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Abstract

All domain decomposition methods are based on a de-
composition of the physical domain into many subdomains
and an iteration, which uses subdomain solutions only (and
maybe a coarse grid), in order to compute an approximate
solution of the problem on the entire domain.
We show in this poster that it is possible to formulate such
an iteration, only based on subdomain solutions, which con-
verges in two steps to the solution of the underlying prob-
lem, independently of the number of subdomains and the
PDE solved.
This method is mainly of theoretical interest, since it
contains sophisticated non-local operators (and a natural
coarse grid component), which need to be approximated in
order to obtain a practical method.

Discretized Equations

We describe the method for a linear system

Au = f

which comes from the discretization of a partial differential
equation (PDE). While the method is formulated purely at
the algebraic level, we consider Laplace’s equation to have
a concrete example,

−∆u = f on Ω ⊂ R2,

u = g on ∂Ω.

Using a five point finite difference discretization, we obtain
the discretization stencil

4uP − uN − uE − uS − uW

h2
= fP .

Domain Decomposition

In order to have a concrete example, we consider the sub-
domain decomposition shown in Fig. 1.
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Figure 1: Domain decomposition.

We assume that each grid point lies in the interior of at least
one subdomain (away from the interface, see the illustration
in Fig. 1)

Classical Schwarz Method

A classical Schwarz method for this example is (Lions 1988)

for k = 0, 1, 2, . . .
for j = 1, 2, 3, 4 solve

−∆uk+1
j = f on Ωj

uk+1
j = g on ∂Ω ∩ Ωj

uk+1
j = uk

i on Γji

This method has a contraction factor of 1−O(h) and is thus
very slow on fine grids!

Optimal Schwarz Method

An optimal Schwarz method uses different transmission
conditions in the same algorithm

Biju
k+1
j = Biju

k
i on Γij

Here the Bij are linear operators acting on u along the in-
terfaces Γij. Bij can be:

Local: differential operators (compact stencil), e.g. Dirich-
let, Neumann, Robin, etc.

Nonlocal: convolutions (dense matrix blocks), e.g. Steklov-
Poincaré, Dirichlet-to-Neumann, etc.

Important historical contributions:
Nataf et al. (1994): For a decomposition into strips, choos-
ing Bij := ∂n −DtNij leads to convergence in a number of
iterations equal to the number of subdomains
Nier (1995): Such optimal Schwarz methods exist when the
decomposition has no cycles
Local approximations of these optimal operators can lead
to methods which are faster than the classical Schwarz
method (so called optimized Schwarz methods)
•Robin (no overlap): 1−O(h1/2)

•Robin (with overlap): 1−O(h1/3)

• 2nd order (no overlap): 1−O(h1/4)

• 2nd order (with overlap): 1−O(h1/5)

An Algebraic Optimal Schwarz Method

• Truly optimal: method converges in two iterations
•No restriction on subdomain decomposition (cycles al-

lowed)
For any subdomain Ωj, we rewrite the linear system after
permulation as[

Aj Bj
Cj Dj

](
uj
uo

j

)
=

(
fj
fo
j

)
inside Ωj
outside Ωj

Using a Schur complement, we can eliminate the outer vari-
ables uo

j,

(Aj −BjD
−1
j Cj)uj = fj −BjD

−1
j fo

j . (∗)

These systems can all be solved in parallel, if fo
j was known.

The purpose of the optimal Schwarz method is therefore to
reconstruct the RHS in (∗) using solutions from other sub-
domains, i.e. we must reconstruct fo

j from uk
j on each Ωj.

Let v be a node in subdomain Ωk situated away from its
boundary, i.e eT

v Bk = 0. Then we can recover the corre-
sponding value of f from the subdomain solution uk,

eT
v (Ak −BkD

−1
k Ck)uk = eT

v (fk −BkD
−1
k fo

k),

which is equivalent to

fv := eT
v fk = (eT

v Ak)uk.
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Figure 2: Extraction of f components from uk

Optimal algebraic Schwarz algorithm, Version I:

(Aj −BjD
−1
j Cj)uk+1

j = fj −
∑
i 6=j

BjD
−1
j

 0
RiAi

0

uk
i

uk+1
j will yield the exact solution as long as each uk

i satisfies
RiAiu

k
i = Rifi, i 6= j.

Algorithm converges in two iterations !

Reducing Communication

The optimal algebraic Schwarz algorithm Version I commu-
nicates all subdomain solution values to each subdomain.
In contrast, a classical Schwarz method only communicates
interface values of neighboring subdomains.

Observation: the term

BjD
−1
j

 0
RiAi

0


has a very special sparsity pattern: the column is nonzero
only at interfaces between subdomains. The values of in-
terior nodes are not needed !
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Reducing Communication
� Observation:

has a very specific 
sparsity pattern

� Column is nonzero 
only at interfaces 
between subdomains

� Values of interior nodes 
not needed!
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Optimal algebraic Schwarz algorithm, Version II:

(Aj −BjD
−1
j Cj)uk+1

j = fj −
∑
i 6=j

BjD
−1
j

 0
RiAi

0

PT
jiPjiu

k
i

(Pji restricts uik to the “boundary”)
Version I and Version II produce identical iterates, and thus
Version II also converges in two iterations, even though fo

j
are no longer reconstructed faithfully!

Figure 4: Optimal interface condition information.

Numerical Experiments

We show two sets of experiments, as illustrated in Fig.
5. Black squares indicate nodal values required by
Ωj, which is enclosed by thick solid lines. (a) de-
composition into vertical strips. The top figure shows
the values required by Algorithm II, and the bottom
those required by classical Parallel Schwarz with opti-
mal transmission conditions. (b) a 4 × 4 decomposition,
shown with the communication pattern for Algorithm II.
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Figure 5: Communication pattern for two decompositions
into subdomains

In Table 1 we report the maximum L∞ errors over all sub-
domains.

Table 1: Parallel Schwarz with optimal transmission
conditions versus Algorithm II.

Example 1 (6× 1) Example 2 (4× 4)
k Schwarz Algorithm II Schwarz Algorithm II
1 3.605× 100 3.681× 100 6.987× 101 6.965× 101

2 2.176× 10−1 1.066× 10−14 1.191× 102 8.527× 10−13

3 1.252× 10−2 5.438× 101

4 7.328× 10−4 4.652× 102

5 3.278× 10−5 1.118× 103

6 1.066× 10−14 3.894× 103
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