. In Matlab, the matrix A can be generated conveniently
using the commands

G = numgrid(’L’,n+1);

A = n^2/4*delsq(G);

We then calculate the four smallest eigenvalues of the resulting matrix for mesh sizes
h = 1/n. Since we do not know the exact eigenvalues in the continuous case, we
approximate them by extrapolation: assuming that each discrete eigenvalue behaves
like λ̃k` = λk`+Chα, we use the ε-algorithm by P. Wynn (cf. [21, §5.2.4]) to obtain
its limit as h → 0. We then subtract this value from the discrete eigenvalues to
compute the error, which is plotted on the right panel of Figure 3. Moreover, we
plot corresponding eigenfunctions in Figure 4. Note the resemblance between the
first eigenfunction and the MATLAB logo. The latter is in fact an approximation
of the eigenfunction, obtained using the Method of Particular Solutions; see Section
6 for more details and references.

Regarding the approximation errors, we observe that the first eigenvalue behaves
differently from the other three: whereas the error curves for the other three have
the same slope, and behaves like O(h2), the first eigenvalue converges more slowly,
behaving more like O(hα) with 1 < α < 2. In fact, the reason has to do with the
regularity of the eigenfunction itself: whereas the other three eigenfunctions appear
to be smooth, the first eigenfunction has a fold near the re-entrant corner and is
not sufficiently differentiable near it. As a result, the Taylor expansion that was
used to derive the finite difference method is no longer valid near the re-entrant
corner, and the method suffers from loss of accuracy as a result.

2.4. More General Boundary Conditions. Let us now consider the Laplace
eigenvalue problem on the unit square Ω = (0, 1)× (0, 1) with Neumann boundary
conditions

−∆u = λu, ∇u · n = 0 on ∂Ω.

The main difference between this problem and the one with Dirichlet boundary
conditions is that the nodes on the boundary no longer assume the value zero, but
are instead unknown quantities that need to be solved, just like interior points.
One possibility is to use ghost point techniques, such as the one introduced in
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Figure 4. Eigenfunctions corresponding to the first four eigenva-
lues of the L-shaped domain.

Figure 5. Control volume for an interior point (left panel), an
edge point (middle panel), and a corner point (right panel).

Section 5.2; however, unless a special scaling is used, this approach leads to a non-
symmetric matrix A, which is undesirable for a normal operator, especially from
a numerical point of view, see Section 4. Here, we consider a different possibility,
known as a finite volume discretization, to handle boundary conditions involving
normal derivatives.

The idea of a finite volume discretization to simply integrate the equation −∆u =
λu over a small control volume around a grid point uij . On a regular grid in two
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dimensions, the control volume Vij for an interior point is simply an h × h square
cell centered at (xi, yj), see the left panel of Figure 5. Integrating the left hand side
over Vi and applying the divergence theorem gives

−
∫
Vij

∆u dx =

∫
∂Vij

∇u · n dS(x)

≈ h
[
uij − ui+1,j

h
+
uij − ui−1,j

h
+
uij − ui,j+1

h
+
uij − ui,j−1

h

]
,

where we approximate the integrals along each edge by the appropriate finite diffe-
rence, multiplied by the length of the edge. The right hand side is simply approxi-
mated by ∫

Vij

λu dx ≈ λh2uij .

Thus, we get the same equation as in the finite difference method, up to a multi-
plicative factor of h2.

On the left boundary, we know that the normal derivative is zero, so there is one
fewer term to approximate in the divergence theorem. Using the same notation as
in the middle panel of Figure 5, we get for the left hand side∫

∂Vij

∇u · n dS(x) ≈ h

2

[
uij − ui,j+1

h
+
uij − ui,j−1

h

]
+ h · uij − ui+1,j

h
,

whereas the right hand side reads∫
∂Vij

λu dx ≈ h2

2
uij ,

where the factor 1/2 comes from the fact that the area of Vij is only half of that of
the other control volumes. The other edge points can be handled similarly. Finally,
for the corner grid point shown on the right panel of Figure 5 , the stencil reads∫

∂Vij

∇u · n dS(x) ≈ h

2

[
uij − ui+1,j

h
+
uij − ui,j+1

h

]
,

and the right-hand side carries a factor of 1/4. Collecting all these equations and
using the matrix notation, we obtain the generalized eigenvalue problem

(6) Au = λ̃Bu,

where B = diag(bi) is diagonal with entries

bi =


h2, at interior points,

h2/2, at edge points,

h2/4, at corners points.

Note that both A and B are symmetric matrices. Moreover, we can rewrite B
as B = D2, where D = diag(

√
bi) is a non-singular diagonal matrix. Using the

transformation v = Du, we obtain the equivalent eigenvalue problem

(7) D−1AD−1v = λ̃v,

where the matrix D−1AD−1 remains symmetric. Note that although (7) has the
same eigenvalues as (6), the eigenvectors are not identical; in fact, the entries of
the eigenvectors v do not approximate the corresponding continuous eigenfunction
at the grid points, because of the extra scaling by D. Fortunately, the Matlab
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built-in commands eig and eigs know how to solve generalized as well as standard
eigenvalue problems, so users do not need to transform (6) into (7) manually.

3. Finite Element Methods

The finite element method is perhaps one of the most versatile and commonly
used discretizations in the numerical solution of partial differential equations. It
is based on a different formulation of the PDE, the so-called weak or variational
formulation, which is obtained from integration by parts.

3.1. Variational Formulation. Consider the following Laplace eigenvalue pro-
blem: find a scalar λ and a non-zero function u such that

(8) −∆u = λu on Ω, u|∂Ω = 0.

To obtain the variational formulation, let v be another sufficiently smooth function
on Ω such that v|∂Ω = 0. Then multiplying (8) by v and integrating over Ω, we get

−
∫

Ω

v∆u = λ

∫
Ω

uv

−
∫
∂Ω

v∇u · n︸ ︷︷ ︸
=0

+

∫
Ω

∇u · ∇v = λ

∫
Ω

uv,(9)

where the first term vanishes because v is zero on the boundary. Note that (9)
holds for many functions v; in fact, we can define a linear space of functions V such
that (9) holds as long as v ∈ V . This function space V would include all v such
that

(1)
∫

Ω
v2 <∞ (RHS integral defined),

(2)
∫

Ω
|∇v|2 <∞ (LHS integral defined),

(3) v|∂Ω = 0 (boundary conditions satisfied).

The space of functions satisfying (1) and (2), i.e., functions whose values and par-
tial derivatives are square integrable, is known as the Sobolev space H1(Ω), see
[18, Chapter 5]; if we require all partial derivatives up to order k to be square
integrable, then the resulting space is known as Hk(Ω). The subspace of H1(Ω) of
functions that also satisfy (3) is called H1

0 (Ω), where the subscript zero indicates
that functions in this space vanish on the boundary.2 Thus, the weak or variational
form of the eigenvalue problem is: find u ∈ V = H1

0 (Ω) such that

(W) a(u, v) = λ(u, v) for all v ∈ V ,
where a(u, v) =

∫
Ω
∇u · ∇v on the left is a bilinear form with domain V × V , λ is

the eigenvalue, and (·, ·) on the right denotes the standard L2 inner product on Ω,
i.e., (u, v) =

∫
Ω
uv. The function space in which we look for solution candidates u

is called the trial space, and the function space of all v is called the test space. In
the above weak formulation, the test and trial spaces are the same, although this
is not always required.

Variational formulations can also be derived for problems related to (8). The
following are a few examples. We leave their derivations as an exercise.

2In reality, the definitions of H1(Ω) and H1
0 (Ω) involve weak derivatives and are somewhat

more technical, but for the purpose of these notes, the informal definitions given above will suffice.
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1. Neumann boundary conditions: for the problem

−∆u = λu on Ω, ∇u · n|∂Ω = 0,

the weak form is: find u ∈ H1(Ω) such that

a(u, v) = λ(u, v) ∀v ∈ H1(Ω).

Note that the only difference between this and the Dirichlet problem is in the trial
and test spaces: for the Neumann problem, it is all of H1(Ω), rather than H1

0 (Ω).
Also note that the solution u of this problem automatically satisfies the Neumann
boundary condition, and it is not necessary to include a restriction in the trial
space. Such conditions are called natural boundary conditions. On the other hand,
Dirichlet conditions need to be imposed explicitly in the trial and test spaces; these
are known as essential boundary conditions.

2. Robin boundary conditions: for the problem

−∆u = λu on Ω, ∇u · n+ pu|∂Ω = 0,

the weak form is: find u ∈ H1(Ω) such that

ã(u, v) = λ(u, v) ∀v ∈ H1(Ω)

where

ã(u, v) =

∫
Ω

∇u · ∇v +

∫
∂Ω

puv.

3. Variable diffusivity: for the problem

−∇ · (κ(x)∇u) = λu on Ω, u|∂Ω = 0,

the weak form is: find u ∈ H1
0 (Ω) such that

aκ(u, v) = λ(u, v) ∀v ∈ H1
0 (Ω)

where

aκ(u, v) =

∫
Ω

κ(x)∇u · ∇v.

3.2. Finite Elements. To obtain a numerical method for the problem (W), we
replace the infinite dimensional space H1

0 (Ω) by a finite dimensional subspace Vh;
this is known as a Ritz–Galerkin Approximation. Thus, the problem becomes: Find
uh ∈ Vh such that

(Wh) a(uh, vh) = λ

∫
Ω

uhvh for all vh ∈ Vh,

where a(u, v) =
∫

Ω
∇u · ∇v. The above problem is finite dimensional and can thus

be rewritten (and solved) as a matrix eigenvalue problem, which we will show in
detail in the next section. Different finite element methods correspond to different
choices of the subspace Vh; for a general reference on finite element methods, see
[27].
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Figure 5.2: Hat function ϕi around the mesh point xi.

requiring (5.10) be satisfied for all vh ∈ Vh is equivalent by linearity to requiring it to
be satisfied for all functions ϕi, i = 1, . . . , n. The Galerkin approximation (5.10) then
implies

(

n∑

j=1

ujϕ
′
j , ϕ

′
i) =

n∑

j=1

uj(ϕ
′
j , ϕ

′
i) = (f, ϕi),

and we recognize that this is just a linear system of equations,

Ku = f , (5.11)

with the stiffness matrix
Kij := (ϕ′

i, ϕ
′
j), (5.12)

and fi := (f, ϕi).
Instead of computing the integrals for fi or an approximation by quadrature, one

can also first approximate the function f as a linear combination of the functions ϕj

that span Vh,

f(x) ≈ f̃(x) :=
n∑

j=1

f̃jϕj(x) ∈ Vh.

Using f̃ instead of f in the Galerkin approximation (5.10), we obtain

(

n∑

j=1

f̃jϕj , ϕi) =

n∑

j=1

f̃j(ϕj , ϕi) =: M f̃ ,

where we see a second matrix appear, the so called mass matrix

Mij = (ϕi, ϕj). (5.13)

In this case, the linear system obtained from the Galerkin approximation would be of
the form

Ku = M f̃ . (5.14)

Example 5.1. We introduce on the domain Ω = (0, 1) a mesh 0 = x0 < x1 < x2 <
. . . < xn+1 = 1, and let Vh be the space of piecewise linear hat functions ϕi, see Figure
5.2, such that

ϕ′
i =





1
xi−xi−1

= 1
hi
, xi−1 < x < xi,

−1
xi+1−xi

= − 1
hi+1

, xi−1 < x < xi,

0 otherwise.
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Figure 6. A hat function in 1D.

Example 3.1. Let Ω = (0, 1) ⊂ R be equipped with the partition

0 = x0 < x1 < · · · < xn < xn+1 = 1.

If we choose Vh to be the set of continuous functions that is linear within each
interval Ij = (xj−1, xj), j = 1, . . . , n + 1, then Vh is a finite dimensional space
spanned by the “hat functions” (ϕi)

n
i=1, where

ϕi(x) =


x−xi−1

xi−xi−1
, x ∈ [xi−1, xi],

xi+1−x
xi+1−xi

, x ∈ [xi, xi+1],

0 otherwise.

Figure 6 shows a typical hat function. These hat functions are also known as P 1

finite element shape functions, because they are piecewise linear. Note that the
degrees of freedom are located at the grid points x1, . . . , xn, and the derivative of
any ϕh ∈ Vh is a piecewise constant function. Higher order elements, e.g., piecewise
quadratic, cubic, etc., are also possible.

Example 3.2. Suppose Ω ⊂ R2 is a 2D polygonal domain. Then it can be trian-
gulated, i.e., decomposed into a union of disjoint triangles, which we denote by Th,
see Figure 7 for an example. Then we can define a set of hat functions similarly to
the one-dimensional case: at each node i of the triangulation, we associate the hat
function φi that is linear on each triangle, whose value is 1 at node i and zero at
all the other nodes. Not surprisingly, they are also called P 1 finite element shape
functions, see Figure 8 for an illustration. These hat functions span Vh, the set of
all continuous functions that is piecewise linear on each triangle in Th. Vh is again
a finite dimensional space, and the Ritz–Galerkin problem of finding uh ∈ Vh such
that

a(uh, vh) = λ

∫
Ω

uhvh for all vh ∈ Vh

can again be rewritten as a matrix eigenvalue problem, as we will show below.

3.3. Matrix Problem. Let Vh = Span{ϕ1, . . . , ϕN}. Letting uh =
∑
j ujϕj and

vh = ϕi in the weak form, we see that∑
j

uja(ϕj , ϕi) = λ
∑
j

uj

∫
Ω

ϕiϕj , i = 1, . . . , N.



NUMERICAL METHODS FOR SPECTRAL THEORY 13

0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 7. Triangulation of a polygonal domain.
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u
ϕi

ϕj

ϕk

Figure 5.4: Examples of hat functions in two dimensions.

For a typical finite element approximation, one often uses a triangulation of the
domain Ω, as we have seen already in the historical examples in Figure 5.18, and then
defines the approximation subspace Vh by

Vh = span{ϕ1, . . . , ϕn},

where every ϕj is a hat function, i.e. ϕj is an affine function on each triangle, and

ϕj =

{
1 at xj ,
0 at xi 6= xj ,

for an example, see Figure 5.4. One thus needs a mesh generator to be able to do
finite element computations in two space dimensions. A very simple procedure using
Matlab to create some initial meshes is NewMesh:

function [N,T,P]=NewMesh(G);

% NEWMESH generates a simple new mesh for predefined domains

% [N,T,P]=NewMesh(G); generates an initial coarse triangular

% mesh. Use G=0 for the default square, G=1 for a triangle, G=2 for

% a space shuttle and G=3 for an empty micro wave ofen, and G4 for a

% chicken in a micro wave oven. The result is a table of triangles T

% which points into a table of nodes N containing x and y

% coordinates. The triangle contains in entries 4 to 6 a 1 if its

% corresponding edges are real boundaries. P can contain for each

% triangle a material property.

P=[]; % default no material

if G==1, % triangle

N=[0 0; 1 0; 0.5 1];

T=[1 2 3 1 1 1];

elseif G==2 % space shuttle

N=[0.07 0; 1 0; 1 0.4; 0.8 0.23; 0.25 0.23; 0.15 0.16; 0.07 0.15; 0 0.1

0 0.05; 0.93 0.4; 0.5 0; 1 0.1; 1 0.15; 1.12 0.08; 1.12 0.17; 0.15 0

0.07 0.07; 0.8 0; 0.25 0; 0.9 0.1];

T=[1 17 9 0 0 1; 9 17 8 0 0 1; 8 17 7 0 0 1; 1 16 17 1 0 0; 17 6 7 0 1 0

16 6 17 0 0 0; 16 19 6 1 0 0; 19 5 6 0 1 0; 19 11 5 1 0 0; 5 11 4 0 0 1

8Courant 1941: “Instead of starting with a quadratic or rectangular net we may consider
from the outset any polyhedral surfaces with edges over an arbitrarily chosen (preferably
triangular) net”.

115

Figure 8. Hat functions in 2D.

Rewriting the above equation in matrix form yields the generalized eigenvalue pro-
blem

Ku = λMu,

where K = (Kij)
N
i,j=1 and M = (Mij)

N
i,j=1 with

Kij = a(ϕi, ϕj) =

∫
Ω

∇ϕi · ∇ϕj , Mij =

∫
Ω

φiφj .

K is often called the stiffness matrix, and M the mass matrix. These matrices
enjoy the following properties:

• M and K are symmetric;
• M is positive definite;
• K is positive definite for the Dirichlet and Robin problems, and is positive

semi-definite for the Neumann problem.
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Moreover, M and K are sparse. Recall the definition of the (i, j)-th entries of K
and M :

Kij =

∫
Ω

∇ϕi · ∇ϕj , Mij =

∫
Ω

ϕiϕj .

If nodes i and j do not share a common triangle (or interval in 1D), then the support
of ϕi and ϕj are disjoint. In this case, the corresponding integrals must vanish, so
Kij = Mij = 0 there. In the 1D case, this means a degree of freedom can only be
coupled to itself and its neighbours, so the matrices K and M are tridiagonal if the
degrees of freedom are numbered contiguously from left to right.

Example 3.3. For the Dirichlet problem in 1D, hat functions with uniform mesh
size h yields

Mij =


0, |i− j| > 1,∫ h

0
h−2x(h− x) dx = h/6, |i− j| = 1,

2
∫ h

0
h−2x2 dx = 2h/3, i = j.

In 2D, the matrices K and M can be assembled from individual contributions
from each triangle. To do so, note that the integrals in the definition of Kij and
Mij can be written as

Kij =
∑
T∈Th

∫
T

∇ϕi · ∇ϕj , Mij =
∑
T∈Th

∫
T

ϕiϕj .

Thus, if integrals of the form
∫
T
ϕiϕj and

∫
T
∇ϕi · ∇ϕj are known for all triangles

T , then it suffices to put these quantities in the right positions in the matrices K
and M and add up all the contributions. On the other hand, for a fixed triangle
T , the only non-zero integrals are those for which i and j are vertices of T ; all
the other integrals vanish, because T would be outside the support of ϕi or ϕj in
that case. Thus, at most 12|Th| integrals are needed in order to compute K and
M , where |Th| is the number of triangles in the triangulation. This leads to the
following assembly process for calculating K and M :

1. Define the mesh and number the nodes.
2. Calculate the element stiffness and mass matrices

[Ki]jk =

∫
Ti
∇ϕj · ∇ϕk.

3. Add the element matrices into the right places in the assembled matrices,
i.e., if

Ki :=

[
(∇ϕj ,∇ϕj)Ti (∇ϕj ,∇ϕk)Ti (∇ϕj ,∇ϕl)Ti

(∇ϕk,∇ϕk)Ti (∇ϕk,∇ϕl)Ti

Sym. (∇ϕl,∇ϕl)Ti

]
=:

[
p11 p12 p13

p22 p23
Sym. p33

]
,

update the global stiffness matrix K by

K ← K +



0 0
p11 p12 p13

0 0
p12 p22 p23

0 0
p13 p23 p33

0 0


j k l

j

k

l

,
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and similarly for M .
4. Repeat for all the other triangles.
5. Remove rows and columns associated with Dirichlet boundary nodes.

A sample finite element code is provided at http://www.math.hkbu.edu.hk/~felix_
kwok/crm/. More information can be found in the Section 7.

3.4. Minimax Principle. A powerful characterization of eigenvalues, in terms of
extrema of certain expressions over subspaces, is known as the minimax principle.
Let L be a self-adjoint, positive definite operator in a Hilbert space H, equipped
with the inner product (·, ·), and let λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · be the eigenvalues
of L .

Theorem 3.1 (Minimax principle). The kth eigenvalue λk of L satisfies

(∗) λk = min
dim(U)=k

max
u∈U
u6=0

R(u),

where R(u) :=
(u,L u)

‖u‖2
is called the Rayleigh quotient.

Proof. Let u1, u2, . . . denote the eigenvectors of L (for existence, see [31]). If
U = Span(u1, . . . , uk), then

max
u∈U
u 6=0

R(u) =
(uk,L uk)

‖uk‖2
=

(uk, λkuk)

‖uk‖2
= λk.

To show that this is the minimum over all choices of k dimensional subspace, let
us consider another U = Span(w1, . . . , wk), this time an arbitrary k-dimensional
subspace. We choose w = α1w1 + · · ·+ αkwk such that w 6= 0 and

(w, u1) = · · · = (w, uk−1) = 0.

This is possible because this is in fact a system of k − 1 equations in k unknowns,
so a non-trivial solution always exists. Now since u1, u2, . . . is a basis of H, we can
write

w =

∞∑
i=k

βiui,

where we used the fact that β1 = · · · = βk−1 = 0 because of the constraints. Then

(w,Lw) =

∞∑
i=k

β2
i (ui,L ui) ≥ λk

∞∑
i=k

β2
i = λk‖w‖2.

Thus, R(w) ≥ λk, so
min

dim(U)=k
max
u∈U
u 6=0

R(u) = λk.

�

Corollary 3.2. If Vh ⊂ H1
0 (Ω) is a finite element subspace, λk and λ̃k are the k-th

smallest eigenvalues of the problems (W) and (Wh) respectively, then λk ≤ λ̃k.

Proof. Let ũ1, . . . , ũk ∈ Vh ⊂ H1
0 (Ω) be the eigenfunctions corresponding to the

k smallest eigenvalues of the problem (Wh). Then U = Span{ũ1, . . . , ũk} is a k-

dimensional subspace of H1
0 (Ω) with maxu∈U\{0}R(u) = λ̃k. Thus, by the minimax

principle, we have λk ≤ λ̃k, as required. �
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Table 1. Convergence of the first two eigenvalues of the Laplacian
on the unit square, discretized using a P 1 finite element method.
The ratios between errors in successive rows indicate O(h2) con-
vergence.

h λ̃1 λ̃1 − λ1 Ratio λ̃2 λ̃2 − λ2 Ratio

1 22.8658 3.1266 62.5602 13.2122
1/2 20.5055 0.7663 0.2451 52.6298 3.2818 0.2484
1/4 19.9298 0.1906 0.2487 50.1664 0.8184 0.2494
1/8 19.7868 0.0476 0.2497 49.5525 0.2045 0.2499
1/16 19.7511 0.0119 0.2499 49.3991 0.0511 0.2500

Example 3.4. Consider the first two eigenvalues of unit square, λ1 = 2π2, λ2 =
5π2. In Table 1, we discretize the square using a finite element method with a
regular triangulation. We successively refine the mesh by a factor of 2, so that the
space Vh used in each row is a subspace of the Vh in the subsequent rows, and they
are all subspaces of H1

0 (Ω). We see that all the λ̃i are larger than λi, and the λ̃i
decrease as the mesh is refined. We also observe that the error behaves like O(h2),
just like in the finite difference case. This will be proved in the next section.

Remark 3.1. Corollary 3.2 shows that the finite element method always produces
over-estimations of the exact eigenvalues. This is in contrast with finite difference
methods in Chapter 1, which can produce approximations that are smaller than the
exact eigenvalues, e.g. for the unit square, cf. Theorem 2.1. This is because finite
difference approximations cannot be interpreted as the exact Laplacian applied to a
subspace of the continuous functions, so the minimax principle does not apply.

3.5. Convergence of the Finite Element Method. Let Ω be a bounded open
subset of R2 and consider the Dirichlet eigenvalue problem

−∆u = λu on Ω, u|∂Ω = 0.

Let 0 < λ1 ≤ λ2 ≤ · · · be the exact eigenvalues, and 0 < λ̃1 ≤ λ̃2 ≤ · · · be the
eigenvalues of the finite element approximation over the conforming, quasi-uniform
mesh Th.3 We define the mesh parameter h by

h = max
T∈Th

diam(T ),

i.e., h is the maximum diameter of all the triangles in Th. Our goal in this section
is to prove the following theorem:

Theorem 3.3. Let Ω ⊂ R2 be a convex polygon, Th be a conforming, quasi-uniform
triangulation of Ω, and Vh be the P 1 finite element space associated with Th. If ũk
is an eigenfunction corresponding to the k-th smallest eigenvalue λ̃k of the discrete
problem

a(ũk, vh) = λ̃k(ũk, vh) ∀vh ∈ Vh,
then for h > 0 small enough, we have |λ̃k−λk| ≤ C(k)h2, where C(k) is a constant

depending on k and Ω but independent of h. In particular, λ̃k converges to the exact
eigenvalue λk as h→ 0.

3For a precise definition, see [13].
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To do so, we need to understand how well the finite element space Vh approx-
imates the invariant subspaces of −∆, which are spanned by the eigenfunctions
u1, u2, . . .. This leads us to consider the following projection operator.

Definition 3.1. The operator Ph : H1
0 (Ω)→ Vh defined by

a(Phu, vh) = a(u, vh) ∀vh ∈ Vh.
This operator is well defined because the stiffness matrix K is symmetric positive

definite. The following properties of Ph can be readily verified:

(i) Ph is a projection onto Vh,
(ii) a(u− Phu, vh) = 0 for all vh ∈ Vh,
(iii) a(Phu, Phu) ≤ a(u, u) for all u ∈ H1

0 (Ω).

The next step is to estimate the norm of ‖u − Phu‖L2(Ω) . This will require the
following tools:

1. A best approximation estimate,
2. An interpolation estimate,
3. A duality argument.

1. Best Approximation Estimate. The best approximation result is due to the fol-
lowing lemma.

Theorem 3.4 (Céa’s Lemma). For all wh ∈ Vh, we have

a(u− Phu, u− Phu) ≤ a(u− wh, u− wh).

Proof. For any wh ∈ Vh, we have

a(u− wh, u− wh) = a(u− Phu+ (Phu− wh)︸ ︷︷ ︸
∈Vh

, u− Phu+ (Phu− wh))

= a(u− Phu, u− Phu) + a(Phu− wh, Phu− wh)︸ ︷︷ ︸
≥0

≥ a(u− Phu, u− Phu).

�

Since a(u − Phu, u − Phu) = ‖∇(u − Phu)‖2L2(Ω), Céa’s lemma says that the

elliptic projector chooses from the subspace Vh the function uh that minimizes the
gradient of the error in the L2 sense. On the other hand, the error can still be large
if u is very far away from Vh. Thus, we need to quantify how well the function u is
approximated by functions in Vh. This is known as an interpolation estimate.

2. Interpolation Estimate. If u is a continuous function, then we define uI to be its
piecewise polynomial interpolant of degree r on each element:

uI =
∑
j

u(xj)ϕj ,

where xj denotes the j-th node in the grid. Note carefully that uI is in general
different from the Phu obtained from the elliptic projector: although both functions
are in Vh, Phu is defined by a minimization problem and need not interpolate the
continuous function exactly, whereas uI is an interpolant that need not minimize
anything. For functions in H1

0 (Ω) that are discontinuous, there are ways of defining
a quasi-interpolant based on averaged Taylor polynomials. For details, see [13].

With the above definitions, we have the following general approximation result.
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Theorem 3.5 (Interpolation Error, cf. [41, Lemma B.6]). Let Th be a conforming,
shape-regular triangulation of Ω ⊂ Rd with maximal element diameter h. Let 0 ≤
m ≤ s and d/2 < s ≤ r + 1, where r is the degree of of the piecewise polynomial
on each element. Then there exists a constant C depending only on m, s and the
aspect ratio (i.e., the ratio of radii between the circumscribed and inscribed circles)
of the elements in Th, such that

‖Dm(u− uI)‖L2(Ω) ≤ Chs−m‖Dsu‖L2(Ω),

where Dk denotes the vector of all k-th order (weak) partial derivatives.

The proof of the above theorem in its full generality is rather technical and can
be found in [13, Theorem 4.4.4]. Nonetheless, we are able to show the result for
the simple one-dimensional case Ω = (0, 1) and piecewise linear interpolation as
follows. In an interval K = [xi−1, xi] of length h, we have

‖u′ − u′I‖2L2(K) =

∫ xi

xi−1

(u′ − u′I)2 dξ

= −
∫ xi

xi−1

(u− uI)(u′′ − u′′I ) dξ ≤ ‖u− uI‖L2(K) ‖u′′‖L2(K),

where the boundary terms vanish because of the interpolation property u(xi) =
uI(xi). On the other hand, since for all x ∈ K we have

|u(x)− uI(x)|2 =

∣∣∣∣∣
∫ x

xi−1

(u′ − u′I) dξ

∣∣∣∣∣
2

≤ (x− xi−1)‖u′ − u′I‖2L2(K),

we can estimate ‖u− uI‖L2(K) by

‖u− uI‖2L2(K) ≤
∫ xi

xi−1

(ξ − xi−1)‖u′ − u′I‖2L2(K) dξ =
h2

2
‖u′ − u′I‖2L2(K).

Thus, summing over all intervals gives

‖u′ − u′I‖L2(Ω) ≤
h√
2
‖u′′‖L2(Ω), ‖u− uI‖L2(Ω) ≤

h2

2
‖u′′‖L2(Ω),

which is just a special case of Theorem 3.5 for d = 1, s = 2, r = 1 and m = 0, 1.

3. Duality Argument. We are now ready to estimate ‖u − Phu‖L2(Ω) when Ω is a
convex polygon. We know from elliptic regularity theory [18, Chapter 6] that if
f ∈ L2(Ω) and a(u, v) = (f, v) for all v ∈ H1

0 (Ω), then u ∈ H2(Ω), and

‖D2u‖L2(Ω) ≤ C‖f‖L2(Ω).

Thus, if u ∈ H1
0 (Ω) is an eigenfunction with eigenvalue λ, then letting f = λu

shows that in fact u ∈ H2(Ω). Using the best approximation property and then
the interpolation estimate, we get

a(u− Phu, u− Phu) ≤ ‖∇(u− uI)‖2L2(Ω) ≤ Ch
2‖D2u‖2L2(Ω) ≤ C

′h2‖f‖2L2(Ω).

To estimate ‖u− Phu‖L2 , we use a duality argument known as the Aubin–Nitsche
trick: consider the auxiliary problem

(10) −∆ψ = u− Phu, ψ|∂Ω = 0,

or, in weak form,
a(ψ, v) = (u− Phu, v) ∀v ∈ H1

0 (Ω).
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Choosing v = u− Phu in the weak form yields

(u− Phu, u− Phu) = a(u− Phu, ψ) = a(u− Phu, ψ − Phψ)

≤ a(u− Phu, u− Phu)1/2a(ψ − Phψ,ψ − Phψ)1/2

≤
√
CC ′h2‖u− Phu‖L2(Ω)‖D2u‖L2(Ω),

where we used the fact that ψ satisfies (10) to deduce that a(ψ−Phψ,ψ−Phψ)1/2 ≤√
C ′h‖u− Phu‖L2(Ω). Thus, we have the estimate

‖u− Phu‖L2(Ω) ≤
√
CC ′h2‖D2u‖L2(Ω),

provided that Ω is convex, which is needed to guarantee that D2u is in L2(Ω). We
are finally ready to prove Theorem 3.3.

Proof of Theorem 3.3. Consider the k-dimensional subspaces

Ek = Span{u1, . . . , uk}, Ẽk = PhEk,

where uk is the eigenfunction of the continuous operator corresponding to the k-th
smallest eigenvalue λk. For h small enough, we have for all non-zero v ∈ Ek,

‖Phv‖ ≥ ‖v‖ − ‖v − Phv‖ ≥ (1− C(k)h2)‖v‖ > 0.

Thus, Ph is an isomorphism between Ek and Ẽk, so both subspaces have dimension
k. By the minimax principle, we have

λk ≤ λ̃k ≤ max
vh∈Ẽk
vh 6=0

a(vh, vh)

‖vh‖2
= max
v∈Ek
v 6=0

a(Phv, Phv)

‖Phv‖2

≤ max
v∈Ek
v 6=0

a(v, v)

‖Phv‖2
≤ max
v∈Ek
v 6=0

a(v, v)

‖v‖2︸ ︷︷ ︸
=λk

·max
v∈Ek
v 6=0

‖v‖2

‖Phv‖2
.

But since ‖Phv‖ ≥ (1− C(k)h2)‖v‖, we conclude that

λk ≤ λ̃k ≤ λk(1 + 2C(k)h2) +O(h4),

which implies |λ̃k − λk| ≤ C̃(k)h2 → 0 as h→ 0. �

Remarks:

1. If the eigenfunction u is not smooth enough, i.e., if it does not belong to
H2(Ω), like in the case for the L-shaped domain, we still have in general
[35]

λ̃k ≤ λk
(

1 + C(k) sup
v∈Ek

‖v‖=1

‖v − Phv‖2H1(Ω)

)
.

However, because of the lack of regularity, the contraction rates will in
general be of the form O(hα) with α < 2, i.e., convergence will be worse
than in the regular case. In order to recover higher order convergence,
various methods can be used, such as adaptive grid refinement, see [17] and
the references therein.

2. For the convergence of eigenvectors, see [11].
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Figure 9. The exact and numerically calculated roots of a poly-
nomial of degree 30.

4. Solution of Matrix Eigenvalue Problems

We have seen in Sections 2 and 3 that the we can approximate PDE eigenvalue
problems by algebraic eigenvalue problems by discretizing the differential operator
in various ways. It remains to solve the algebraic eigenvalue problems to obtain
the actual eigenvalues and eigenvectors. In theory, the eigenvalues of a matrix A
are given by the roots of its characteristic polynomial pA(λ) = det(A − λI). It
would be tempting to calculate this polynomial explicitly and find its roots using
a numerical method.4 Unfortunately, this is a terrible idea because the roots of
pA(λ) are extremely sensitive to small perturbations in the coefficients, as one can
see in the example below.

Example 4.1. Consider the polynomial5 p(λ) = (λ − 1)(λ − 2) · · · (λ − 30). We
compute the coefficients of this polynomial in Matlab, and then ask for the roots of
this polynomial using the following commands:

A = diag((1:30),0); % Matrix with 1,2,...,30 on the diagonal

p = poly(A); % Characteristic polynomial of A

lambda = roots(p); % Roots of p

We plot the roots lambda thus obtained in Figure 9. We see that the numerically
calculated roots are very far from the exact ones, even though Matlab computes with
16 digits of accuracy. The reason is that the largest coefficient in p is approximately
2 × 1033, so even a perturbation in the 16th significant digit can introduce a huge
error in the calculated roots, as illustrated by the figure.

Thus, numerical algorithms for finding matrix eigenvalues never form the cha-
racteristic polynomial, but instead attempt to transform the matrix directly into

4From Galois theory, we know there is no explicit formula for the roots when A is a 5×5 matrix
or larger! Fortunately, efficient numerical methods exist, such as roots in Matlab, which relies on
calculating the eigenvalues of the companion matrix. See also [4] for a recent improvement.

5This is adapted from Wilkinson’s example in [44], where we have changed the degree from 20
to 30 to make it work in double-precision arithmetic.
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diagonal form using a sequence of similarity transformations. There are different
methods that are commonly used, depending on the properties of the matrix A and
how many eigenvalues we seek:

• The QR iteration is generally used when we seek all eigenvalues of a small
and/or dense matrix:
• If we seek only a few eigenvalues of a dense or sparse matrix, commonly

used methods include the power method, shift-and-invert, bisection, etc.
• For large sparse matrices from which only a few eigenvalues are sought,

methods such as Lanczos and Jacobi-Davidson may be more efficient.

In Matlab, there are two different functions for finding eigenvalues and eigenvectors
of a matrix: one uses eig to find all eigenvalues of a dense matrix, whereas one uses
eigs to find a few eigenvectors of a sparse matrix. Before discussing a few of the
aforementioned algorithms, we give a quick reminder of the properties of matrix
eigenvalue problems:

• In an eigenvalue problem, one seeks v 6= 0 such that Av = λv, where A =
n× n matrix.
• If A is diagonalizable, this is equivalent to finding a diagonal matrix Λ and

a non-singular V such that

AV = V Λ ⇐⇒ A = V ΛV −1.

• For symmetric A, V can be taken to be orthogonal, i.e., V = Q, QTQ =
QQT = I.

A related problem is the generalized eigenvalue problem: solve Av = λBv, A,B =
n× n matrices. If B is symmetric and positive definite, then this is equivalent to

G−TAG−1z = λz,

where B = GTG is the Cholesky (or any other related) factorization, and z = Gv.
Thus, method for finding the eigenvalues of symmetric A can be used on G−TAG−1,
but there are often more efficient and numerically stable methods that do not require
computing G−TAG−1 explicitly. In these notes, we will concentrate on the case of
symmetric matrices. For the non-symmetric case, see [23].

4.1. Power Iterations. Possibly the simplest method for calculating an eigenvalue
of a matrix A is the power method. Given an initial vector x(0), the method produces
an estimate λ(k) and a new vector x(k) for k = 1, 2, 3, . . .:

1. x(k) = Ax(k−1)

2. λ(k) =
(x(k))TAx(k)

‖x(k)‖22
In finite precision arithmetic, the first step is usually replaced by

x(k) =
Ax(k−1)

‖Ax(k−1)‖2
in order to avoid overflow. If x(k), after suitable normalization, is a fixed point of
the iteration, then it is clearly an eigenvector of A with eigenvalue λ(k). Even when
x(k) is not a fixed point, this definition of λ(k) minimizes ‖Ax(k) − λx(k)‖2 over all
values of λ, so the formula returns the best possible eigenvalue approximation in
the L2 sense.
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To understand the behavior of the method, suppose A is diagonalizable with
eigenvectors vi, ordered such that |λn| > |λn−1| ≥ · · · ≥ |λ1|, where Avi = λivi.
Then if x(0) =

∑
i αivi, the power iteration generates

x(k) =

∑
i αiλ

k
i vi

‖
∑
i αiλ

k
i vi‖2

= αnvn +O

(∣∣∣λn−1

λn

∣∣∣)k ,
so λ(k) converges to the largest eigenvalue in magnitude λn provided αn 6= 0, with
the estimate

λ(k) = λn +O

(∣∣∣λn−1

λn

∣∣∣)k .
If the matrix A is symmetric, the exponent can be improved to 2k from k using the
fact that the eigenvectors form an orthonormal basis.

The power method admits a few variants that can be quite useful for calculating
a single eigenvalue. If one would like calculate the smallest rather than the largest
eigenvalue in magnitude, then one would use the inverse power method

x(k) = A−1x(k−1),

with the approximated eigenvalue x(k) calculated the same way as in the power
method. Similarly, if we wish to find the eigenvalue closest to a given value µ, then
one would use the shifted inverse iteration, or the shift-and-invert method

x(k) = (A− µI)−1x(k−1).

Of course, one does not calculate the matrix (A − µI)−1 explicitly in practice;
one would instead pre-calculate the LU factorization of A − µI and solve at each
iteration the linear system

(A− µI)x(k) = x(k−1)

using this factorization. This presents significant savings in terms of computational
cost, especially when A is a sparse matrix.

Example 4.2. Let

A =


4 1
1 3 1

1 2 1
1 1

 ,
whose eigenvalues are

1

2

(
5 +

√
11± 2

√
21

)
≈ {0.25471876, 1.8227171, 3.1772829, 4.7452812} .

We apply the power, inverse power and shift-and-invert methods to A, with µ = 3
for the last method. Then we know that the three methods converge to the eigenva-
lues λ4 ≈ 4.7453, λ1 ≈ 0.2548 and λ3 ≈ 3.1773 respectively. Figure 10 shows the
convergence of the different methods. We see that the error of the power method
decreases from about 2 × 10−1 at iteration 1 to about 2 × 10−9 at iteration 24, so
its contraction factor is approximately(

2× 10−9

2× 10−1

)1/23

= 0.4489 ≈ 0.4484 =

(
3.1773

4.7453

)2

.
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Figure 10. Convergence of the power method and its variants for
the matrix in Example 4.2.

This nicely matches the stated convergence estimate. Similarly, for the inverse
power method and the shift-and-invert method, we obtain as contraction factors

InvPower:

(
1.5× 10−8

4× 10−1

)1/4

= 0.0139 ≈ 0.0195 =

(
0.2548

1.8227

)2

,

ShiftInvert:

(
5× 10−9

4× 10−2

)1/4

= 0.0188 ≈ 0.0227 =

∣∣∣∣µ− 3.1773

µ− 1.8227

∣∣∣∣2 .
Note that the ratios are squared in all cases because A is symmetric.

4.2. Orthogonal iterations and the QR method. If one wishes to calculate
several eigenvalues and eigenvectors at a time, one needs to modify the power
method to start with several initial vectors. However, in order to prevent those
vectors from converging to the same eigenvector, we need to ensure that they remain
linearly independent, which is accomplished by orthogonalization. This leads to the
so-called orthogonal iteration: in the case of two starting vectors, we define the

n×2 matrix U0 = [u
(0)
1 ,u

(0)
2 ] and perform the following iteration for k = 0, 1, 2, . . .:

1. Calculate Zk = AUk;
2. Factor Zk into Zk = Uk+1Yk+1, where Uk+1 has orthonormal columns and
Yk+1 is upper triangular (QR decomposition).

The factorization in step 2 can be computed e.g. by the Gram-Schmidt process.
The eigenvalues are approximated by the diagonal entries of

Tk = UTk AUk =

[
(u

(k)
1 )TAu

(k)
1 (u

(k)
1 )TAu

(k)
2

(u
(k)
2 )TAu

(k)
1 (u

(k)
2 )TAu

(k)
2

]
.
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Note that the first column u
(k)
1 of Uk is identical to the normalized vector x(k) in

the power method, so (u
(k)
1 )TAu

(k)
1 converges to the largest eigenvalue, assuming

that u1 has a non-zero component along the corresponding eigenvector. The second
column, however, cannot converge to same eigenvector, since it is always kept ort-

hogonal from the first column. In fact, (u
(k)
2 )TAu

(k)
2 converges to the second largest

eigenvalue, under some mild assumptions on U0 and A. Moreover, the off-diagonal
entries of Tk can be shown to converge to zero. The method can be extended to
any number of starting vectors, as long as they are linearly independent; in this
case, it can be shown under certain assumptions (see [2, Theorem 10.6.1] for the
n-vector case) that Tk tends towards a diagonal matrix containing the eigenvalues
of A.

For the special case of U0 = I (i.e., n vectors), it is possible to derive a recurrence
based on Tk only, leading to the well-known QR iteration. Letting T0 = A, we have
the very simple two-step iteration for k = 0, 1, 2, . . .:

1. Factor Tk into Tk = QkRk, where Qk is orthogonal and Rk is upper trian-
gular (QR factorization);

2. Compute Tk+1 = RkQk.

We claim that this is equivalent to the orthogonal iteration with Tk = UTk AUk.
Indeed, since U0 = I, this is satisfied for k = 0. We now proceed inductively by
assuming the result for k and proving it for k + 1. Note that Tk can be written as

Tk = UTk Zk = UTk Uk+1Yk+1.

Since UTk Uk+1 is orthogonal and Yk+1 is upper triangular, this gives a valid QR
factorization of Tk into Qk = UTk Uk+1 and Rk = Yk+1. So the recurrence for Tk+1

leads to

Tk+1 = RkQk = Yk+1U
T
k Uk+1 = (UTk+1Zk)UTk Uk+1 = UTk+1AUk+1,

which completes the induction.

The basic QR method inherits the basic properties of the power method, meaning
that the convergence of eigenvalues is linear, with the rate dependent on the gap
between eigenvalues, see Example 4.2. Moreover, each iteration requires a QR
factorization, which requires O(n3) arithmetic operations. In order to make the
method more efficient and converge faster, practical QR implementations typically
use the following tricks:

• A preprocessing step reduces a general (symmetric) matrix A into tridia-
gonal form, i.e., one finds an orthogonal matrix Q0 such that T = QT0 AQ0

is tridiagonal. This reduces the cost of each step to O(n) instead of O(n3).
Note that T and A have the same eigenvalues, and eigenvectors can be
recovered from multiplication by Q0.

• A shift of the form A − µI with µ close to an eigenvalue is often applied
explicitly or implicitly in order to speed up convergence. This works because
the QR step decouples A into diagonal blocks when A is singular. Once the
blocks are decoupled, a divide-and-conquer strategy can be used to solve
the smaller subproblems that arise.

Reduction to tridiagonal form. To reduce a symmetric matrix A into tridiagonal
form, we use Householder transformations, which are orthogonal matrices of the
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form

H = I − 2vvT

with ‖v‖2 = 1. The vector v is called a Householder vector. The first step in the
tridiagonal reduction is to find a Householder vector of the form

v = (0, v2, . . . , vn)T ,

such that H applied to the first column a1 of A is non-zero only in its first two
entries. In other words, we seek H such that Ha1 = a11e1 + αe2, where e1 and e2

are the first two columns of the identity matrix, respectively. (Note that the first
coefficient of Ha1 must be a11 because 〈e1〉 and 〈e1〉⊥ are both invariant subspaces
of H.) Using the fact that H2 = I, we calculate

a1 = H(Ha1) = (I − 2vvT )(a11e1 + αe2) = a11e1 + α(e2 − 2v2v).

Since H preserves 2-norms, we conclude that α = ±‖a1 − a11e1‖2, so that v can
be calculated by

w = e2 ±
a1 − a11e1

‖a1 − a11e1‖2
, v =

w

‖w‖2
,

where the plus or minus is chosen so that w2 > 1, which ensures numerical stability.
Applying H to the whole matrix A in the sequence A → HA → HAHT leads to
the transformation




X X X X X
X X X X X
X X X X X
X X X X X
X X X X X



→




X X X X X
Y Y Y Y Y
0 Y Y Y Y
0 Y Y Y Y
0 Y Y Y Y



→




X Y 0 0 0
Y Z Z Z Z
0 Z Z Z Z
0 Z Z Z Z
0 Z Z Z Z



,

where we use a different letter each time an entry is modified by a transformation.
Note that the zeros in the first column appear because of the choice of v, and the
zeros in the first row appear because of symmetry. We can now apply the same
reduction recursively to the lower part (the ‘Z’ part) of the matrix, and after n− 2
steps, we obtain a matrix in tridiagonal form.

QR With Shift. To accelerate convergence of the QR method, we apply a shift µk
that is close to an eigenvalue of A, often chosen to be the bottom rightmost entry
of latest iterate Tk. The modified algorithm is to perform, for k = 0, 1, 2, . . ., the
following steps:

1. Factor Tk − µkI = QkRk (QR factorization);
2. Compute Tk+1 = RkQk + µkI.

Example 4.3. Consider the 2× 2 matrix

T0 = A =

[
2 ε
ε 1

]
.

One step of the QR with no shift gives

Q =
1√

4 + ε2

[
2 −ε
ε 2

]
, T1 = QTAQ =

[
∗ sym.

ε(2−ε2)
4+ε2 ∗

]
.
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Figure 11. Convergence of off-diagonal entries for the 4×4 matrix
in Example 4.2. Left: Basic (unshifted) QR iteration. Right: QR
method with shift.

We see that the off-diagonal entry is multiplied approximately by 1/2 when ε is
small, so the method converges approximately linearly with factor 1/2. On the
other hand, if we use a shift of µ0 = 1, we get

Q =
1√

1 + ε2

[
1 −ε
ε 1

]
, T1 = QTAQ =

[ ∗ sym.

− ε3

1+ε2 ∗

]
.

The off-diagonal entry is now O(ε3), which indicates cubic convergence. Thus, if
ε is small (say ≈ 0.1), the shifted version converges much faster than the basic
version. The same observation can be made for larger matrices, see Figure 11 for
the convergence of off-diagonal entries for the 4× 4 matrix in Example 4.2.

Remark. The QR iteration (or, more precisely, its practical variants) is the work-
horse for small and/or dense eigenvalue problems, with robust and efficient imple-
mentations widely available, e.g. in LAPACK. For more details, see [21, 23, 32].

4.3. Bisection. In this section, we introduce the bisecton method, which gives a
different way of computing eigenvalues of a symmetric matrix in tridiagonal form.
In addition to approximating specific eigenvalues, this method has the interesting
property of revealing the number of eigenvalues that lie within a given interval
(λ−, λ+); this can be useful in engineering design, for instance, where one would
need to ensure a structure has no resonant frequencies within a given range.

We start by considering the n× n tridiagonal matrix

Tn =




α1 β1

β1 α2

. . . 0

. . .
. . .

. . .

0
. . .

. . . βn−1

βn−1 αn




.

as well as its principal submatrices Tj = Tn(1 : j, 1 : j), j = 1, . . . , n − 1. Such a
family of tridiagonal matrices enjoy the following properties:
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1. The characteristic polynomials pj(λ) of Tj satisfy the recurrence

(11) pj(λ) = (αj − λ)pj−1(λ)− β2
j−1pj−2(λ), p0(λ) = 1.

Proof: Direct expansion of det(Tn − λIn), starting with the bottom row.

2. Tn has no repeated eigenvalues if it is unreduced, i.e., if βi 6= 0 for all i.
Proof: If repeated eigenvalues exist, then pn and pn−1 have a common li-
near factor, which means pn−1 and pn−2 have a common linear factor, etc.,
leading to a contradiction because p0 ≡ 1 has no linear factors.

3. If λ
(j)
1 ≤ · · · ≤ λ(j)

j are the eigenvalues of Tj for j = 1, . . . , n, then we have
the following interlacing property :

λ
(j+1)
1 ≤ λ(j)

1 ≤ λ(j+1)
2 ≤ · · · ≤ λ(j)

k ≤ λ
(j+1)
k+1 .

Proof: Use the minimax principle.

Suppose we wish to calculate λ
(n)
k , the k-th eigenvalue of the original matrix

Tn. The following theorem will be useful for determining where this occurs in the
spectrum.

Theorem 4.1 (Sturm Sequence Property). Let Tn be a symmetric, unreduced tri-
diagonal matrix, and let ω(λ) be the number of sign changes in the Sturm sequence
(p0(λ), p1(λ), . . . , pn(λ)). Then ω(λ) equals the number of eigenvalues of Tn less
than λ.

The proof uses the recurrence (11) and a counting argument, and can be found
in [45, pp. 300–301]. Since the Sturm sequence is easy to evaluate for a given λ

using the recurrence (11), an approximation of λ
(n)
k can be computed as follows:

Bisection method for finding λ
(n)
k :

1. Find y and z such that y < λ
(n)
k < z using e.g. Gershgorin’s Theorem, cf.

Section 7.3, Exercise 3.
2. While |z − y| > tol, do

− Compute x = (y + z)/2.
− If ω(x) ≥ k, set z := x; else set y := x.

Remarks.

1. In order to avoid overflow when n is large, it is sometimes preferable to
adapt (11) to compute ϕi(λ) := pi(λ)/pi−1(λ) rather than the pi(λ) them-
selves. In that case, one would count the number of negative values of ϕi(λ)
instead of the number of sign changes.

2. The bisection method converges approximately linearly with a factor 1/2,

since it halves the interval that containing λ
(n)
k at every step. Once the

interval is small enough to contain a single eigenvalue, it is possible to switch
to another method (e.g., shift-and-invert) to obtain faster convergence to

λ
(n)
k .

4.4. Lanczos Method. For large sparse matrices, the Householder tridiagonaliza-
tion procedure described in Section 4.2 requires too many operations and becomes
impractical. A different way of generating a tridiagonal matrix from which eigen-
values can be calculated is based on the idea of Krylov subspaces. Given a matrix
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A and an initial vector q1, the Krylov subspace Kr(A; q1) is defined as

Kr(A; q1) = Span{q1, Aq1, . . . , A
rq1}.

From this definition, we see that every element of Kr(A; q1) can be written as
Pr(A)q1 for some polynomial Pr(x) of degree ≤ r. Moreover, we have Kr(A; q1) ⊂
Kr+1(A; q1). If they are equal, then Kr(A; q1) is an invariant subspace of A.

As we have seen in the power method, repeated multiplication makes Akq1

closer and closer to the largest eigenvector of A, and making the set of factors
more and more linearly dependent. Thus, one often creates an orthonormal basis
for Kr(A; q1) obtained from the so-called Arnoldi process, which uses the Gram-
Schmidt orthogonalization procedure:6 for k = 1, 2, . . . , compute

(12) rk = Aqk −
k∑
j=1

(qTj Aqk)qj , qk+1 =
rk
‖rk‖2

if vk 6= 0.

It is clear that {q1, . . . ,qr+1} also spans Kr(A; q1), as long as none of the rk
vanishes. If rk = 0 for some k, then Kk−1(A; q1) = Kk(A; q1), so we have found
an invariant subspace of A. For sparse matrices A, the subspace Kr(A; q1) is easy
to generate, since it suffices to multiply A by different vectors repeatedly. In fact,
it is not even necessary to store the matrix A itself, as long as a routine exists for
performing the required matrix-vector multiplication; such procedures are known
as matrix-free methods.

The key observation in deriving the Lanczos method is that if A is symmetric,
then Aqk is automatically orthogonal to q1, . . . ,qk−2 (prove it!). Thus, the sum in
(12) runs only from j = k − 1 to k. Letting βk = ‖rk‖2, we can rewrite (12) as the
three-term recurrence

(13) Aqk = βk−1qk−1 + αkqk + βkqk+1,

where αk = qTkAqk. Thus, we have derived the Lanczos process: given a starting
vector q1 (and assuming q0 = 0 and β0 = 0), do for k = 1, 2, . . .:

1. Compute αk = qTkAqk, rk = (A− αkI)qk − βk−1qk−1;
2. If rk 6= 0, normalize to get qk+1 = rk/‖rk‖, βk = ‖rk‖.

The Lanczos process is said to break down if rk = 0, or equivalently, if βk = 0.
Another way of writing (13) after k steps of Lanczos is the matrix relation

(14) AQk = QkTk + βk+1qk+1e
T
k ,

where Qk = [q1, . . . ,qk] has orthonormal columns, ek is the k-th column of the
identity matrix, and

Tk =




α1 β1

β1 α2

. . . 0

. . .
. . .

. . .

0
. . .

. . . βk−1

βk−1 αk




.

6In fact, the formula (12) suffers from loss of orthogonality when A is ill-conditioned. In that
case, a modified Gram-Schmidt or Householder orthogonalization is preferred, see [38].
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Observe that by multiplying (14) on the left by QTk and using the fact that qk+1 is
orthogonal to all previous qj , we get

(15) QTkAQk = Tk.

A crucial question is how well the eigenvalues of Tk, also known as the “Ritz values”
of A, approximate the eigenvalues of A. Indeed, in the case of breakdown at step
k, we have the exact relation

AQk = QkTk,

so Qk generates an invariant subspace of A, and the spectrum of Tk is a subset
of that of A. If rk 6= 0, then there are many results describing the relationship
between the eigenvalues of Tk and A, collectively known as Kaniel–Page Theory.
Below we attempt to give a flavor of this type of analysis.

Let us estimate the convergence of extremal Ritz values, i.e., the smallest and
largest eigenvalues of Tk, towards the extremal eigenvalues of A as a function of k,
the number of Lanczos steps. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of A, and
λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃k be those of Tk = QTkAQk. Then from the minimax principle,
we know that

λ̃1 = min
x∈Rk

x 6=0

xTQTkAQkx

xTx
= min

w∈Kk−1(A,q1)
w 6=0

wTAw

wTw
≥ λ1.

In order to estimate this minimum, observe that for any w ∈ Kk−1(A,q1), there
exists a polynomial Pk−1(x) of degree k − 1 or lower such that w = Pk−1(A)q1.

Because λ̃1 minimizes the Rayleigh quotient over all such polynomials, we in fact
have

λ̃1 ≤
∑n
j=1 α

2
jλjP

2
k−1(λj)∑n

j=1 α
2
jP

2
k−1(λj)

= λ1 +

∑n
j=2(λj − λ1)α2

jP
2
k−1(λj)∑n

j=1 α
2
jP

2
k−1(λj)

,

where q1 =
∑n
j=1 αjvj is the eigen-decomposition of q1. This is true for any

polynomial Pk−1(x), but we would like to choose a specific polynomial so that the
second term on the right-hand side is small. To do so, we choose Pk−1 to be a
shifted Chebyshev polynomial that is small on the interval [λ2, λn] but large at λ1.
Recall that Chebyshev polynomials are defined by the recurrence

f0(x) = 1, f1(x) = x, fn+1(x) = 2xfn(x)− fn−1(x), n ≥ 1

and satisfy

fn(x) =

{
cos(n arccos(x)), |x| ≤ 1,

(sgn(x))n cosh(n arcosh |x|), |x| > 1.

In other words, we have |fn(x)| ≤ 1 for x ∈ [−1, 1], and |fn(x)| grows like 2n−1|x|n
outside this interval. Thus, the shifted Chebyshev polynomial

Pk−1(λ) = fk−1

(
2λ− (λ2 + λn)

2(λn − λ2)

)
is small on [λ2, λn], but large at λ1, provided that it is far enough from λ2. Using the
same reasoning for the largest eigenvalue λn, we obtain the following convergence
result.
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Figure 12. Lanczos method applied to the finite-difference Lap-
lacian for an L-shaped domain, h = 0.1

Theorem 4.2 (Convergence of Lanczos). In exact arithmetic, the extremal Ritz

values λ̃1 and λ̃k after k iterations of Lanczos satisfy the estimate

λ1 ≤ λ̃1 ≤ λ1 + C1/ cosh2((k − 1)γ1),(16)

λn ≥ λ̃k ≥ λn − C2/ cosh2((k − 1)γ2),(17)

where

γ1 = arcosh

(
λ2 + λn − 2λ1

λn − λ2

)
, γ2 = arcosh

(
2λn − λ1 − λn−1

λn−1 − λ1

)
.

In Figure 12, we plot the error in the largest and smallest Ritz values and the
theoretical bound given in Theorem 4.2 for the finite-difference discrete Laplacian
for an L-shaped domain. We see that this simple bound is not the sharpest, but
nonetheless tracks the general slope of the error curves reasonably well.

Similar techniques can be used to estimate interior eigenvalues, although such
bounds may contain constants that become quite large. For instance, we have the
estimate

λi ≤ λ̃i ≤ λi + Cκi/ cosh2((k − i)γi),

where γi = arcosh
(
λi+1+λn−2λi

λn−λi+1

)
, κi =

∏i−1
j=1

(
λn−λ̃j

λi−λ̃j

)2

.

Remarks.

1. Just as for power-type methods, the extremal eigenvalues (largest and smal-
lest) are among the first to converge in the Lanczos method.

2. Because the short recurrence (13) does not enforce orthogonality explicitly
with all previous qi, orthogonality may be lost gradually due to round-off
errors in finite precision arithmetic. When this happens, the subsequent
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qi may be (nearly) linearly dependent on the previous ones, giving rise to
repeated ghost eigenvalues. To prevent this, one can enforce orthogona-
lity explicitly, either by complete re-orthogonalization (expensive), or by
selective re-orthogonalization against “converged” Ritz vectors only. For
more details, see [23].

3. Lanczos is intimately related to the celebrated Conjugate Gradient method
for solving Ax = b. See [23, 38] for more details.

5. Application: Vibrating Plates

Chladni figures are patterns that were discovered by Ernst Florence Friedrich
Chladni (1756–1827) in a series of experiments on vibrating plates. In one of
these experiments, he sprinkles fine sand onto a square plate before setting it into
vibration using a violin bow. As the plate vibrates, the sand gathers at points
that remain stationary and traces out beautiful patterns, such as the ones shown
in Figure 13. It turns out such patterns are zero sets of eigenfunctions of the
biharmonic operator, with special boundary conditions that can be derived from a
variational formulation. In this section, we will show how this eigenvalue problem
can be derived, discretized and calculated using techniques we have seen. The
presentation of this section follows [20] closely.

5.1. Vibrating plate model. In order to derive the vibrating plate model, we
start just like we did in Section 1, with Newton’s second law:

∂2z

∂t2
= −L z.

We saw that such motions can be analyzed using standing wave solutions of the
form z(x, y, t) = T (t)u(x, y) is a standing wave, where u(x, y) is a solution of the
eigenvalue problem

L u = λu.

In the absence of external forces, L u is simply the restoring force due to the shape
of the vibrating plate u = u(x, y). However, instead of −L being the Laplacian
operator, as was the case for vibrating membranes, we will deduce the form of L
based on energy considerations. Gustav Kirchhoff (1824–1887) proposed a model
that describes the potential energy stored in a deformed thin square plate with
shape u : Ω→ R, given by

(18) J [u(x, y)] =
1

2

∫∫
Ω

(uxx + uyy)2 − 2(1− µ)(uxxuyy − u2
xy) dx dy,

where 0 < µ < 1 is a material constant. This is only one of many models for the
bending plate, and it may not be adequate for certain types of problems; see the
plate paradox in [7], further explored in [6]. Other possibilities include the Reissner-
Mindlin model or the full 3D model, as described in [6]. However, for simplicity,
we will only consider the Kirchhoff model (18) in these notes.

To see how this energy functional (18) is related to the operator L , we resort
to arguments that are standard in the calculus of variations, see [22, Chapter 7]:
suppose we wish to change the shape of the plate from an initial configuration
u(x, y) to a slighly different shape u(x, y) + εv(x, y), where ε is small. Then the
change in potential energy is precisely the work done on the system, which is the
distance travelled by each particle on the plate times the force needed to counteract
the restoring force L u(x, y), see Figure 14. In other words, we have
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Figure 13. Chladni figures as recorded by Chladni in [16].

Figure 14. Forces involved in deforming of a thin plate from con-
figuration u to a nearby configuration u+ εv.

J [u+ εv]− J [u] =

∫∫
Ω

(L u)(εv) dx dy +O(ε2).

Dividing both sides by ε and taking the limit as ε→ 0, we obtain

d

dε
J [u+ εv]

∣∣∣
ε=0

= lim
ε→0

J [u+ εv]− J [u]

ε
=

∫∫
Ω

(L u)v dx dy.
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Substituting the above into the definition (18) and differentiating yields∫∫
Ω

(L u)v dx dy =

∫∫
Ω

(uxx + uyy)(vxx + vyy)

− (1− µ)(uxxvyy + uyyvxx − 2uxyvxy) dx dy.

This is precisely the expression we need to define the weak form of the eigenvalue
problem ∫∫

Ω

(L u)v dx dy =

∫∫
Ω

λuv dx dy.

We will use this form in Section 5.3 to derive a spectral approximation of the eigen-
value problem, as was done by Walther Ritz [36].

For the moment, we continue by deriving the strong form of the problem for the
special case of a rectangular plate, where Ω = (−L,L)× (−H,H). We integrate by
parts to eliminate derivatives of v:∫∫

Ω

(L u)v dx dy =

∫∫
Ω

(uxxxx + 2uxxyy + uyyyy)v dx dy

+

∫
x=±L

(
[uxx + µuyy]

∂v

∂n
+ [uxxx + (2− µ)uxyy]v

)
dy

+

∫
y=±H

(
[µuxx + uyy]

∂v

∂n
+ [uyyy + (2− µ)uxxy]v

)
dx

+ 2(1− µ)[uxy(L,H)v(L,H)− uxy(−L,H)v(−L,H)

− uxy(L,−H)v(L,−H) + uxy(−L,−H)v(−L,−H)]

By choosing arbitrary functions v that vanish on the boundary of Ω, we obtain the
PDE

(19) uxxxx + 2uxxyy + uyyyy = λu,

which must hold at every point in the interior of Ω. We can also obtain boundary
conditions by choosing arbitrary variations along different parts of the boundary.
For instance, by considering the integrals along x = ±L, we obtain the boundary
conditions

uxx + µuyy = 0, uxxx + (2− µ)uxyy = 0

there. We can combine the above with the similar-looking conditions along the
horizontal boundaries y = ±H by writing

(20) unn + µuττ = 0, unnn + (2− µ)unττ = 0,

where the subscripts n and τ denote derivatives in the outward normal and tan-
gential directions, respectively. Finally, by taking arbitrary variations at the four
corners, we obtain the corner conditions

(21) uxy(±L,±H) = 0.

Equations (20) and (21) are known as free boundary conditions for the thin plate
PDE (19). Another way of writing (19) is ∆2u = λu, where ∆ is the usual Laplacian
operator; ∆2 is also known as the biharmonic operator. Note that the material
constant µ does not enter into the PDE itself, but instead appears in the boundary
conditions. The PDE (19) has already appeared in a series of articles by Sophie
Germain in 1811–21; however, the edge conditions (20) only appears in 1850 in the
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Figure 15. Finite difference/finite volume discretization of the
square plate problem. Top left: definition of w. Top right: full
stencil of the biharmonic operator after composing the five-point
stencil with itself. Bottom left: elimination of ghost points using
second order boundary conditions. Bottom right: treatment of
third order boundary conditions.

work by Kirchhoff, and the corner conditions (21) finally emerge in an article by
Lamb in 1889, almost 80 years after the discovery of the strong form PDE.

5.2. Finite Difference Discretization. In order to discretize the strong form
(19)–(21), we use the finite difference and finite volume techniques introduced in
Section 2. We show this for the case L = H = 1, i.e., for the square Ω = (−1, 1)2.
Let (uij)

N
i,j=0 be the grid points distributed uniformly at (xi, yj) = (−1 + ih,−1 +

jh), h = 2/N . Since the biharmonic operator can be regarded as the Laplacian
operator composed with itself, it is natural to discretize it by composing the discrete
five-point Laplacian stencil with itself. If we define the auxiliary grid function w
using the five-point stencil as shown in the top left panel of Figure 15, i.e.,

wij :=
1

h2
(4uij − ui−1,j − ui+1,j − ui,j−1 − ui,j+1) ≈ −∆u,

then (19) can be discretized i as

1

h2
(4wij − wi−1,j − wi+1,j − wi,j−1 − wi,j+1) = λuij .
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This leads to the wide stencil shown in the top right panel of Figure 15, which can
be written for the interior points 1 ≤ i, j ≤ N − 1.

Note that if i = 1 or N − 1, the stencil involves the unknown u−1,j or uN+1,j ,
which falls outside Ω; this is a ghost point that needs to be eliminated. To do so,
we make use of the second order boundary condition in (20): along x = −1, the
condition reads uxx + µuyy = 0, which can be discretized as

2(1 + µ)u0,j − u−1,j − u1,j − µ(u0,j−1 + u0,j+1) = 0.

This allows us to represent the ghost value as

u−1,j = 2(1 + µ)u0,j − u−1,j − u1,j − µ(u0,j−1 + u0,j+1),

as shown in the bottom left panel of Figure 15. Other ghost points can be treated
similarly.

Finally, we need equations for the edge variables themselves, which we will derive
using the finite volume method. Consider the edge unknown shown in the bottom
right panel of Figure 15. We integrate (19) over the half volume V indicated in
dotted lines. Noting that ∆2u = −∆w, we have

−
∫
V

∆w dxdy = λ

∫
V

u dx dy ≈ h2λ

2
uij .

Applying the divergence theorem on the left hand side yields

−
∫
∂V

∂w

∂n
ds ≈ h2λ

2
uij .

The integral along three of the four edges can be approximated using finite dif-
ferences. For instance, the integral along the top edge can be approximated by
1
2 (w0,j − w0,j+1). To deal with the edge along the domain boundary, we use the

third order boundary condition to eliminate ∂w
∂n : since wx = −(uxxx + uxyy), we

have by (20)

wx = −(uxxx + (2− µ)uxyy︸ ︷︷ ︸
=0

) + (1− µ)uxyy.

Thus, the integral along the boundary portion of ∂V is given by

−
∫ B

A

∂w

∂n
dy =

∫ B

A

wx dy = (1− µ)

∫ B

A

uxyy dy = (1− µ)(uxy(B)− uxy(A)).

The mixed derivative at B can now be approximated by a finite difference involving
u−1,j+1, u−1,j , u1,j+1 and u1,j , and similarly for the derivative at A. Finally, for
corner points, we use the same technique over the quarter volume, with one of the
mixed derivatives vanishing directly because of the corner condition (21).

The above discretization leads to a large, sparse generalized eigenvalue problem
of the form

Au = λBu,

where B is a diagonal matrix containing the areas of the control volumes, and
A having at most 13 non-zero entries per row. This matrix is easy to set up in
MATLAB, requiring only about 80 lines of code, see [20] for details. The generalized
eigenvalue problem can then be solved using a modified version of the Lanczos
method, see Section 7.3. If we plot the nodal lines of these eigenfunctions, we
obtain the Chladni figures shown in Figure 16.
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Figure 16. Chladni Figures obtained by Matlab using the finite
difference method.

5.3. Ritz Approximation. Another way of approximating the eigenvalues of the
free vibrating plate, developed by Walther Ritz [36], bears much similarity to the
finite element method introduced in Section 3.7 Consider once again the eigenvalue
problem in weak form, where we seek u ∈ H2(Ω) such that

(22) a(u, v) = λ(u, v) for all v ∈ H2(Ω),

where

a(u, v) =

∫∫
Ω

(uxx + uyy)(vxx + vyy)− (1− µ)(uxxvyy + uyyvxx − 2uxyvxy) dx dy,

and (·, ·) denotes the L2 inner product on Ω. Instead of using a basis of hat
functions, Ritz’s idea is to use a product of one-dimensional eigenfunctions. Suppose

7In fact, the finite element method has its origin in Ritz’s method.
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Figure 17. Chladni figures obtained by Ritz’s method for N = 6,
i.e., using 49 basis functions.

um(x) satisfies the one-dimensional eigenvalue problem

d4um
dx4

= k4
mum,

d2um
dx2

=
d3um
dx3

= 0 at x = ±1.

This two point boundary value problem can be solved easily, and we find
(23)

um(x) =


cosh km cos kmx+ cos km cosh kmx√

cosh2 km + cos2 km
, tan km + tanh km = 0, m even,

sinh km sin kmx+ sin km sinh kmx√
sinh2 km − sin2 km

, tan km − tanh km = 0, m odd.
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We now let the finite dimensional subspace Vh to be spanned by functions of the
form um(x)un(y); in other words, for a given N > 0, we seek an approximate
eigenfunction of the form

(24) u(x, y) =

N∑
m=0

N∑
n=0

cmnum(x)un(y)

such that (22) is satisfied for all v(x, y) = up(x)uq(y), 0 ≤ p, q ≤ N . In matrix
form, this gives the generalized eigenvalue problem

Ack = λ̃kBck,

where A and B are symmetric (N + 1)2 × (N + 1)2 matrices, with rows indexed
by (p, q) and columns indexed by (m,n), corresponding to the basis functions
upq(x, y) := up(x)uq(y) and umn(x, y) := um(x)un(y) respectively. The corre-
sponding entries are

apqmn = a(umn, upq), bpqmn = (umn, upq).

Note that the matrices are dense; the calculation of the entries, while cumbersome,
can be automated by software such as Maple; see [20] for details. Once A and B are

evaluated numerically, the QR method can be used to obtain the eigenvalues λ̃k,
and the eigenvectors ck can be substituted back into (24) to yield the approximate
eigenfunctions. The nodal lines of the latter are shown in Figure 17 for the case
with N = 6, i.e., when the matrices are 49 × 49. We see that even for this small
number of degrees of freedom, the approximation is already very good for the low
frequency modes. Thus, thanks to a clever choice of basis functions, this method
converges much faster to the exact eigenvalues in terms of number of degrees of
freedom than the finite difference method, at the price of dealing with dense rather
than sparse matrices.

Comparing the Chladni figures in 17 with those obtained by Matlab in 16, we
observe that there are substantial qualitative differences between them in two cases:

• When m + n is odd. This is because these correspond to eigenvalues
with multiplicity 2: the (m,n) and (n,m) modes together span a two-
dimensional subspace with two linearly independent eigenfunctions, so the
Chladni figures are not uniquely determined. If we take linear combina-
tions of the eigenfunctions obtained by Matlab, we obtain the ones found
by Maple. We show an example in the left and middle panels of Figure
18 for the case of (m,n) = (1, 2) and (2, 1): denoting by u(12) and u(21)

the eigenfunctions shown in positions (1,2) and (2,1) in Figure 16, the left
panel shows the the linear combination u = −1.6u(12) + u(21), whereas the
middle panel shows v = u(12) + 1.6u(21). These look qualitatively similar
to the ones found by Maple in positions (1,2) and (2,1) in Figure 17.

• When m and n are large relative to the number of basis functions used,
for example when (m,n) = (5, 5). When we increase the number of basis
functions, e.g., with N = 9, we get a much better approximation that
matches the Chladni figure found by Matlab, see the right panel of Figure
18.

From the Minimax principle, we know the Ritz values λ̃k are overestimates of
the exact eigenvalues. In Table 2, we compare the first 10 eigenvalues obtained by
the finite difference method with 400 grid points per side with those from the Ritz
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Figure 18. Left and middle: nodal lines for linear combinations
of the eigenfunctions calculated by Matlab. Right: A better ap-
proximation of the eigenfunction obtained from Maple for m = 5
and n = 5 with 10 basis functions per direction (0 ≤ m,n ≤ 9).

Table 2. First 10 eigenvalues obtained by the finite difference
and Ritz methods, versus experimental values found by Chladni.
Up/down arrows mean that the observed notes are higher/lower
than the indicated nominal values.

Model Experiment
Fin. Diff. Ritz Gap Note Value

12.5 12.5 0.08% G 12.4
26.0 26.1 0.46% D↓ 26.4
35.6 35.8 0.36% E↑ 36.2
80.9 81.2 0.36% B 77.5

235.4 236.3 0.39% G] ↓ 215
269.3 270.0 0.24% A↑ 260
320.7 322.4 0.53% B 310
375.2 377.2 0.53% C↑ 364
730.0 732.4 0.33% F] 698
876.1 879.8 0.42% G↑ 819

method using N = 10 modes per direction. We see that the Ritz values are indeed
larger than the finite difference eigenvalues, but they are already very accurate,
with a gap no larger than about half a percent between the two. In the same table,
we also show the frequencies observed experimentally by Chladni himself in [16], as
well as the corresponding eigenvalues. (Recall from Section 1 that the square root of
the eigenvalue is the frequency of oscillation, which produces a sound that Chladni
heard and recorded as a musical note.) We see that the experimental results also
match the model very well, but they tend to be underestimates. This is possibly
due to the internal friction present in physical systems, which causes energy to
dissipate and leads to lower frequencies when compared with ideal models.

5.4. Other boundary conditions. The vibrating plate model given by the energy
functional (18) can be used to obtain other boundary conditions. For example, one
is said to apply clamped boundary conditions when the edge is not allowed to move,
and the plate may not pivot around the edge. In the language of the calculus of
variation, this is the same as specifying that perturbations of the form u + εv are
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only allowed if

v =
∂v

∂n
= 0.

This leads to strong form boundary conditions

u =
∂u

∂n
= 0

in the corresponding eigenvalue problem. Note that this is the analogue of essential
boundary conditions for the Laplacian operator, in the sense that such boundary
conditions must be built into the test and trial spaces in the variational problem.

Another common type of boundary conditions is the simply supported boundary
conditions, where the edge of the plate is not allowed to move, but the plate may
pivot around the edge. Thus, any perturbations of the form u+ εv must satisfy

v = 0.

This leads to strong form boundary conditions

u = 0,
∂2u

∂n2
= 0.

Whereas the first condition is rather obvious, the second-order condition is less so
– it can be derived by integration by parts and a variational argument, in the same
way we deduced the edge and corner conditions for the free boundary conditions.
The reader is invited to calculate the eigenvalues and nodal lines of the biharmonic
operator for these types of boundary conditions.

6. Further Reading

There is a large body of literature on the numerical solution of PDE eigenva-
lue problems. Instead of attempting to give a (necessarily non-exhaustive) list of
references, we will just give pointers to a few classical and recent works on the sub-
ject, through which the interested reader can continue to explore via the references
therein.

The approximation of eigenvalue problems was first done by finite difference met-
hods, with much important work appearing before the 1970s, such as [42, 43, 25, 26].
Such methods can be used to derive lower as well as upper bounds on the exact
eigenvalues, but because a minimax type argument is not readily available, the
convergence theory often relies on clever tricks that only work for specific stencils
and/or domain types. The classical paper by Kuttler [29] develops a fairly general
convergence theory for this class of methods for the Laplace operator. A list of
related work can also be found in Section 9 in the review paper by Kuttler and Si-
gillito [30]. Because of the simplicity of the discretization, finite difference methods
are also used for higher order elliptic operators, see [33, 34].

For the finite element method, the survey paper by Boffi [11] elegantly describes
the essentials of the convergence theory of FEM for eigenvalue problems. The paper
deals mainly with symmetric problems, with some comments and references to the
non-symmetric case. It also contains many references to relevant work up to around
2010. For more on non-self adjoint problems, see Bramble and Osborn [12]. For
problems that contain eigenfunctions with less regularity, e.g., the L-shpaed domain,
an adaptive mesh refinement approach may be preferred, see Dai, Xu and Zhou [17]
and also Carstensen and Gedicke [14], where their methods also provide guaranteed
lower bounds for the eigenvalues concerned. For implementation, FreeFem++ ([24],
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available at www.freefem.org) is a domain-specific language based on C++ that
makes the tasks of gridding and stiffness matrix calculations much easier. The
documentation available on the web site contains examples on PDE eigenvalue
problems. For more on FEM for eigenvalue problems, we recommend the very
readable and comprehensive treatise by Babuška and Osborn [5].

There are other methods for solving PDE eigenvalue problems than the ones exa-
mined in this manuscript. There is the Method of Particular Solutions, which assu-
mes that the eigenfunction can be written as a linear combination of eigenfunctions
with certain symmetries, and the coefficients are chosen so that the boundary con-
ditions are satisfied. This method was used by Fox, Henrici and Moler to calculate
the eigenfunctions of the L-shaped domain in [19]. The method was subsequently
improved by [9]. A different possibility is to use a boundary integral method, in
which the eigenvalue problem is reformulated in terms of unknown traces (function
values or normal derivatives) along the boundary. This has the advantage of redu-
cing the number of unknowns dramatically and can be beneficial when searching for
large eigenvalues, where the highly oscillatory eigenfunctions would require a very
fine mesh in the interior of the domain. For an easy-to-understand algorithmic des-
cription of the method, see Bäcker [8]. More recent work that considers a problem
with both Dirichlet and Neumann boundaries can be found in [1].

The solution of eigenvalue problems for dense matrices is now a fairly mature
technology, with highly efficient implementations available in libraries such as LA-
PACK ([3], www.netlib.org/lapack) and its parallel version, ScaLAPACK ([10],
www.netlib.org/scalapack). Nonetheless, new shift-and-deflate strategies have
been proposed that lead to even faster convergence, see [28]. For sparse matrices,
considerations such as eigenvalue distribution and sparsity preservation become
important. In addition to the Lanczos method, another popular method is the
Jacobi–Davidson method, which is described in [39]. Some numerical experiments
suggest that Jacobi–Davidson does a better job in approximating interior eigenva-
lues than methods such as Lanczos; for more details, see the relevant references
contained in [39]. We also recommend the excellent book by Saad [37], which con-
tains very thorough discussions of the theory and algorithms related to large, sparse
matrix eigenvalue problems.

Finally, we mention the book by Chatelin [15], which develops the theory and
numerical methods for spectral approximation not only for differential operators,
but also for other types of linear operators, e.g., integral operators.
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7. Exercises

This section contains three problem sets handed out during the 2016 CRM Sum-
mer School on Spectral Theory and Applications. They are computational in na-
ture, with the aim of helping participants gain insight into the theory by imple-
menting the numerical methods themselves and experimenting with them. Some
additional code was provided to the participants, in particular the finite element
modules; those can be downloaded at http://www.math.hkbu.edu.hk/~felix_

kwok/crm/.

7.1. Problem Set #1: Finite Difference Methods.

Exercise 1: Grid Setup and Visualization
The goal of this exercise is to learn how to set up a rectangular grid in MATLAB,

as well as visualize functions defined on a grid.

1. Open a new script file in the editor and type the following commands:

a = 0; b = 1;

N = 10; % Number of mesh widths in the grid

h = (b-a)/N; % Mesh size

t = (a:h:b)’

The last command generates a vector of N+1 points from a to b with increment
h. Save the script and run it, either by typing its name in the command window,
or by clicking the ‘Run’ button. We will change or include additional commands
in this file in the subsequent exercises.

2. Generate a grid of x-values by creating an (N + 1)× (N + 1) array with N + 1
copies of the column vector t using the command

xx = repmat(t, 1, N+1)

3. Generate a grid of y-values by creating an (N + 1)× (N + 1) array with N + 1
copies of the row vector t’, the transpose of t.

4. To visualize the function f(x, y) = xy2, we first generate a grid function u by
evaluating f at our grid points xx and yy:

f = @(x,y) x.*(y.^2);

u = f(xx,yy);

Now we can plot the function using the surf or the mesh command:

surf(xx,yy,u)

xlabel(’x’)

ylabel(’y’)

The last two commands label the axes. The mesh command has an identical
syntax to surf, but plots the surface a bit differently.

5. To add more resolution to the plot, change N in part 1 to N = 50 and rerun your
script.

Exercise 2: Laplacian on a Square
We now set up the finite difference matrix for the square grid in Exercise 1.

1. First, we number the interior points using the commands

G = zeros(size(xx));

G(xx > a & xx < b & yy > a & yy < b) = (1:(N-1)^2);

Explain what this does by displaying the variable G (it may be easier to visualize
for N = 10).
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2. Create an empty (N−1)2×(N−1)2 sparse matrix A using the sparse command.
Next, fill in the entries by completing the following loop:

for i=1:size(G,1),

for j=1:size(G,2),

if (G(i,j)>0),

A(G(i,j),G(i,j)) = 4/h^2;

if (G(i+1,j)>0), A(G(i,j),G(i+1,j)) = -1/h^2; end;

... COMPLETE HERE ...

end;

end;

end;

3. Compute the five smallest eigenvalues and their associated eigenvectors using the
command eigs. Do not forget the ‘s’ at the end – eig is a different command!
If v is an eigenvector of A, we can visualize it as an eigenfunction on the unit
square by running

U = G;

U(G>0) = v;

surf(xx,yy,U);

4. Compute the smallest eigenvalue for different mesh sizes by letting N = 8, 16,
32, 64, 128. Plot the difference between these approximations and the exact va-
lue λ = 2π2 in a log-log plot, using the command loglog. Also plot on the same
graph the curves y(N) = N−α for α = 1, 2, 3. At what rate does the smallest
eigenvalue converge to the exact value?

Exercise 3: L-shaped Domain
The MATLAB commands numgrid and delsq provide a quick way of setting up

the discrete Laplacian matrix. To set up the Laplacian for a square, use the pair
of commands

G = numgrid(’S’,N+1)

A = delsq(G);

1. Check that numgrid and delsq give the same grid and matrix as the ones gene-
rated in Exercise 2, provided that the appropriate mesh size h is used.

2. Generate a grid for the L-shaped domain shown in the lecture slides, i.e., the
region [−1, 1]×[−1, 1] with the second quadrant removed. Calculate the smallest
eigenvalue and the associated eigenfunction for N = 16, 32, 64, . . . , 512.

3. If we have a slowly converging sequence, such as our sequence of eigenvalues, we
can transform it into a new, faster-converging sequence with the same limit using
the ε-algorithm by P. Wynn (cf. [21, §5.2.4]). The function EpsilonAlgorithm

provided returns the last element of this new sequence. Apply this function to
the sequence of eigenvalues obtained in part 2. We will consider the answer to
be our best approximation to the exact eigenvalue.

4. Study the convergence of the first eigenvalue as a function of h = 1/N . Does
the error behave like O(h2)? What is the actual convergence rate?

5. Repeat the above computation for the next four smallest eigenvalues. Why do
some eigenvalues converge faster than others?

Exercise 4: Neumann Conditions
In this exercise, we will solve numerically for the eigenvalues of the Laplacian of
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the unit square with Neumann boundary conditions

−∆u = λu on Ω = (0, 1)2,
∂u

∂n
= 0 on ∂Ω.

Recall that the finite volume method gives the generalized eigenvalue problem

Au = λBu,

where A has the same structure as the finite difference matrix at interior points,
and B is a diagonal matrix.

1. Modify your code to set up the numbered grid G, the stiffness matrix A and the
mass matrix B. Points to note:
− You may set up the matrix A either from scratch like in Exercise 2, or by

using delsq and dividing appropriate parts of the matrix by 2. Either way,
remember to scale the entries correctly along boundary nodes!

− Be careful with the size of these matrices: nodes on the boundary are now
part of the degrees of freedom in u.

For N = 16, the first five eigenvalues should be 0.0000, 9.8379, 9.8379, 19.6759,
38.9737.

2. Notice that the first computed eigenvalue is always zero up to machine precision.
Can you prove it?

3. Verify numerically that the error of the computed eigenvalues is O(h2). Can you
prove this analytically?

7.2. Problem Set #2: Finite Element Methods.

Exercise 1: Getting to know a finite element code
In this exercise, you will familiarize yourself with the different parts of a finite

element code for solving eigenvalue problems. The following routines are included
in the sample code:

NewMesh.m: sets up the data structures for the initial triangular mesh;
PlotMesh.m: displays the mesh stored in the data structures
RefineMesh.m: refines a given mesh by a factor of two;
SmoothMesh.m: moves the nodes of a mesh to get a more uniform triangulation;
ComputeElementStiffnessMatrix.m: computes the element stiffness matrix for

a given triangle;
ComputeElementMassMatrix.m: computes the element mass matrix for a gi-

ven triangle;
FEeig.m: computes the assembled stiffness and mass matrices for a given mesh;
FEeig fast.m: same as FEeig.m, but optimized to exploit the built-in Matlab

routines for manipulating sparse matrices.
PlotSolution.m: displays the finite element function u(x) =

∑
i uiϕi(x) given its

vector of degrees of freedom u = (ui)
N
i=1.

The following commands show how to run the code from start to finish for
the unit square. To run all of them sequentially, save them into an M-file (say
eig example.m), then click the ‘Run’ button or type the name of the file (without
the .m) on the command line.
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1. Change the argument to NewMesh to see what other domains are available.
2. Refine the mesh for the unit square until there are at least 9 degrees of freedom.

Compute the five smallest eigenvalues of −∆u = λu, u|∂Ω = 0, and display their
corresponding eigenfunctions. Do the eigenfunctions look the way you expect
them to?

3. Continue refining the grid and calculate the first five eigenvalues for each level
of refinement. Plot the error as a function of the mesh parameter h. Does the
error behave like O(h2)? (Hint: If the code becomes too slow, replace FEeig by
FEeig fast in your code.)

Exercise 2: L-shaped domain
In this exercise, you will create an initial mesh for the L-shaped domain shown

in Figure 19 and study the convergence of its eigenfunctions.

1. Create the array N containing in each row i the x and y coordinates of the ith
node. The nodes can appear in any order.

2. Create the array T containing a list of triangles defined by the nodes. Each row
of T, say T(i,:), contains six entries according to the format

[v1, v2, v3, e1, e2, e3]

where v1, v2 and v3 are the three nodes of the ith triangular element in coun-
terclockwise order. The fourth entry e1 is 1 if the edge (v1, v2) is part of the
physical boundary, and zero otherwise. The fifth and sixth entries are similar,
except they describe the edges (v2, v3) and (v3, v1). For example, one of the tri-
angles in the mesh above is described by the row [1 3 2 0 1 1]. The triangles
can appear in any order.

3. Verify whether your mesh is set up correctly by visualizing it using PlotMesh.
Once everything is correct, add this new mesh to your copy of NewMesh.m.

4. Study the convergence of the first few eigenvalues of −∆u = 0, u|∂Ω = 0 for the
L-shaped domain under mesh refinement. Do you observe the same phenomenon
as in the finite difference case?

5. Suppose we want to study the eigenvalues for the Neumann problem, i.e., we
want ∇u · n|∂Ω = 0. How would you modify your mesh generation code to
handle this? Compute the first few eigenvalues and eigenfunctions for the Neu-
mann problem for different shapes.
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Exercise 3: Robin boundary conditions
In this exercise, we consider the eigenvalue problem with Robin boundary con-

ditions

−∆u = λu on Ω, ∇u · n+ pu = 0 on ∂Ω,

where p > 0 is a constant for simplicity. Recall that in this case, the energy bilinear
form contains the extra boundary integral p

∫
∂Ω
uv dS(x). We will compute the

contribution of this term edge by edge along the physical boundary.

1. Given an edge E defined by the nodes (x1, y1), (x2, y2), calculate (with pencil and
paper) the 2×2 edge mass matrix corresponding to the integrals

∫
E ϕiϕj dS(x),

i, j = 1, 2.
2. Using the function ComputeElementMassMatrix as a model, write a function

ComputeEdgeMassMatrix that implements your calculation in part 1.
3. Modify the assembly routine FEeig to incorporate the Robin boundary term.

Save your result under a different name, e.g., FEeig Robin.m. Check that your
results are correct by calculating the first eigenvalue and eigenfunction for the
unit square for p = 1. As you refine the grid, this value should approach
λ1 ≈ 3.4141 . . .

7.3. Problem Set #3: Matrix Eigenvalue Problems.

Exercise 1: Sparse vs. Dense Matrices
In Matlab, a matrix can be stored in dense or sparse format.

− A dense matrix is stored in a contiguous block of memory for n2 real numbers,
and zero entries are stored explicitly as the real number ‘0’.

− A sparse matrix only allocates enough memory for storing the non-zero entries
in the matrix, plus some supporting data structures for locating these non-zero
entries within the matrix. Zeros are not explicitly stored.

Matlab provides two commands, eig and eigs, for computing the eigenvalues of
dense and sparse matrices respectively. You have already used eigs in previous
problem sets for calculating a few eigenvalues of sparse matrices arising from PDE
discretizations. The aim of this exercise is to compare the two routines.

1. Generate the matrix of a discrete Laplacian using numgrid and delsq for N =
4, 8, 16, 32, 64. Use eig to compute all eigenvalues of the matrix. Note how
much time the computation takes by enclosing your eig command within a
tic-toc pair:

tic; lambdas = eig(A); toc

(Depending on the version, you may need to convert A to dense format first
by calling eig(full(A)).) How does the running time behave as the size of the
matrix increases?

2. Again for N = 4, 8, 16, 32, 64, use eigs to calculate (i) the 5 smallest eigenvalues,
and (ii) the m/2 smallest eigenvalues, where m is the size of the matrix. Round
to the nearest integer if m is odd. Note again the running time for each case.

3. Under what circumstances is eigs more efficient than eig, and vice versa?

Exercise 2: Power Iteration

1. Write a function PowerMethod that implements the power method. Use the
following header:
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function [lambda, y] = PowerMethod(A, y0)

% POWERMETHOD calculates the largest eigenvalue in magnitude using the

% power method

% [lambda, y]=PowerMethod(A,y0) uses the power method to approximate

% the largest eigenvalue lambda of A, using y0 as the initial vector.

% The return value y is an approximate eigenvector associated with

% lambda.

You may use the function ShiftInvert as a reference when writing this routine.
2. Let A be a symmetric positive definite matrix, so that all its eigenvalues are

positive. There are two ways of finding its smallest eigenvalue:
− Use the inverse power method (i.e., shift-and-invert with a zero shift),
− Apply the power method to the matrix γI − A, where γ is an upper bound

on the largest eigenvalue of A, e.g., its maximum row sum γ = ‖A‖∞.
Which method is faster in terms of (i) number of iterations and (ii) running
time? For the running time, you need to consider the cost of solving the linear
system Ax = b versus multiplying A by a vector x. Try to construct matrices
for which one method is faster than the other, and vice versa.

Exercise 3: Tridiagonal matrices
Write a function Sturm that calculates the kth eigenvalue of a symmetric tridi-

agonal matrix. Use the following header:

% STURM calculates the kth eigenvalue of a symmetric tridiagonal matrix

% [lambda, y] = sturm(alpha, beta, k) calculates the kth eigenvalue lambda

% of the symmetric tridiagonal matrix A with [beta(i-1), alpha(i), beta(i)]

% in its i-th row. beta is assumed to be non-zero everywhere. The method

% uses Sturm sequences to find a good enough approximation to the k-th

% eigenvalue, then shift-and-invert is used to find a better approximation

% as well as the corresponding eigenvector y.

To write such a function, proceed as follows:

1. First, use Gershgorin’s theorem to estimate the interval [y, z] containing all the
eigenvalues:

Gershgorin’s Theorem. If λ is an eigenvalue of a matrix A, then
there exists an index i such that |λ− aii| ≤

∑
j 6=i |aij |.

In other words, all the eigenvalues must be contained in intervals of the form
[aii− ρi, aii + ρi], where ρi =

∑
j 6=i |aij |. One can thus obtain y and z by taking

some minima and maxima.
2. Next, bisect the interval until ω(y) = k−1 and ω(z) = k. To do so, you will need

to evaluate p0(λ), . . . , pn(λ) at the midpoint x = (y + z)/2 using the recurrence
shown on the slide, and then count the number of sign changes in the sequence.

3. Bisect the interval two more times so that the midpoint obtained is much closer
to the kth eigenvalue than to any other eigenvalue.

4. Finally, call ShiftInvert to obtain accurate values for the eigenpair.
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Test your function on the matrix

A =



2 −1

−1 2
. . .

. . .
. . .

. . .

. . .
. . . −1
−1 2


,

whose kth eigenvalue is given by 4 sin2
(

kπ
2(n+1)

)
. As a further test, generate a

symmetric matrix A (e.g. the Laplacian for an L-shaped domain), then run the
following:

T = hess(full(A));

[lambda, y] = sturm(diag(T),diag(T,-1),7);

The first command calculates the tridiagonal form of A having the same eigenva-
lues, and the diag calls inside sturm extract the diagonal and subdiagonal of T
before passing it to sturm, which then computes the seventh smallest eigenvalue.
Compare your results with that obtained by eig or eigs.

Exercise 4: Lanczos Method

1. Derive the Lanczos method for the generalized eigenvalue problem

Ax = λBx,

where A and B are symmetric and B is positive definite. Make sure your method
can be expressed entirely in terms of the following operations:
− Scalar operations;
− Vector manipulations of the form z← αx + y;
− Dot products between two vectors;
− The matrix vector product Ax,
− Linear solves involving B, i.e., solve Bx = y.

2. Using myLanczos as a model, implement the Lanczos method for the generalized
eigenvalue problem. Use your routine to calculate the lowest eigenmode for the
Laplacian problem discretized by the finite element method. Taking the result
from eigs as the exact solution, plot the error of the smallest eigenvalue as a
function of the number of Lanczos iterations.

3. Compare the convergence of Lanczos with that of the power method. Which
method converges faster?
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