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Abstract

The efficient simulation of immiscible fluid displacements in underground porous me-

dia remains an important and challenging problem in reservoir engineering. First,

the governing PDEs exhibit a mixed hyperbolic-parabolic character due to the cou-

pling between the global flow and the local transport of the different phases. The

transport problem is highly nonlinear, leading to the formation of shock fronts and

steep gradients in the saturation profile. In addition, rock properties such as porosity

and permeability are highly heterogeneous, leading to poor numerical conditioning of

the resulting linear systems. Finally, fluid velocities vary greatly across the domain,

with near-well regions experiencing fast flows and some far away regions experiencing

almost no flow at all. Consequently, the use of explicit integrators would entail a

time-step restriction that is much more severe than the global reservoir time scales.

For this reason, implicit time-stepping is the preferred temporal discretization in the

reservoir simulation community, but this requires the solution of a very large system

of nonlinear algebraic equations (often on the order of millions of unknowns) at each

time step.

Our main algorithmic contribution is the ordering of equations and unknowns in

such a way that flow directions are exploited. This leads to improvements in both the

linear and nonlinear solvers. In the nonlinear setting, the ordering leads to a reduced-

order Newton method, which numerical experiments have shown to have a much more

robust convergence behavior than the usual Newton’s method. We also prove, for

1D incompressible two-phase flow, that the reduced Newton method converges for

any time-step size. In the linear solver, ordering improves the convergence of the

Constrained Pressure Residual (CPR) preconditioner and reduces its sensitivity to

v



flow configurations.

We also present a rigorous analysis of phase-based upstream discretization, which

is different from the classical Godunov and Engquist-Osher schemes for nonlinear

conservation laws. We show, based on a fully nonlinear analysis, that the fully im-

plicit scheme is well-defined, stable, monotonic and converges to the entropy solution

for arbitrary CFL numbers. Thus, unlike the existing linear stability analysis, our

results provide a rigorous justification for the empirical observation that fully-implicit

solutions are always stable and yield monotonic profiles.
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Chapter 1

Introduction

Petroleum reservoir simulation is the use of numerical techniques to solve the equa-

tions for heat and fluid flow in porous media, given the appropriate initial and bound-

ary conditions. Simulation technology has evolved tremendously since the develop-

ment of the first simulator in the 1950s. Due to the explosion of available computing

power and the ever-increasing sophistication of simulation techniques, simulation has

become an indispensible tool to reservoir engineering. Today, nearly all major reser-

voir development decisions are based at least partially on simulation results [83].

Despite the growing speed and storage capacities of today’s computers, there is in-

creasing interest and necessity to simulate larger and more complex reservoir models.

As a result, the efficient simulation of miscible and immiscible fluid displacements in

underground porous media remains an important and challenging problem in reservoir

engineering.

There are several hurdles to an efficient, scalable reservoir simulator. First, the

governing PDEs exhibit a mixed hyperbolic-parabolic character due to the coupling

between the flow (pressure and total velocity) and the transport (phase saturations)

problems. In addition, rock properties such as porosity and permeability are highly

heterogeneous, leading to poor numerical conditioning of the resulting linear systems.

Finally, fluid velocities vary greatly across the domain, with near-well regions experi-

encing fast flows and some far away regions experiencing almost no flow at all. These

characteristics impose severe constraints on the numerical methods used in practical

1



2 CHAPTER 1. INTRODUCTION

reservoir simulation. In particular, scalable techniques that work well for specific

classes of problems (e.g., algebraic multigrid for elliptic problems [74]) no longer work

well for reservoir simulation problems.

The simplest and most widely used model in reservoir simulation is the standard

black-oil model [6]. In this model, mass transfer between the hydrocarbon liquid

and vapor phases is represented using pressure-dependent solubilities, and the com-

pressibility effects are represented using normalized densities (the so-called formation

volume factors). These simplifying assumptions on fluid properties are used to elimi-

nate the need for equation of state (EOS) and phase equilibrium calculations, which

can take up to 70% of the total simulation time [87, 16]. Thus, despite the increasing

use of compositional models, black-oil simulation still accounts for the vast major-

ity of simulations in industry. Hence, this thesis will concentrate on improving the

efficiency and robustness of black oil simulation.

The rest of this chapter is organized as follows. In section 1.1, we derive the

PDEs that describe the black-oil model. In section 1.2, we introduce the finite-volume

discretization, as well as the various time-marching schemes that are used to integrate

the PDEs in time. We also describe the most commonly used methods to solve the

resulting system of nonlinear and linear equations. We outline the remainder of the

thesis and state our contributions in section 1.3.

1.1 Governing equations

1.1.1 General mass-balance equations

The governing equations for multiphase flow in porous media are based on the conser-

vation of mass for each component. Here, a component can be either a single chemical

species (e.g., decane C10H22), or a mixture of components that behave similarly, so

that they can be lumped together into a pseudocomponent. When nc components

are present, the system of conservation laws has the form

∂ci
∂t

+ ∇ · Fi = qi, i = 1, . . . , nc, (1.1.1)
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where ci is the mass concentration of component i, Fi is the mass flux and qi is the

source or sink term. Each component can exist in one or more immiscible fluid phases

that flow inside the pore space; typically, we consider either two-phase (aqueous and

liquid hydrocarbon) or three-phase (aqueous, liquid and vapor hydrocarbon) flow

problems. If Xij is the concentration of component i in phase j (mass per unit

volume), then the concentration of component i can be written as

ci = φ

np
∑

j=1

XijSj, (1.1.2)

where φ = φ(x) is the porosity of the medium (i.e., the fraction of the bulk volume

that is open to fluid flow), np is the number of phases present, and Sj is the saturation

of phase j (i.e., the fraction of the pore volume occupied by phase j). The mass flux

Fi is the sum of the volumetric fluxes of each phase j, multiplied by the concentration

Xij. In other words,

Fi =

np
∑

j=1

Xijuj, (1.1.3)

where uj is the volumetric flux vector of phase j. The volumetric fluxes are given by

generalized Darcy’s law :

uj = −krj

µj

K(∇pj − γj∇z), (1.1.4)

where K is the absolute permeability tensor, z is the depth variable; and for each

phase j, krj = krj(S1, . . . , Snp
) is the relative permeability of phase j, µj is the

phase viscosity, pj is the phase pressure, and γj is the gravitational force acting

on phase j. The permeability tensor K is highly variable over the domain, even

within short distances; it also exhibits complex correlation patterns over a hierarchy

of spatial scales. For simulation purposes, it is generally necessary to assume K to

be a discontinuous function of x, since it would be impractical (or even impossible)

to simulate on a scale over which K becomes continuous. This has implications on

the choice of spatial discretization, which is described in section 1.2.1.

We also have a few algebraic constraints in addition to the above PDEs. Since
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the pore space is saturated, we have the constraint

np
∑

j=1

Sj = 1, (1.1.5)

and the phase pressures are related by the capillary pressure constraints:

pj − pj+1 = Pcj,j+1(S1, . . . , Snp
), j = 1, . . . , np − 1. (1.1.6)

1.1.2 Black-oil model

Equations (1.1.1), (1.1.5) and (1.1.6) yield nc + np equations, and we have 2np un-

knowns corresponding to the phase pressures and saturations. In a compositional

model, the concentrations Xij are also treated as unknowns, and additional equa-

tions are needed to close the system (cf. [58]). However, for the black-oil model, we

have nc = np, and Xij are treated as known functions of pj, so that we have the

same number of equations and unknowns. Specifically, the black-oil assumptions are

as follows:

1. The chemical species are represented by three pseudocomponents: water, oil

and gas, which are aligned with the aqueous, liquid and vapor hydrocarbon

phases respectively;

2. The water component exists only in the aqueous phase, and the oil component

exists only in the liquid hydrocarbon phase;

3. The gas component can exist in both the liquid and vapor hydrocarbon phases,

but gas solubility in the liquid phase is a pure function of pg (the vapor-phase

pressure).

With these assumptions, the mass-balance equations (1.1.1) take the form

∂(φρpSp)

∂t
+ ∇ · (ρpup) = ρpqp (1.1.7)
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for p = o, w (liquid and aqueous phases), and

(

∂(ρgφSg)

∂t
+ ∇ · (ρgug)

)

+

(

∂(ρoφSoRs)

∂t
+ ∇ · (ρouoRs)

)

= ρgqg (1.1.8)

for the vapor phase, where Rs = Rs(pg) is the solubility ratio. The generalized Darcy’s

law (1.1.4), which is valid for p = w, o, g, is used to obtain the phase velocities, up.

In practical simulations, we typically rewrite the PDEs in terms of a set of linearly

independent primary variables (usually Sw, Sg and pg, but one can choose any phase

pressure and any np − 1 saturations), and then use the algebraic relations (1.1.5) and

(1.1.6) to calculate the remaining variables. In addition, it is commonly assumed

that the relative permeabilities krp and capillary pressures Pcpq have the following

dependencies on saturation:

krw = krw(Sw), kro = kro(Sw, Sg), krg = krg(Sg); (1.1.9)

po − pw = Pcow(Sw), pg − po = Pcgo(Sg). (1.1.10)

The above functions are all nonlinear with respect to the saturation variables, and

they contribute to the highly nonlinear character of the resulting PDEs [71]. The

parameterization is based on the assumption that water is the most wetting phase

and gas the least wetting phase, which is valid for most reservoirs of interest (see [6]

for more detailed explanations). We also need P ′
cow ≤ 0 and P ′

cgo ≥ 0 for the problem

to be well-posed. The resulting system of PDEs is supplemented with the boundary

conditions

pw = pwd on Γd (1.1.11)

ρwuw · ν = gwn on Γn (1.1.12)

ρouo · ν = gon on Γn (1.1.13)

ρgug · ν = ggn on Γn (1.1.14)
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and initial conditions

pw(x, 0) = pw0(x), Sw(x, 0) = Sw0(x), Sg(x, 0) = Sg0(x), (1.1.15)

where the Dirichlet boundary Γd has positive measure, and ν denotes the outward

normal to the boundary.

Incompressible flow (and other simplifications)

In subsequent chapters, we often consider the case of incompressible flow, which

implies the phases have constant densities ρp. For simplicity, we also restrict our

attention to heterogeneous, but pointwise isotropic permeabilities, i.e., K = KI,

where I is the identity tensor. In this case, the conservation equations become

φ
∂Sp

∂t
−∇ · (λpK∇(pp − γpz)) = qp (1.1.16)

for p = o, w, and

(

φ
∂Sg

∂t
−∇ ·

[

λgK∇(pg − γgz)
]

)

+

(

φ
∂(SoR̄s)

∂t
−∇ ·

[

R̄sλoK∇(po − γoz)
]

)

= qg,

(1.1.17)

for the gas phase, where λp = krp/µp is the (relative) mobility of phase p, and R̄s =

ρoRs/ρg is the normalized solubility ratio. Sometimes we also consider the two-phase

flow case, which is simply the same PDEs with the gas-related equations removed.

Pressure equation

An important equation that can be derived from the mass balance equations and the

saturation constraint is the pressure equation. It can be obtained by taking a special

linear combination of the mass-balance equations (1.1.7), (1.1.8). Assume there are

no source or sink terms and no buoyancy effects, and suppose Pcow = Pcgo = 0, so

that all the phase pressures are identical. Inclusion of such terms would introduce

additional lower order terms, but would not alter the fundamental character of the

PDE. Let us multiply the water equation by 1/ρw, the gas equation by 1/ρg, and the



1.1. GOVERNING EQUATIONS 7

oil equation by (1 − R̄s)/ρo. Assuming that the pressure p is differentiable and that

φ, ρp and Rs are smooth functions of pressure, we get (after some algebra):

φcT
∂p

∂t
−∇ · (λTK∇p) −KχT |∇p|2 = 0, (1.1.18)

where the phase compressibilities are

cw =
ρ′w
ρw

, co =
ρ′o
ρo

+
ρoR

′
s

ρg

,

cg =
ρ′g
ρg

, cr =
φ′

φ
,

and the ‘total’ quantities (denoted with the subscript T ) are

Total compressibility: cT = Swcw + Soco + Sgcg + cr,

Total mobility: λT = λw + λo + λg,

Mobility-weighted compressibility: χT = λwcw + λoco + λgcg.

The full derivation is shown in Appendix A. Equation (1.1.18) is a parabolic PDE in

p with an additional quadratic nonlinear term KχT |∇p|2. We must have cT > 0 for

the problem to be well posed. (This criterion has been exploited by Coats in [20] to

derive validity checks for PVT data of isothermal black-oil and compositional fluid

systems.) An analytic solution can be found for the constant-coefficient analog of

(1.1.18):

∂u

∂t
− a∇2u+ b|∇u|2 = 0, (x, t) ∈ R

n × (0,∞)

u(x, 0) = g,

where a > 0 and b are constants [32, §4.4]. When cT ≡ 0 (the incompressible case),

(1.1.18) degenerates to an elliptic equation in p:

−∇ · (KλT∇p) = 0. (1.1.19)
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The pressure equation is important because it dictates the choice of numerical meth-

ods and forms the basis for several widely used methods in reservoir simulation.

1.2 Numerical simulation of the reservoir

In order to simulate fluid flow in the reservoir, the above governing equations need

to be discretized in time and space, and the resulting systems of nonlinear algebraic

equations need to be solved at every time step. A reservoir simulator, which integrates

the governing equations up to a final time Tfinal based on given initial conditions, will

typically follow these steps during the simulation process:

1. Read input data (model grid geometry, permeability, porosity, fluid properties,

etc.);

2. Initialize reservoir (initial conditions, equilibrium calculations);

3. Set boundary conditions;

4. While Tfinal not reached:

• Compute an appropriate ∆t;

• Set well locations and production/injection rates for the current time step;

• Form the nonlinear algebraic equations that arise from discretizing the

governing equations;

• Solve the nonlinear system;

• Print results (water cut, saturation profile, etc.) if necessary;

• Increment time;

5. End when Tfinal is reached.

A robust general-purpose simulator needs to handle a variety of reservoir spec-

ifications (model sizes, property distributions) and flow configurations. It is this

generality requirement that dictates the choice of numerical methods that are used to
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approximate the PDEs. In this section, we provide the background for the remainder

of the thesis by briefly discussing several common discretizations and solvers; for a

broader survey of discretizations that are used in reservoir simulation, we direct the

reader to [34, 52, 83]. A discussion of time-step control and the treatment of wells is

beyond the scope of this thesis, even though these are very important considerations

in building an accurate and useful simulator (see [6] for details).

1.2.1 Spatial discretization

Historically, the majority of reservoir simulators used (and still use) finite volume

methods to discretize the multiphase flow equations. This choice is motivated by

the need for exact local conservation, since shocks will generally be present in the

saturation profile in the incompressible case. When compressibility and capillarity

are present, the analytical solution will no longer contain shocks, but steep gradients

will remain in the saturation profile, and it would be computationally costly to use

a grid that is fine enough to resolve these gradients. The discretized component

mass-balance equations are written in conservation form:

∂(φiρpSp)

∂t
+

1

|Vi|
∑

l∈adj(i)

Fp,il = 0, (1.2.1)

where |Vi| is the volume of the i-th gridblock, and Fp,il is the numerical flux function

of phase p from cell i to cell l:

Fp,il = −|∂Vil|Kilρp,ilλp(Sil)

(

(pp,l − pp,i)(xl − xi)

|xl − xi|2
− γp,il(zl − zi)

|xl − xi|

)

· νil, (1.2.2)

where |∂Vil| is the area of the interface between cells i and l, xi is the location of

the center of cell i, zi is the component of xi along the direction of gravity, and νil

is the unit normal to the cell interface, pointing from cell i to cell l. The above

discretization uses a two-point flux approximation, and we restrict ourselves to the

two-point flux case in this dissertation. One should note, however, that multipoint

flux approximations are also used occasionally in reservoir simulation, especially for

tensorial permeability fields [2, 47, 48].
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The literature on finite volume methods for multiphase flow is vast [87, 79, 16], and

[6] describes the method in detail for various flow configurations. On the other hand,

the use of finite-element methods for general-purpose simulation in industry is rare.

Finite element methods are more flexible in terms of the treatment of unstructured

grids, irregular boundaries, as well as anisotropic or tensorial permeability fields. As

a result, there is active interest in using finite-element methods to develop finite-

volume discretizations [53]. In this thesis, we restrict our discussion to finite volume

methods, but the reader is referred to [1, 43, 86, 31] for more detailed discussion on

finite element methods.

A peculiar feature of the spatial discretization used in reservoir simulation is the

upstream weighting of saturation-dependent terms. Buoyancy and capillary forces

may induce sonic points to the hyperbolic flux function (see Figure 2.1), but the exact

location of the sonic point is a strong function of the total velocity and permeability, so

it would be inconvenient to locate the sonic point for every cell interface. In practical

simulations, the upstream direction for phase p is determined by the potential gradient

of phase p. Since different phases can have different upstream directions, the resulting

numerical flux functions are in fact a combination of mobilities, each evaluated at a

different saturation. It can be shown [13] that these numerical flux functions are

different from those used in classical CFD, such as the Godunov and Engquist-Osher

schemes. In Chapter 2, we will study this upstream weighting in detail and discuss

its convergence to the analytical solution under grid refinement.

1.2.2 Temporal discretization

A variety of temporal discretizations are commonly used in black-oil simulation. The

most commonly used methods are:

1. Implicit pressure, explicit saturation (IMPES): All saturation-dependent co-

efficients in the flux terms are evaluated at the beginning of the time step

(t = tn), and pressure-dependent terms are evaluated at the end of the time step

(t = tn+1). In algorithmic terms, this amounts to (1) solving the pressure equa-

tion (1.1.18) for pn+1, (2) computing the phase velocities up at (Sn, pn+1), and
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(3) updating the saturations using the mass-balance equations (1.1.7), (1.1.8)

and a forward difference approximation for ∂/∂t. Because of the explicit treat-

ment of saturation, IMPES is only conditionally stable; the CFL condition for

a 1D two-phase incompressible oil-water problem without gravity is given by

(cf. [20])

∆t <
φ

2Kλwλo |dPcow/dSw|
(λw + λo)∆x2

+
vTdfw/dSw

∆x

, (1.2.3)

where vT is the total velocity of the oil and water phases, and fw is the fractional

flow of the water phase:

fw =
λw

λw + λo

[

1 +
Kλo

vT

∂Pcow

∂x

]

.

In the absence of capillarity, (1.2.3) reduces to the familiar CFL condition for

the hyperbolic conservation law

φSt + (vTfw(S))x = 0.

Thus, ∆t is O(∆x2) when capillarity is present, and O(∆x) otherwise.

2. Sequential implicit method (SEQ): The sequential implicit method computes

the new pressure pn+1 in exactly the same manner as IMPES, but it updates

the saturations by solving the transport problem with implicit time-stepping

[72, 82]. This amounts to an operator splitting method, in which the flow

problem (resolution of the global pressure field) and the transport problem

(advection of individual phases) are decoupled and solved sequentially. A more

detailed description is given in Section 2.2.2. Since the transport problem is

solved implicitly using a frozen total velocity field vT , SEQ is stable for any

time-step size as long as vT is conservative. However, for compressible flow,

mass is generally not conserved for one of the phases; the mass-balance errors

are proportional to the areal variation of ρo/ρw [6, 21] and can be significant

for large time steps.
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3. Adaptive implicit method (AIM): This method changes the level of implicitness

adaptively for each cell, depending on the CFL limit for that cell. For a cell

experiencing fast flows (i.e., the local CFL number is greater than 1), both

the saturation and pressure are taken implicitly; if, on the other hand, the

local CFL number is less than 1, the saturations are taken explicitly, whereas

pressure is taken implicitly. More detailed descriptions and analyses can be

found in [76, 36, 67, 26].

4. Fully implicit method (FIM): Both saturation and pressure variables are taken

implicitly in every cell. A linear stability analysis [6], together with a more

refined analysis based on linearized mobilities [61], strongly indicate (but do not

provide a rigorous proof) that this method is unconditionally stable. However,

it is also generally the most diffusive of the above mentioned schemes.

These methods differ in the level of implicitness of the saturation-dependent quanti-

ties, with IMPES having the least degree of implicitness and FIM having the most.

Note that pressure is treated implicitly in all methods. This is because the pressure

equation is either weakly parabolic (and nearly elliptic) in the compressible case, or

elliptic in the incompressible case. Hence, in the compressible case, explicit pressure

treatment would entail a time-step restriction proportional to ∆x2, which is unac-

ceptably severe. In the incompressible case, the pressure equation degenerates into a

constraint that is required to ensure global conservation, which must be satisfied by

the numerical solution. Thus, it is also necessary to treat pressure implicitly in the

incompressible case.

Clearly, a method with a lower level of implicitness would incur a lower compu-

tational cost per time step. However, the difference in computational cost between

explicit and implicit methods (such as IMPES and FIM) is not as pronounced as

one would expect, since the “explicit” IMPES still needs to solve an implicit pres-

sure equation at every time step. Figure 1.1 shows the amount of time the simulator

spends in each module during a typical black-oil simulation when FIM is used. Even

for FIM, the pressure solve represents almost half of the total running time, and

about 60% of the solver time. So in this case, IMPES would be faster than FIM

only if the FM time step is chosen such that the maximum CFL number is less than
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Total running time: ------------- 518.86 sec ( 100 % )

-Initialization time: --------- 1.16 sec ( 0 % )

-Property Calc time: --------- 13.96 sec ( 3 % )

-Linearization time: --------- 31.93 sec ( 6 % )

-Newton Update time: --------- 58.81 sec ( 11 % )

-Solver running time: --------- 412.15 sec ( 79 % )

--(B)ILU Pre fac time: ----- 61.78 sec ( 12 % )

--(B)ILU Pre slv time: ----- 14.32 sec ( 3 % )

--Pres dcpl time: ---------- 12.16 sec ( 2 % )

--Pres slv time: ----------- 247.26 sec ( 48 % )

-Timestep Calc time: --------- 0.13 sec ( 0 % )

-CFL No. Calc time: --------- 0 sec ( 0 % )

Figure 1.1: Timing report for a typical black-oil simulation run. The above simulation
is performed on a 3D, two-phase heterogeneous model with 141900 grid blocks.

1.67. In practice, reasonable time steps yield maximum CFL numbers that are much

larger than 1 because of the presence of sources and sinks, as well as spatial variations

in permeability and porosity. However, the impact of these high CFL numbers on

overall accuracy is minimal because they only occur in a few cells. Figure 1.2 shows

the saturation profiles for the FIM and IMPES solutions in a 2D water flood prob-

lem. The maximum saturation difference between the two solutions is 0.036, which is

negligible considering the uncertainty in the reservoir characterization. In this case,

FIM takes only 113 time steps to reach Tfinal, whereas IMPES takes 1318 steps, so

FIM is clearly more efficient.

The above example, in which the high CFL numbers do not significantly affect

solution accuracy, is typical among reservoir models of practical interest. Such models

are generally highly heterogeneous with permeability variations up to several orders

of magnitude. Moreover, wells can be completed anywhere in the reservoir model

and can operate in a wide variety of ways, often resulting in CFL limits that are

unacceptably severe. Thus, reservoir simulators typically use implicit time-stepping

for robustness and efficiency. Consequently, efficient linear and nonlinear solvers for

the fully-implicit problem can be the crucial factor in determining the efficiency of

reservoir simulators.
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Figure 1.2: A comparison between FIM (top) and IMPES (bottom) saturation profiles
for a 2D heterogeneous reservoir. The permeability and porosity fields are taken from
the 51st layer of the SPE 10 reservoir [19].
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Higher-order methods for reservoir simulation have been an active area of research

in recent years. With the exception of streamline methods, which can take advantage

of high-order 1D integrators readily [52], higher-order methods are still primarily in

the development stage and are not yet routinely used in commercial simulators. A

major impediment to the wide-spread adoption of higher-order methods is the loss

of positivity, which leads to spurious oscillations as the initial profile is integrated

forward in time. An important result due to Bolley and Crouzeix [12] states that

a method that preserves positivity for all ∆t is at most first-order accurate. An

elaborate discussion on higher-order methods is beyond the scope of this thesis; see

[9, 18, 11, 26, 77] for a detailed discussion.

1.2.3 Solution of nonlinear equations

Since all temporal discretizations contain some level of implicitness, the simulator

needs to solve a large system of nonlinear algebraic equations at each time step. The

size and properties of this system, of course, depend on the number and nature of the

implicit variables. For IMPES, the nonlinear system will by N -by-N , where N is the

number of grid blocks (control volumes) in the domain, and the equations will inherit

the parabolic/elliptic nature of the pressure equation. For FIM, on the other hand, we

would have an npN -by-npN system, where np is the number of fluid phases, and the

equations would be of mixed hyperbolic-parabolic type. As a result, the bulk of the

simulation time (80% to 90%, cf. Figure 1.1) is spent on solving these large systems.

It is therefore crucial, for the sake of efficiency and robustness, that the linear and

nonlinear solvers exploit the structure and properties of these discrete equations.

Nonlinear solvers

The most commonly used nonlinear solvers in reservoir simulation are all variations

on the basic Newton method:

Solve J(x(ν)) δx(ν) = −R(x(ν)) for δx(ν),

Set x(ν+1) = x(ν) + δx(ν), ν = 0, 1, 2, . . . ,
(1.2.4)
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where R(x) is the residual function and J(x) = ∂R/∂x is the Jacobian matrix. New-

ton’s method is popular because of its local quadratic convergence and its general

applicability. For residual functions arising from discretized PDEs, the resulting Ja-

cobian is generally sparse and structured, which means the linear systems can be

solved efficiently. Also, quadratic convergence means Newton’s method is very fast

when good initial guesses are available. For time-dependent problems, a natural

initial guess is the saturation and pressure profiles from the previous time step. As-

suming the profiles vary continuously with time (which is always true for pressure,

and true for saturations away from shock fronts), the old time-step values will be

close to the solution provided ∆t is small enough. However, when the time step is

too large, it is possible for Newton’s method to diverge, since the residual functions

are in general non-convex and possibly non-monotonic (see Figure 2.1). When faced

with non-convergence, the simplest approach is to cut the time-step size and rerun

Newton’s method with the smaller time step. Such time-step cuts are very expensive,

since they mean we must throw away the results of all previous iterations and start

over. Thus, one should avoid time-step cuts as much as possible.

One way to avoid time-step cuts is to take small enough time-steps. However, in

practice, one does not want to choose time-step sizes based on the nonlinear solver

for the following reasons:

1. The use of excessively small time steps reduces the benefits of using FIM, since

we would not be taking advantage of its ability to handle long time steps;

2. It is difficult to decide whether Newton’s method would converge for a particular

time-step size without actually performing the iterations;

3. The time-step size should be chosen based on the desired solution accuracy (e.g.,

bounds on numerical diffusion errors) instead of the ability of the nonlinear

solver to converge a time step.

For these reasons, several modifications to the basic Newton’s method have been pro-

posed to ensure global convergence, or at least to enlarge the region of convergence

to the point that the algorithm will converge for all ∆t of practical interest. Glob-

alization techniques for general nonlinear residual functions, such as line search and
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trust-region methods, are discussed in [29]. In our experience, line search methods,

in which the search direction is scaled by a single step-length parameter α, are in-

adequate for reservoir simulation problems because (1) the residual norm is sensitive

to diagonal scaling, and the correct scaling for the phase conservation equations is

not obvious in most problems; (2) α is often very small when flow reversal due to

gravity occurs across several cell interfaces; (3) a number of backtracking steps is of-

ten needed to guarantee a sufficient decrease in the residual, and function evaluations

are quite expensive, since each evaluation involves calculating fluid properties and

pressure gradients for every cell in the domain.

Another method, which is implemented in the commercial simulator Eclipse, is

the so-called Appleyard chop [37]. It limits, on a cell-by-cell basis, the allowable

saturation and pressure changes within a nonlinear iteration to a fixed (but empirically

determined) threshold. When the threshold parameters are chosen properly, the

method is quite robust and the number of time-step cuts is often small. However,

because large saturation changes are disallowed, the method can lead to unnecessarily

slow convergence, especially in cases where Newton’s method actually works well (such

as problems with convex fractional flow functions).

Other methods for solving general nonlinear systems (e.g., continuation methods)

can be found in [29, 59]. Such methods, however, are not used in general-purpose

simulation in industry.

Linear solvers

To solve the linear system (1.2.4), early reservoir simulators [51, 62, 6] used either

direct methods (Gaussian elimination) or stationary iterative methods such as succes-

sive over-relaxation (SOR), alternating direction implicit method (ADI), or Stone’s

strongly implicit procedure (SIP) [73]. With the advent of Krylov accelerators such as

ORTHOMIN [80] and GMRES [69], iterative methods became more popular, and the

need for efficient preconditioning techniques has increased. In addition to precondi-

tioners derived from stationary methods, other preconditioners have been developed

by the reservoir simulation community to handle the linear equations arising from

fully-implicit simulation. Examples include:
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1. Incomplete factorization (ILU): Originally developed by Watts [84] to handle

Jacobian matrices from structured grids, this technique has been generalized to

handle other sparse matrices. For a thorough discussion of ILU and its variants,

see [68].

2. Nested factorization: This method was introduced by Appleyard et al. in [5]

and subsequently improved by Appleyard and Cheshire in [3]. It exploits the

band structure in three-dimensional problems to produce an approximate fac-

torization M = LU , such that the error matrix E = M − A has zero column

sums. In physical terms, this means global mass balance is preserved by the

approximate factors, yielding a better preconditioner than ILU.

3. Constrained pressure residual (CPR): Proposed by Wallis et al. [81], CPR is

a two-stage preconditioner in which the residual vector is constrained to lie in

some subspace V via a projection process. The choice of constraint subspace

determines the effectiveness of the preconditioner. With the emergence of fast

elliptic solvers such as algebraic multigrid [74], CPR has become one of the most

attractive preconditioners for reservoir simulation problems [17].

Behie [8] provides a comparison among the three preconditioners above. In Chapter

5, the spectral properties of CPR-preconditioned Jacobians are discussed in detail.

1.3 Thesis outline

In this thesis, we make two contributions to the existing literature on reservoir simu-

lation. On the algorithmic side, we present a new ordering scheme for the equations

and unknowns for the discrete mass-balance equations (1.2.1), (1.2.2). This new or-

dering exploits flow direction information and allows us to derive a more efficient

nonlinear solver as well as an improved linear preconditioner. On the theoretical

side, we present a rigorous nonlinear analysis of phase-based upstream discretization.

We show that the discretization yields a well-defined, stable and monotonic method

that converges to the entropy solution for arbitrary CFL numbers. This complements
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the existing literature [6, 61] in which only stability is established using a linear or

linearized stability analysis.

In Chapter 2, we analyze phase-based upstreaming in detail. We show how the

FIM formulation in 1D, as well as SEQ in multiple dimensions, can be cast as a

monotone implicit scheme. We then extend the work of Rheinboldt on M -functions

and Gauss-Seidel iterations [64] to show that the discretized equations always have

a unique solution, which can be found using the nonlinear Gauss-Seidel process. We

also show that the discrete solution converges to the entropy solution under grid

refinement, and we investigate the accuracy of the discrete solutions for different

time-step sizes and spatial grids. This chapter is of a more theoretical nature, and

practitioners of reservoir engineering who are familiar with the discretizations can go

directly to Chapter 3 for a more algorithms-related discussion.

In Chapter 3, we introduce phase-based potential ordering, which reorders the

equations and variables in the nonlinear system in a way that exploits flow direction

information and eventually allows a partial decoupling of the problem into a sequence

of single-cell problems that are easy to solve. This ordering is valid for both two-phase

and three-phase flow, and it can handle countercurrent flow due to gravity and/or

capillarity.

In Chapter 4, we propose a reduced-order Newton algorithm, which makes use of

the phase-based potential ordering in Chapter 3 to reduce the size of the nonlinear

system. The latter is then solved using Newton’s method. We analyze its convergence

behavior for 1D cocurrent problems, and we show a variety of examples (two- and

three-phase flow, with and without gravity) illustrating its effectiveness in dealing

with large, complex heterogeneous problems.

In Chapter 5, we analyze the two-stage CPR preconditioner in detail and propose

an improved second-stage preconditioner that uses a cell-based potential ordering.

This approach reduces the sensitivity of CPR to flow configurations, and this re-

duction in sensitivity is both justified theoretically and observed from numerical ex-

periments. We also experiment with directly preconditioning the Schur complement

problem that arises from the phase-based potential order reduction.

We present our conclusions and outline future directions in Chapter 6.



Chapter 2

Analysis of Upstream Weighting

2.1 Background

As mentioned in Chapter 1, the multiphase flow equations give rise to a system of

n conservation laws (where n is the number of immiscible fluid phases), defined over

Ω ⊂ R
k (1 ≤ k ≤ 3), each of the form

∂(φρjSj)

∂t
+ ∇ · (ρjuj) = ρjqj, j = 1, . . . , n, (2.1.1)

and generalized Darcy’s law

uj = −Kλj∇(pj − γjz), (2.1.2)

where φ = φ(x) is the porosity of the medium (with 0 < φ ≤ 1), K = K(x) > 0 is the

absolute permeability, z = z(x) is the depth variable; and for each phase j = 1, . . . , n,

ρj is the density, Sj is the saturation (i.e. the volume fraction occupied by phase j),

uj is the volumetric flux vector, qj is the source or sink term, λj = λj(S1, . . . , Sn) is

the phase mobility, pj is the pressure, and γj is the gravitational force. In addition,

20
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we have the algebraic relations:

Saturation constraint:
∑

Sj = 1, (2.1.3)

Capillary pressure constraint: pj − pj+1 = Pcj(S1, . . . , Sn), j = 1, . . . , n− 1.

(2.1.4)

The above system of PDEs exhibits a mixed hyperbolic-parabolic character, which

becomes apparent when we consider the various limiting cases. If we assume constant

densities and neglect capillary pressure relations (i.e. we assume p1 = · · · = pn ≡ p),

then we can sum (2.1.1) over j = 1, . . . , n and invoke the saturation constraint to get

−∇ ·
(

KλT∇p−K∇z∑jγjλj

)

=
∑

jqj, (2.1.5)

where λT =
∑

j λj is the total mobility. Thus, for a given saturation distribution,

the pressure field satisfies an elliptic PDE. On the other hand, when the total ve-

locity uT =
∑

j uj is constant over the domain (which is the case for flow in a one-

dimensional porous medium), we can rewrite uj as

uj =
λj

λT

(uT −K∇z∑lλl(γl − γj)) , (2.1.6)

which is a function of the saturations S1, . . . , Sn only. Thus, if we substitute (2.1.6)

into (2.1.1), we get

φ
∂Sj

∂t
+ ∇ · uj(x, S1, . . . , Sn) = 0, j = 1, . . . , n− 1. (2.1.7)

This means saturation behaves like the solution to a system of first-order hyperbolic

PDEs, so one should expect discontinuous saturation profiles. In higher dimensions,

there is generally a strong coupling between pressure and saturation, due to the sat-

uration dependence of λj and λT in (2.1.5) and the dependence of uT on the pressure

field in (2.1.6). In addition, the porosity φ and permeability K are highly oscillatory,

non-smooth functions of x, and K(x) can vary by several orders of magnitude over

the domain Ω. The large variability of φ and K leads to local CFL limits that are
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unacceptably severe when explicit schemes are used. As a result, the discretization

of choice for most reservoir simulators is the fully-implicit method (FIM), which uses

finite volume in space and backward Euler in time. The numerical flux functions,

which approximate the uj as defined in (2.1.2), use a two-point finite difference to

approximate ∇p and phase-based upstream weighting to approximate λj(S). In other

words, to approximate uj at the interface of cells a and b (centered at xa and xb), we

evaluate λj(S) at

S =







S(xa) if −∇(pj − γjz) · νab ≥ 0,

S(xb) otherwise,
(2.1.8)

where νab is the unit vector normal to the interface, pointing from a to b. The

resulting numerical flux functions are different from those used in classical CFD,

such as the Godunov and Engquist-Osher schemes [13]. Despite being only first-

order accurate, phase-based upstreaming is the preferred upwind method in reservoir

simulation because it is physically intuitive, and because it is generally easier to verify

a consistency condition such as (2.1.8) than to identify potential sonic points, which

vary over the domain and are strong functions of permeability and total velocity. This

is especially true for the fully-implicit method because the total velocity at time tn+1

is usually unknown.

Note that in (2.1.8) it is possible for −∇(pj − γjz) · νab to have different signs

for different j, meaning the upstream directions can be different for different phases

when buoyancy forces are significant; this is known as countercurrent flow in reservoir

engineering literature. In one-dimensional porous media, countercurrent flow mani-

fests itself through the presence of sonic points in the flux function uj; thus, the flux

function for a countercurrent flow problem would typically look like the one shown

in Figure 2.1(b), whereas without countercurrent flow it would look more like Figure

2.1(a). A detailed treatment of phase-based upstreaming is given in [13], in which

the authors showed that, when explicit time-stepping is used on a two-phase flow

problem, phase-based upstreaming leads to a monotone difference scheme, as long as

the appropriate CFL condition is satisfied. This in turn implies that the solution of
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Figure 2.1: Flux functions for 1D incompressible two-phase flow: (a) Co-current flow
(no buoyancy effects), (b) Countercurrent flow due to gravity.

the explicit schemes converge to the entropy solution of the two-phase equations

∂S

∂t
+
∂f(S)

∂x
= 0, (2.1.9)

f(S) = u1 =
λ1

λ1 + λ2

[

uT +Kλ2(γ1 − γ2)
∂z

∂x

]

(2.1.10)

as ∆t,∆x → 0 while satisfying the CFL condition. The goal of this chapter is to

extend this result to the fully-implicit case. This leads us to study the more general

problem of implicit monotone schemes, which would then include the multiphase flow

problem as a special case.

The use of implicit time-stepping leads to a (typically large) system of nonlinear

algebraic equations that must be solved for each time step. Moreover, the residual

functions are generally non-differentiable because of upstreaming criteria of the form

(2.1.8); thus, the existence of a unique solution to these systems of equations is

not immediately obvious. For implicit monotone schemes for 1D scalar conservation

laws, Lucier [50] showed that a solution to the discrete problem exists and is unique

whenever the initial data is bounded and has bounded total variation. The proof

of existence, which relies heavily on Crandall-Liggett theory [23], proceeds along the

following lines (see [27, Chapter 3] for more details). First, one shows that the residual
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function R for the numerical scheme defines an m-accretive operator in the L1-norm.

Then by the Crandall-Ligett theorem, the ODE

du

dt
= −Ru, u(0) = x (2.1.11)

has a unique solution for t ∈ [0,∞) for any initial point x. Let u(t;x) denote the

solution of (2.1.11) with starting point x. Then one shows that the Poincaré operator

Pω, which maps the point x to the point u(ω, x), is strictly contractive. Then by

Banach’s fixed point theorem, Pω has a unique fixed point x0. One then proceeds to

prove that u(t;x0) = x0 for all 0 ≤ t ≤ ω; thus, du/dt = 0, which implies Rx0 = 0.

While this argument does prove the existence and uniqueness of a solution to

the discretized problem, the proof does not suggest a practical algorithm for finding

the solution. In section 3, we present an alternate constructive proof of existence by

showing that the classical Gauss-Seidel and Jacobi iterations converge for this class of

problems. In fact, we show that the iterative methods converge whenever the initial

data for the discrete problem is bounded, so the implicit scheme is well-defined even

when the initial data does not have bounded variation in R. The well-definedness of

the numerical scheme, together with the total variation diminishing (TVD) property

and the existence of a discrete entropy inequality, imply that the numerical scheme

converges to the entropy solution as the mesh is refined (i.e., as ∆x→ 0). This result

holds for any mesh ratio λ = ∆t/∆x (i.e., for any Courant number).

2.2 Two model problems

In this section, we present two model problems from porous media flow, both of which

contain a hyperbolic subproblem that can be analyzed using the theory developed in

this chapter.

2.2.1 FIM for 1D problem with gravity

Consider a one-dimensional model problem with:



2.2. TWO MODEL PROBLEMS 25

• incompressible two-phase flow,

• zero capillarity (pw = po ≡ p),

• an injection boundary condition on the left, and

• a pressure boundary condition on the right.

In this case, the continuous problem (2.1.1)–(2.1.2) can be rewritten as

φ(x)
∂Sp(x)

∂t
+
∂up(x)

∂x
= 0, xL < x < xR, (2.2.1)

up(x) = −K(x)λp(Sw(x))

(

dp

dx
− γp

dz

dx

)

, (2.2.2)

for p = w, o (water and oil), together with the saturation constraint So +Sw = 1, the

initial condition Sw(x, 0) = S0(x) for x ∈ [xL, xR], and boundary conditions

up(xL) = qp,L, p(xR) = pR.

We assume that the injection velocities qw,L and qo,L are non-negative, and that the

total velocity qT,L := qw,L+qo,L is strictly positive. (These assumptions cover the most

interesting cases, such as oil recovering by water-flooding.) This formulation, which

contains pressure variables, is known as the parabolic form of the problem, since

it represents the incompressible limit of a parabolic problem. We can also derive

the hyperbolic or “fractional flow” form of the problem by eliminating the pressure

variables as follows. The discretized PDEs can be written as

φi(Sw,i − Sold
w,i)

∆t
+
Fw,i+1/2 − Fw,i−1/2

∆x
= 0, (2.2.3a)

φi(S
old
w,i − Sw,i)

∆t
+
Fo,i+1/2 − Fo,i−1/2

∆x
= 0, (2.2.3b)

where

Fp,i+1/2 = Ki+1/2λp,i+1/2

(

pi − pi+1

∆x
+ gp

)

, p = o, w, (2.2.4)
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with gp = γp∆z/∆x, i = 1, . . . , N . The numerical boundary conditions become

Fp,1/2 = qp, p = o, w, (2.2.5)

pN+1 = 2pR − pN . (2.2.6)

For the remainder of this section, we assume without loss of generality that gw ≥ go;

in the case of gw < go, the same argument would hold by considering the oil phase

instead of the water phase. To eliminate the pressure variables pi, first note that

summing equations (2.2.3a) and (2.2.3b) and rearranging gives

Fw,i+1/2 + Fo,i+1/2 = Fw,i−1/2 + Fo,i−1/2 = qw + qo =: qT .

In other words, the total flux is constant across any interface, and this flux is denoted

by qT , which is equal to qT,L. Summing Equation (2.2.4) through p = o, w, we can

express the pressure gradient (pi − pi+1)/∆x in terms of qT :

qT = Ki+1/2

[

λT,i+1/2
pi − pi+1

∆x
+ (λw,i+1/2 gw + λo,i+1/2 go)

]

,

where λT,i+1/2 = λw,i+1/2 + λo,i+1/2. Thus,

pi − pi+1

∆x
=
qT −Ki+1/2(λw,i+1/2 gw + λo,i+1/2 go)

Ki+1/2(λw,i+1/2 + λo,i+1/2)
. (2.2.7)

Substituting into (2.2.4) for the water phase gives

Fw,i+1/2 =
λw,i+1/2

λT,i+1/2

[

qT +Ki+1/2λo,i+1/2∆g
]

= Fw,i+1/2(Sw,i, Sw,i+1),

(2.2.8)

where ∆g = gw − go ≥ 0. This, together with (2.2.3a):

φi(Sw,i − Sold
w,i) +

∆t

∆x
(Fw,i+1/2 − Fw,i−1/2) = 0, (2.2.9)
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leads to a numerical scheme with exactly the same form as (2.3.1), except for the

boundary conditions. Clearly, the treatment of boundary conditions will significantly

affect the stability and accuracy of the numerical scheme. However, in order to

understand the behavior of the numerical scheme at interior points, we will replace

the initial-boundary value problem (2.2.1) with an initial value problem on an infinite

domain with appropriate initial conditions. In particular, we replace the injection

boundary condition with

S0(x) = f−1(qw,L/qT,L), x < xL, (2.2.10)

and the pressure boundary condition with

S0(x) = S0(xR), x > xR. (2.2.11)

The modified continuous problem will yield a solution identical to (2.2.1) for 0 < t <

TBT , where TBT is the breakthrough time (i.e. the time at which the shock wave

arrives at the pressure boundary). Note that since f is one-to-one over the interval

I = {S : 0 ≤ f(S) < 1} (see Figure 2.1), and since qw,L ≤ qT,L by assumption,

(2.2.10) is well-defined unless qo,L = 0. (If qo,L = 0, we define u0(x) = inf f−1(1),

where f−1 denotes the inverse image.)

Phase-based upstreaming

Recall from section 2.1 (cf. Equation (2.1.8)) that the mobilities λp,i+1/2 are evaluated

using the upstream saturations with respect to the flow direction of phase p:

λp,i+1/2 =







λp(Si) if 1
∆x

(pi − pi+1) + gp ≥ 0,

λp(Si+1) otherwise.
(2.2.12)

In light of (2.2.7), we can rewrite the upstream conditions as

λp,i+1/2 =







λp(Si) if qT +Ki+1/2(gp − gq)λq,i+1/2 ≥ 0,

λp(Si+1) otherwise,
(2.2.13)
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where the subscript q denotes the phase other than phase p. Even though pressure

dependence has been eliminated, Equation (2.2.13) still does not explicitly define the

upstream direction for λp, since the definition of upstream is in terms of the (yet

undetermined) mobility of the other phase λq,i+1/2. For explicit numerical schemes,

Brenier and Jaffré have shown in [13] how to explicitly determine the upstream direc-

tion for each phase for a given saturation profile {Sn
i }. In the special case of two-phase

flow, they define the following quantities:

θo,i+1/2 = qT −Ki+1/2∆gλw(Sn
i ),

θw,i+1/2 = qT +Ki+1/2∆gλo(S
n
i+1).

These quantities correspond precisely to the condition in (2.2.13), but the condition

is evaluated at Sn
i for θo and Sn

i+1 for θw. Clearly θw,i+1/2 > 0, since ∆g ≥ 0. The

correct upstream directions are then given by

λn
o,i+1/2 = λo(S

n
i ), λn

w,i+1/2 = λw(Sn
i ) if 0 ≤ θo,i+1/2 ≤ θw,i+1/2,

λn
o,i+1/2 = λo(S

n
i+1), λn

w,i+1/2 = λw(Sn
i ) if θo,i+1/2 ≤ 0 ≤ θw,i+1/2.

Thus, for an explicit time-marching scheme, the numerical fluxes are completely

defined by these conditions, and there is no need to go back to the original definition

(2.2.12) involving unknown pressure values. However, this is not the case for an im-

plicit time-marching scheme (such as backward Euler), since the upstream directions

must be consistent with the saturation values at the end of the time step, i.e. with

the saturation profile {Sn+1
i }. Because of this consistency requirement, it is not clear

a priori that a solution to the parabolic form of the problem (2.2.3) even exists. Our

approach to proving that a solution exists is to rely on the hyperbolic form g(2.2.8)–

(2.2.11). From the above derivation, it is evident that if {(Si, pi)}N
i=1 is any solution to

the parabolic form (2.2.3)–(2.2.6), then {Si}N
i=1 must be a solution to the hyperbolic

problem. Thus, the key idea is to begin by finding the correct saturation profile {Si}
via (2.2.8)–(2.2.11), with a numerical flux that automatically ensures consistency with

the upstream directions; once the {Si} are known, we can easily solve for the pressure

part because the pressure equation is linear. We distinguish two cases:
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1. If Ki+1/2∆gλw,max ≤ qT , then θo,i+1/2 ≥ 0 always, so we revert to a single-point

upstream scheme Fi+1/2 = Fi+1/2(Si);

2. If Ki+1/2∆gλw,max > qT , then by the monotonicity of λw(S), there exists a

unique 0 < Sc < 1 such that

Ki+1/2∆gλw(Sc) = qT .

Then the numerical flux, which is to be evaluated at time tn+1, is defined as

Fw,i+1/2(Si, Si+1) =















λw(Si)
[

qT +Ki+1/2λo(Si)∆g
]

λw(Si) + λo(Si)
if 0 ≤ Si ≤ Sc,

λw(Si)
[

qT +Ki+1/2λo(Si+1)∆g
]

λw(Si) + λo(Si+1)
if Sc < Si ≤ 1.

(2.2.14)

A plot of the numerical flux Fw(u, v) in the latter case is shown in Figure 2.2. The

black curve on the surface, which shows the value of F (u, v) along the line u = v,

is identical to the continuous flux function in Figure 2.1(b). Thus, it is evident that

the numerical flux satisfies the consistency condition F (u, u) = f(u). Even though

f(u) itself is non-monotonic, the plot clearly shows that F (u, v) is an increasing

function of u and a decreasing function of v. This monotonicity property is what

makes upstream weighting amenable to a Gauss-Seidel type analysis. Also notice

that the numerical flux is independent of the downstream saturation v inside the

cocurrent region (0 ≤ u ≤ Sc ≈ 0.27), but becomes a function of both variables when

u > Sc. Finally, F (u, v) is Lipschitz continuous, but non-differentiable along the line

u = Sc because of the upstream condition (2.2.14). The following theorem, which

summarizes several results by Brenier and Jaffré [13], shows that upstream-weighted

fluxes generally satisfy the monotonicity property.

Theorem 2.1. Assume that the mobility of phase p is increasing with the saturation of

the same phase and decreasing with the saturation of the other phase, for p = o, w (oil

and water). Then the numerical fluxes obtained from phase-based upstreaming defined

by (2.2.8), (2.2.13) are (1) Lipchitz continuous, (2) consistent with the continuous
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flux function (i.e., F (u, u) = f(u)), (3) non-decreasing with respect to Sw,i, and (4)

non-increasing with respect to Sw,i+1.

The hypothesis on phase mobilities is physically realistic [6]. These properties are

sufficient to ensure that the hyperbolic problem with implicit time-stepping possesses

a unique solution {Sn+1
i }, which must also be the correct saturation profile for the

parabolic problem. To solve for pressure, we use Equation (2.2.7):

pi − pi+1

∆x
=
qT −Ki+1/2(λw,i+1/2 gw + λo,i+1/2 go)

Ki+1/2(λw,i+1/2 + λo,i+1/2)

for i = 1, . . . , N , and the boundary condition (2.2.6):

pN+1 = 2pR − pN .

Since {Sn+1
i } is now known, the right-hand side of (2.2.7) also completely determined.

Thus, the vector p of pressures actually satisfies Ap = b, where A is an N ×N upper

triangular matrix with a nonzero diagonal. So A is nonsingular, which means there is

a unique pressure profile {pn+1
i } that satisfies (2.2.7) and (2.2.6). It is easy to see that

this pressure profile is consistent with the upstream condition (2.2.12): because of

(2.2.7), this upstream condition is equivalent to (2.2.13), and the conditions therein

are precisely the ones we use to define the numerical flux function (2.2.14) for the

hyperbolic problem. Hence, we have shown that the parabolic form (2.2.3)–(2.2.6)

has a unique solution, given by the above {(Sn+1
i , pn+1

i )}.

2.2.2 SEQ for multidimensional problems

In multiple dimensions, it is no longer possible to eliminate pressure variables, because

the total velocity uT is generally a function of space and time. Thus, the system of

PDEs (2.1.1)–(2.1.2) does not reduce to a purely hyperbolic problem, which means

we cannot directly apply our existence and uniqueness results to the fully-implicit

method in this case. Nonetheless, our analysis does apply to the sequential-implicit

method (see section 1.2.2). In each time step in SEQ, we first solve the discrete version

of the (linear) elliptic equation (2.1.5), in which the saturation-dependent coefficients
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Figure 2.2: The numerical flux function F (u, v) corresponding to the fractional flow
in Figure 2.1(b). The black curve along the diagonal indicates the value of F (u, u) =
f(u).
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are taken at time tn. In other words, we solve for pn+1 via

−∇ ·
[

KλT (Sn)∇pn+1 −K∇z
∑

j

γjλj(S
n)

]

=
∑

j

qj. (2.2.15)

Next, we compute the total velocity

u∗T =
∑

j

u∗j = −
∑

j

Kλj(S
n)∇(pn+1 − γjz). (2.2.16)

Finally, we compute the saturations Sn+1
j (j = 1, . . . , n − 1) by solving the discrete

version of (2.1.6) and (2.1.7) with implicit time-stepping :

φ
∂Sj

∂t
+ ∇ · uj(x, S1, . . . , Sn) = 0,

uj =
λj

λT

(u∗T −K∇z∑lλl(γl − γj)) .

Essentially, the SEQ method decouples the system into an elliptic and a hyperbolic

subproblem. A finite-volume discretization of (2.1.6) and (2.1.7) gives rise to the

following multidimensional analog of (2.2.9):

φi(S
n+1
w,i − Sn

w,i) +
∑

l∈adj(i)

λilFil(S
n+1
w,i , S

n+1
w,l ) = 0. (2.2.17)

Here, Fil is the flux (or velocity) from cell i to cell l, and λil = ∆t|∂Vil|/|Vi|, where

|∂Vil| is the area of the surface separating cell i, and l, |Vi| is the volume of cell i and

∆t is the time step. For a conservative scheme we must have

Fil(ui, ul) = −Fli(ul, ui), (2.2.18)

and for monotonicity we require that Fil be non-decreasing with respect to the first

argument and non-increasing with respect to the second. This requirement is satisfied

for two-phase flow problems, since we can reproduce the derivation in section 2.2.1
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to obtain the flux function

Fw,il =
λw,il

λT,il

[qil +Kilλo,il(gw − go)]

and the upstream condition

λp,il =







λp(Si) if qil +Kil(gp − gq)λq,il ≥ 0,

λp(Sl) otherwise,

for p = o, w, where qil = u∗T · νil and gp = γp∇z · νil. We show that a unique solution

to (2.2.17) exists for any ∆t if the following conditions hold:

1. The number of cells (control volumes) adjacent to cell i, |adj(i)|, is bounded for

all i;

2. The ratio |∂Vil|/|Vi| is bounded for all pairs of adjacent cells (i, l);

3. The quantity φi|Vi| is uniformly bounded away from zero for all i;

4. For any cell i, the total number of cells reachable from i in k steps is O(kp) for

some fixed p > 0 (i.e. grows at most polynomially in k).

5. Fil is equicontinuous with the same Lipschitz constant for all pairs of adjacent

cells (i, l).

Assumptions 1–4 are easily satisfied by regular Cartesian grids, and also by most

unstructured grids of practical interest. From (2.2.18) we see that assumption 5 is

satisfied as long as Kil is uniformly bounded over the domain, which is generally true

for problems of practical interest. We justify these assumptions in section 2.3.7.
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2.3 Existence and uniqueness of solutions for the

discretized problems

In both model problems, we must solve a system of nonlinear equations ((2.2.9) and

(2.2.17) respectively) for the unknowns {un+1
i }. In this section, we show that the clas-

sical nonlinear Jacobi and Gauss-Seidel processes both converge to a unique bounded

solution, which provides an alternate constructive proof of the well-definedness of

implicit monotone schemes. In addition, we show that Jacobi and Gauss-Seidel both

converge for any starting point that is bounded by the initial data, which leads to

a practical algorithm for computing the solution. In the interest of clarity, we first

consider the following one-dimensional problem:

φi(u
n+1
i − un

i ) + λ(F n+1
i+1/2 − F n+1

i−1/2) = 0, λ = ∆t/∆x, i ∈ Z. (2.3.1)

We then extend the analysis to problems with spatially-varying coefficients, as well

as problems in multiple dimensions.

2.3.1 Implicit monotone schemes

Consider a numerical scheme of the form (2.3.1), where Fi+1/2 denotes the numerical

flux across the interface between cells i and i+ 1. This scheme approximates the 1D

nonlinear conservation law

φ(x)ut + f(x, u)x = 0, (x, t) ∈ R × R
+, (2.3.2)

which generalizes problem (2.1.9), (2.1.10) to the variable porosity and permeability

case. For simplicity, we assume a three-point scheme

F n+1
i+1/2 = Fi+1/2(u

n+1
i , un+1

i+1 );

thus, the implicit stencil at cell i involves the value at cell i at time tn, as well as the

values at cells i − 1, i and i + 1 at the future time tn+1. Given we are interested in

handling flux functions of the type shown in Figure 2.1(b), we do not assume that the
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flux function f(x, u) is monotonic in u, so that sonic points may be present. Assume

that f and F are both locally Lipschitz continuous (but not necessarily differentiable),

and that the numerical flux function Fi+1/2 is consistent with f in the sense that

Fi+1/2(u, u) = f(xi+1/2, u). (2.3.3)

For the purpose of this thesis, a 1D implicit scheme is said to an implicit monotone

scheme if the following assumption is satisfied.

Assumption 1 (Monotonic fluxes). For all i ∈ Z, the numerical flux function Fi+1/2

is non-decreasing in the first argument and non-increasing in the second argument,

i.e. for any w, we have Fi+1/2(u,w) ≤ Fi+1/2(v, w) and Fi+1/2(w, u) ≥ Fi+1/2(w, v)

whenever u ≤ v.

As shown in section 2.2.1, the fully implicit 1D problem satisfies this assumption.

We show that residual functions corresponding to implicit monotone schemes are in

fact M -functions in the sense of Rheinboldt [64]. This allows us to prove the existence

and uniqueness of solutions via a convergent iterative process.

Remark. Assumption 1 also guarantees that the resulting residual function is an m-

accretive operator in `1(Z) (see [33] for a proof). In general, m-accretive functions

and M -functions are not equivalent concepts. Consider the space X = L1(Rn), i.e.,

the (finite) n-dimensional vector space with the L1-norm. Then A is an m-accretive

operator if A is continuous and for any u, v ∈ R
n,

n
∑

i=1

(A(u)i − A(v)i) sgn(ui − vi) ≥ 0,

which is equivalent to diagonal dominance when A is linear (see Appendix B). On the

other hand, M -functions are generalizations of M -matrices, i.e., A is a nonsingular

M -matrix if (1) aii > 0, (2) aij ≤ 0 for i 6= j, and (3) A−1 has only non-negative
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entries. Thus, if

M1 =









2 1 0

1 2 1

0 1 2









, M2 =









1 0 0

−4 1 0

0 −4 1









,

then the function f1(x) = M1x is m-accretive but not an M -function, and the reverse

is true for f2(x) = M2x. We do not directly use m-accretivity in this work.

Remark. Assumption 1 implies that (2.3.1) is an E-scheme (cf. [60]), so it is at most

first-order accurate.

2.3.2 Nonlinear Jacobi and Gauss-Seidel process

Suppose we want to solve a nonlinear system of algebraic equations R(x) = 0 for

x ∈ R
N , where R = (r1, . . . , rN)T : R

N → R
N . Then we can consider the nonlinear

Gauss-Seidel process :

Solve ri(x
k+1
1 , . . . , xk+1

i−1 , x
∗
i , x

k
i+1, . . . , x

k
N) = 0 for x∗i ,

Set xk+1
i = x∗i , i = 1, . . . , N, k = 1, 2, . . . ,

(2.3.4)

as well as the nonlinear Jacobi process :

Solve ri(x
k
1, . . . , x

k
i−1, x

∗
i , x

k
i+1, . . . , x

k
N) = 0 for x∗i ,

Set xk+1
i = x∗i , i = 1, . . . , N, k = 1, 2, . . .

(2.3.5)

If R is continuous, then we know that whenever Jacobi or Gauss-Seidel converge, they

have to converge to a solution x∗ such that R(x∗) = 0. We would like to use the tools

in [64] to show that (2.3.1) has a unique solution for any mesh ratio λ. However,

since (2.3.1) is defined all i ∈ Z, we need to extend Rheinboldt’s results to include

an appropriate class of infinite-dimensional systems in which the residual functions

satisfy the following assumptions.

Assumption 2 (Preservation of bounded sets). R : `∞(N) → `∞(N) is a mapping

between bounded sequences for which there exists an increasing function ζ : [0,∞) →
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[0,∞) such that

‖x‖∞ ≤ B =⇒ ‖R(x)‖ ≤ ζ(B).

Assumption 3 (Finite number of dependencies). For each i, the residual function

ri(x1, x2, . . .) is non-constant with respect to a finite number (which can vary with i)

of xj.

In other words, the residual functions must come from a compact stencil and must

preserve boundedness. With these assumptions, the nonlinear Gauss-Seidel process

becomes

Solve ri(x
k+1
1 , . . . , xk+1

i−1 , x
∗
i , x

k
i+1, x

k
i+2, . . .) = 0 for x∗i ,

Set xk+1
i = x∗i , i = 1, 2, . . . , k = 1, 2, . . . ,

(2.3.6)

and the nonlinear Jacobi process becomes

Solve ri(x
k
1, . . . , x

k
i−1, x

∗
i , x

k
i+1, x

k
i+2, . . .) = 0 for x∗i ,

Set xk+1
i = x∗i , i = 1, 2, . . . , k = 1, 2, . . . .

(2.3.7)

The only differences between the above processes and (2.3.4)–(2.3.5) are that each

Gauss-Seidel/Jacobi “sweep” now involves infinitely many variables and equations.

These processes are well-defined because each ri is assumed to depend on only finitely

many arguments, so that for any given i ∈ Z, k ∈ N, the value of xk+1
i can be obtained

from a finite number of univariate solves. The main purpose of these assumptions is

to ensure the residual function of the discretized PDE is an M -function. This would

then allow us to prove the convergence of Jacobi and Gauss-Seidel iterations to a

unique bounded solution.

2.3.3 M-function theory

M -functions are essentially generalizations of M -matrices in linear algebra. In the

linear setting, it is well known (cf. [68]) that the Gauss-Seidel method applied to
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Ax = b converges for any right hand side b and starting point x0 if A is an M -

matrix. M -functions have similar properties with respect to the nonlinear Gauss-

Seidel process, which is the subject of investigation in [64]. Here we provide extensions

to the relevant definitions and theorems in [64] that would allow us to prove the

existence and uniqueness of bounded solutions to (2.3.1).

For the remainder of the section, the natural partial ordering on `∞(N) is written

as x ≤ y, i.e.,

x ≤ y ⇐⇒ xi ≤ yi, ∀i ∈ N.

We denote by ei the unit basis vectors with the i-th component one and all others

zero. The following definitions are essentially identical to those in [64], except the

domain of definition has been changed from R
n to `∞(N) to handle vectors of infinite

length.

Definition 2.1. Let R : `∞(N) → `∞(N).

1. R is isotone (or antitone) if, for all x, y ∈ `∞(N), x ≤ y implies R(x) ≤ R(y) (or

R(x) ≥ R(y)). It is strictly isotone (or antitone) if x < y implies R(x) < R(y)

(or R(x) > R(y)).

2. R is inverse isotone if, for all x, y ∈ `∞(N), R(x) ≤ R(y) implies x ≤ y.

3. R is (strictly) diagonally isotone if, for all x ∈ `∞(N), the functions

ρii : R → R, ρii(t) = ri(x+ tei), i = 1, 2, . . . (2.3.8)

are (strictly) isotone.

4. R is off-diagonally antitone if, for any x ∈ `∞(N), the functions

ρij : R → R, ρij(t) = ri(x+ tej), i 6= j, i, j = 1, 2, . . . (2.3.9)

are antitone.

5. R is an M-function if R is inverse isotone and off-diagonally antitone.
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One characterization of M -functions is given by Theorem 2.2, which generalizes

the following result from matrix analysis: a square matrix A is an M -matrix if it has

positive diagonal, non-positive off-diagonal, and is column diagonally dominant.

Theorem 2.2. Suppose R : `∞(N) → `∞(N) is off-diagonally antitone and satisfies

Assumption 2 and 3. Suppose, for each B > 0, there exists a positive sequence {wB
i }

such that

1.
∑∞

i=1w
B
i <∞,

2. for any ‖x‖∞ < B, the function Q(t) = (q1(t), q2(t), . . .) defined by

qi(t) =
∞
∑

j=1

wB
j rj(x+ tei)

is strictly isotone over the interval t ∈ (tmin, tmax), where

tmin = −B − inf
i
xi, tmax = B − sup

i
xi.

Then R is an M-function.

Proof. The proof is an adaptation of the proof of Theorem 5.1 in [64], suitably

modified to handle the infinite-dimensional case. Suppose R(x) ≤ R(y) for some

x, y ∈ `∞(N). Define the sets

N− = {i ∈ N | yi < xi}; N+ = {i ∈ N | yi ≥ xi}.

Suppose N− is non-empty. For each i ∈ N−, let γi = (xi − yi)e
i. We consider two

cases:

1. If |N−| <∞ , let i1 < i2 < · · · < im be the elements of N−, and define

z0 = y, z1 = y + γi1 , . . . , zm = y + γi1 + · · · + γim ,

and let zk = zm = z for all k > m.
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2. If |N−| = ∞, let i1 < i2 < · · · be the elements of N−, and define

z0 = y, z1 = y + γi1 , . . . , zk = y + γi1 + · · · + γik , . . .

and let z = {zi} be such that zi = max{xi, yi}.

Define Rk := R(zk) and R∞ = R(z). In either case, we have the following properties:

1. ‖zk‖∞ < B and ‖z‖∞ < B, where B = max{‖x‖∞, ‖y‖∞}. Hence, by Assump-

tion 2, ‖Rk‖∞ < ζ(B) for all k (similarly for R∞).

2. For each i, zk
i = zi for large enough k, so by Assumption 3, Rk

j → R∞
j pointwise

for each j.

Since Rk
j < ζ(B) for all j, k, each Rk is dominated by the constant sequence G =

(ζ(B), ζ(B), . . .). Moreover
∑∞

j=1w
B
j Gj < ∞, so by the dominated convergence the-

orem (cf. [65]), we have

∞
∑

j=1

wB
j R

k
j →

∞
∑

j=1

wB
j R

∞
j as k → ∞.

By the strict isotonicity of Q, we have

∞
∑

j=1

wB
j R

0
j ≤

∞
∑

j=1

wB
j R

1
j ≤ · · ·

with at least one strict inequality (since N− is non-empty). Thus, we must have

∞
∑

j=1

wB
j rj(y) =

∞
∑

j=1

wB
j R

0
j <

∞
∑

j=1

wB
j R

∞
j =

∞
∑

j=1

wB
j rj(z). (2.3.10)

Now split the last sum into two parts:

∞
∑

j=1

wB
j rj(z) =

∑

j∈N−

wB
j rj(z) +

∑

j∈N+

wB
j rj(z), (2.3.11)

where the summation over N+ may be empty. Then by off-diagonal antitonicity of R
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(and invoking the dominated convergence theorem whenever necessary), we can show

similarly that

∑

j∈N−

wB
j rj(z) ≤

∑

j∈N−

wB
j rj(x),

∑

j∈N+

wB
j rj(z) ≤

∑

j∈N+

wB
j rj(y), (2.3.12)

using the fact that z − x and z − y vanish on N− and N+ respectively. Combining

equations (2.3.10)–(2.3.12) gives

∞
∑

j=1

wB
j rj(y) <

∑

j∈N−

wB
j rj(x) +

∑

j∈N+

wB
j rj(y), (2.3.13)

which implies
∑

j∈N−

wB
j rj(y) <

∑

j∈N−

wB
j rj(x). (2.3.14)

Thus, we must have rj(y) < rj(x) for some j ∈ N−, which contradicts the hypothesis

R(x) ≤ R(y). Hence N− must be empty, so x ≤ y.

The above theorem, together with the definition of M -functions, immediately

imply the following corollary.

Corollary 2.3. Let R satisfy the hypotheses of Theorem 2.2. Let z ∈ `∞(N). Then

there is at most one bounded solution to the equation R(x) = z.

Remark. In the context of discretized PDEs one normally assumes tacitly that the

solution of interest must be bounded; this can be regarded as a boundary condition

“at infinity”. However, since such boundary conditions are not explicitly stated in the

definition of M -functions, one must be careful to exclude any parasitic unbounded

solutions that may arise. In fact, the solution is not necessarily unique if we allow

unbounded solutions. Consider the linear function R = (r1, r2, . . .) defined by ri(x) =

xi − αxi+1 for |α| < 1. Then for any ‖x‖∞ < ∞, we have ‖R(x)‖∞ ≤ (1 + α)‖x‖∞,

so that Assumption 2 is satisfied. Assumption 3 (finitely many dependencies) is also

satisfied because each ri is only non-constant with respect to two components of x.
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Finally, if we let wB
j = βj for any |α| < β < 1, then

∑

j β
j <∞ and

qi(t) =
∞
∑

j=1

βjrj(x+ tei)

=
∞
∑

j=1

βj
[

xj + tδij − α(xj+1 + tδi,j+1)
]

= (β − α)βi−1t+ βx1 + (β − α)
∞
∑

j=2

βj−1xj,

so qi(t) is well-defined and is strictly increasing with respect to t whenever ‖x‖∞ <∞.

So the hypotheses of Theorem 2.2 are satisfied, and hence x = 0 is the only bounded

solution of R(x) = 0. However, unbounded solutions of the form y = {Kα−i}, K 6= 0

also satisfy R(y) = 0, so the theorem does not preclude these possibilities.

2.3.4 Convergence of nonlinear Jacobi and Gauss-Seidel

It turns out that the hypotheses of Theorem 2.2 are enough to ensure convergence of

nonlinear Jacobi and Gauss-Seidel for certain starting points described below. The

following result is essentially Theorem 3.1 in [64], with modified hypotheses to accom-

modate `∞-bounded vectors with infinitely many components. The proof in [64] goes

through verbatim, but is reproduced here for completeness. Note that by Assumption

3, each ri depends on only finitely many arguments, so the standard arguments on

limits, continuity and antitonicity hold without additional complications when they

are used on individual components of R.

Theorem 2.4 (Rheinboldt). Let R : `∞(N) → `∞(N) satisfy the hypotheses of The-

orem 2.2. Suppose for some z ∈ `∞(N) there exist points x0, y0 ∈ `∞(N) such that

x0 ≤ y0, R(x0) ≤ z ≤ R(y0).

Then the nonlinear Gauss-Seidel and Jacobi iterates {yk} and {xk}, given by (2.3.6)
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and (2.3.7) and starting from y0 and x0, respectively, are uniquely defined and satisfy

x0 ≤ xk ≤ xk+1 ≤ yk+1 ≤ yk ≤ y0, R(xk) ≤ z ≤ R(yk) (2.3.15)

for all k ≥ 0. In addition, the pointwise limits

lim
k→∞

xk = lim
k→∞

yk = x∗ (2.3.16)

exist, and R(x∗) = z.

First we need the following lemma (which is part of Theorem 2.10 in [64]).

Lemma 2.5. Let R : `∞(N) → `∞(N) be an M-function. Then R is strictly diago-

nally isotone.

Proof. Suppose that for some x ∈ `∞(N), s, t ∈ R, s > t and index i we have

ri(x+ sei) ≤ ri(x+ tei). The off-diagonal antitonicity then implies that

rj(x+ sei) ≤ rj(x+ tei), j 6= i,

or, altogether, that R(x + sei) ≤ R(x + tei). By inverse isotonicity this leads to the

contradiction s ≤ t, which shows that R must be strictly diagonally isotone.

Proof of Theorem 2.4. We present only the proof for convergence of Gauss-Seidel; the

proof for Jacobi is similar. We proceed by induction and suppose that for some k ≥ 0

and i ≥ 1,

x0 ≤ xk ≤ yk ≤ y0, R(xk) ≤ z ≤ R(yk), (2.3.17a)

xk
j ≤ xk+1

j ≤ yk+1
j ≤ yk

j , j = 1, . . . , i− 1, (2.3.17b)

where for i = 1 the relation (2.3.17b) is vacuous. Clearly, (2.3.17) is valid for k = 0

and i = 1. Define the functions

α(s) = ri(x
k+1
1 , . . . , xk+1

i−1 , s, x
k
i+1, x

k
i+2, . . .)

β(s) = ri(y
k+1
1 , . . . , yk+1

i−1 , s, y
k
i+1, x

k
i+2, . . .)
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for s ∈ [x0
i , y

0
i ]. From (2.3.17) and the off-diagonal antitonicity of R, we then find

that

β(s) ≤ α(s), s ∈ [x0
i , y

0
i ], (2.3.18)

and

β(xk
i ) ≤ α(xk

i ) ≤ ri(x
k) ≤ zi ≤ ri(y

k) ≤ β(yk
i ) ≤ α(yk

i ). (2.3.19)

By the continuity and strict isotonicity of α and β (since R is an M -function and

hence strictly diagonally isotone), (2.3.19) implies the existence of unique ŷk
i and x̂k

i

for which

β(ŷk
i ) = zi = α(x̂k

i ), xk
i ≤ x̂k

i ≤ ŷk
i ≤ yk

i ,

where the relation x̂k
i ≤ ŷk

i is a consequence of (2.3.18). But xk+1
i = x̂k

i and yk+1
i = ŷk

i

by definition, so we have proved (2.3.17b) for j = 1, . . . , i. By induction (2.3.17b)

holds for all i ∈ N, and hence

xk ≤ xk+1 ≤ yk+1 ≤ yk.

From this it follows again from off-diagonal antitonicity that

ri(y
k+1) ≥ ri(y

k+1
1 , . . . , yk+1

i , yk
i+1, y

k
i+2 . . .) = zi

and similarly that

ri(x
k+1) ≤ ri(x

k+1
1 , . . . , xk+1

i , xk
i+1, x

k
i+2 . . .) = zi.

This completes the induction on k and hence the proof of (2.3.15). Applying the

monotone convergence theorem for sequences, we conclude that the pointwise limits

lim
k→∞

xk
j = x∗j ≤ y∗j = lim

k→∞
yk

j

exist for each j, which allows us to define x∗ = {x∗j} and y∗ = {y∗j}. Since each

ri is continuous and depends on only finitely many arguments, the definition of the
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Gauss-Seidel process then implies ri(x
∗) = ri(y

∗) = zi for each i, and hence

R(x∗) = R(y∗) = z.

Since both x∗ and y∗ are bounded, Corollary 2.3 implies that they are equal, com-

pleting the proof.

2.3.5 Well-definedness of implicit monotone schemes

Using the theory in the last two sections, we can now prove that implicit monotone

schemes (i.e., implicit schemes whose flux functions satisfy Assumption 1) are well-

defined for bounded initial conditions. What we need to show is that the residual

functions satisfy the hypotheses of Theorem 2.4. In the interest of clarity, in this

section we only show convergence of the iterative schemes for problems whose coeffi-

cients do not vary in space (i.e., corresponding to the conservation law ut +f(u)x = 0,

discretized on a uniform spatial grid). In the next section, we state the additional

assumptions on φi and Fi+1/2 that are required for the spatially-varying case.

Theorem 2.6. Consider the numerical scheme (2.3.1) with the numerical flux given

by

F n+1
i+1/2 = F (un+1

i , un+1
i+1 ),

where F : R×R → R is locally Lipschitz continuous and satisfies Assumption 1, i.e.,

non-decreasing in the first argument and non-increasing in the second. Assume that

the initial condition {u0
i }∞i=−∞ is bounded. Then (2.3.1) has a unique bounded solution

{un+1
i } for n = 0, 1, 2, . . .. Moreover, this bounded solution satisfies the estimate

inf
j∈Z

un
j ≤ un+1

i ≤ sup
j∈Z

un
j (2.3.20)

for all i ∈ Z.

Proof. The strategy is to start by defining an ordering for the Gauss-Seidel sweeps,

i.e., by permuting the equations and variables so that the spatial indices go from 1 to

∞ rather than from −∞ to ∞. After that, it suffices to check that all the hypotheses
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of Theorem 2.4 are satisfied for this ordering.

1. For j = 1, 2, . . ., define σ(j) = (−1)jbj/2c, i.e. σ maps {1, 2, 3, 4, 5, . . .} to

{0, 1,−1, 2,−2, . . .}. Let τ be the inverse map, such that τ(σ(j)) = j. Define

R : `∞(N) → `∞(N) to be the reordered (and rescaled) set of residual equations,

i.e.,

rj(v) =
vj − un

σ(j)

λ
+ F (vj, vτ(σ(j)+1)) − F (vτ(σ(j)−1), vj), (2.3.21)

where vj = un+1
σ(j).

2. Since F is locally Lipschitz continuous, it is Lipschitz continuous over any compact

set, so for any B > 0 there exists KB (which can be chosen to be increasing with

B) such that for any (x, y) ∈ [−B,B] × [−B,B],

|F (x, y) − F (0, 0)| ≤ KB(|x| + |y|) ≤ 2KB ·B.

Thus, for any ‖v‖∞ ≤ B, we have |rj(v)| ≤ ζ(B) for all j, where

ζ(B) = (2/λ+ 4KB)B.

Hence Assumption 2 is satisfied. Moreover, since each rj depends only on vj,

vτ(σ(j)−1) and vτ(σ(j)+1), Assumption 3 (finite number of dependencies) is also sat-

isfied.

3. By Assumption 1 (monotonic fluxes), F is clearly off-diagonally antitone. To

satisfy the remaining hypotheses of Theorem 2.2, let {wB
j } take the form wB

j =

β|σ(j)| for some 0 < β < 1, so that
∑∞

j=1w
B
j <∞. An easy calculation shows that

qi(t) :=
∞
∑

j=1

wB
j rj(v + tei) = q̃i(t) +

∞
∑

j=1

wB
j rj(v),

where

q̃i(t) = wB
i t/λ+ (wB

i − wB
τ(σ(i)+1))

[

F (vi + t, vτ(σ(i)+1)) − F (vi, vτ(σ(i)+1))
]

+ (wB
τ(σ(i)−1) − wB

i )
[

F (vτ(σ(i)−1), vi + t) − F (vτ(σ(i)−1), vi)
]

.
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By the definition of wB
i , we see that

|wB
i − wB

τ(σ(i)±1)| ≤ β|σ(i)|−1(1 − β),

which, when combined with the local Lipschitz continuity of F , gives

β|σ(i)|−1
[

βt/λ− 2(1 − β)KB|t|
]

≤ q̃i(t) ≤ β|σ(i)|−1
[

βt/λ+ 2(1 − β)KB|t|
]

.

Hence, q̃i(t) is strictly isotone whenever

β/λ > 2(1 − β)KB,

so picking
2λKB

1 + 2λKB

< β < 1 (2.3.22)

ensures isotonicity for q̃i(t) (and hence qi(t)) for all i, as required in Theorem 2.2.

(Note that the choice of β depends on B.)

4. We need to choose starting points x0 and y0 that satisfy the requirements of

Theorem 2.4. Let x0 and y0 both be constant sequences with

x0
i = inf

j∈Z

un
j , y0

i = sup
j∈Z

uj, ∀i ∈ N.

Then clearly x0 ≤ y0, and for all i ∈ N,

ri(x
0) = x0

i − un
σ(i) = inf

j∈Z

un
j − un

σ(i) ≤ 0,

ri(y
0) = y0

i − un
σ(i) = sup

j∈Z

un
j − un

σ(i) ≥ 0,

so R(x0) ≤ 0 ≤ R(y0). Thus, by Theorem 2.4, the nonlinear Gauss-Seidel iterates

{yk} and {xk} both converge (pointwise) to the unique solution x∗ with R(x∗) = 0;

hence, a unique solution to (2.3.1) exists, i.e.,

un+1
i = x∗τ(i).
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Moreover, we know that x0 ≤ x∗ ≤ y0, which immediately implies (2.3.20).

Remarks.

1. Note that the initial condition {u0
i }∞i=−∞ is not assumed to be in `1 nor in BV ,

so this result is somewhat more general than classical results that use Crandall-

Liggett theory.

2. Note that the definition of an M -function is invariant under symmetric permu-

tations, i.e., R(x) is an M -function if and only if σR(σx) is also an M -function

for any permutation σ : N → N. Thus, the Gauss-Seidel process will converge

regardless of the way the ordering is chosen in step 1 of the proof. However, we

show in the next section that the rate of convergence is sensitive to the ordering.

In fact, one can show that the nonlinear Jacobi and Gauss-Seidel processes con-

verge for any starting point {z(0)
i } that is bounded by the initial data {un

i }. (In the

sequel, superscripts in brackets indicate iterates within the Gauss-Seidel process, and

superscripts without brackets indicate the time level in the numerical scheme.)

Theorem 2.7. Assume the hypotheses of Theorem 2.6. Suppose the initial guess

{z(0)
i } satisfies

inf
j∈Z

un
j ≤ z

(0)
i ≤ sup

j∈Z

un
j (2.3.23)

for all i ∈ Z. Then the nonlinear Jacobi and Gauss-Seidel processes (2.3.6) and

(2.3.7) are well-defined and converge to the unique bounded solution of (2.3.1).

Proof. Again we only show convergence for the Gauss-Seidel process, since the proof

for Jacobi is similar. Denote u = infj∈Z u
n
j and u = supj∈Z

un
j . First, we show that

the Gauss-Seidel iterates are well-defined and that u ≤ u
(k)
j ≤ u for all j, k. At each

step we need to solve

rj(z
∗
j ) = z∗j − un

j + λ
[

F (z∗j , zj+1) − F (zj−1, z
∗j)
]

= 0, (2.3.24)

where zj±1 = z
(k)
j±1 or z

(k+1)
j±1 depending on the ordering of the Gauss-Seidel sweep,
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which by induction must lie between u and u. But

rj(u) = u− un
j + λ [F (u, zj+1) − F (zj−1, u)]

≤ 0 + λ [F (u, u) − F (u, u)] ≤ 0,

where the last inequality follows from Assumption 1. Similarly one obtains rj(u) ≥ 0,

so by continuity of F (and hence rj) there must exist a solution z∗j to (2.3.24), which

by Lemma 2.5 must be unique. Hence, by induction, the Gauss-Seidel iterates are

well-defined and are bounded above and below by u and u respectively.

Now consider the Gauss-Seidel iterates {x(k)
j } and {y(k)

j } with initial guess x
(0)
j = u

and y
(0)
j = u for all j. By Theorem 2.6 these iterates converge pointwise to the same

solution {x∗j}. We show inductively that x(k) ≤ z(k) ≤ y(k) for all k, which would imply

that z
(k)
j → x∗j pointwise. Using the same reordering as in Theorem 2.6, assume that

for some k ≥ 0 and i ≥ 1 we have

y(k) ≥ z(k) ≥ x(k), y
(k+1)
j ≥ z

(k+1)
j ≥ x

(k+1)
j , j = 1, . . . , i− 1,

which is valid for k = 0 and i = 1. Then by the same boundedness and antitonicity

arguments as in Theorem 2.4, we have

ri(y
(k+1)
1 , . . . , y

(k+1)
i−1 , y

(k+1)
i , y

(k)
i+1, . . .) = 0 = ri(z

(k+1)
1 , . . . , z

(k+1)
i−1 , z

(k+1)
i , z

(k)
i+1, . . .)

≥ ri(y
(k+1)
1 , . . . , y

(k+1)
i−1 , z

(k+1)
i , y

(k)
i+1, . . .),

which, together with the strict diagonal isotonicity or ri, implies that y
(k+1)
i ≥ z

(k+1)
i .

Similarly it follows that z
(k+1)
i ≤ x

(k+1)
i . This completes the induction, and hence

z
(k)
j → x∗j pointwise.

In other words, the nonlinear Gauss-Seidel process converges if we use {un
j } (i.e.,

the solution from the previous time step) as an initial guess. For small to moderate

timestep sizes, one generally expects the solutions between consecutive time steps to

be close to each other, so in practice using {un
j } results in much faster convergence

than either u or u as an initial guess.
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2.3.6 Rate of convergence of the nonlinear processes

So far we have proven that the nonlinear Gauss-Seidel and Jacobi processes both

converge globally when applied to residual functions arising from implicit monotone

schemes, but we have not investigated how fast these processes converge. For this

purpose, let us reconsider the finite-dimensional case, i.e., when R : R
N → RN is

given by

ri(u
n+1) = φi(u

n+1
i − un

i ) + λ(Fi+1/2(u
n+1
i , un+1

i+1 ) − Fi−1/2(u
n+1
i−1 , u

n+1
i )) (2.3.25)

for i = 1, . . . , N , and the finite versions of the Gauss-Seidel and Jacobi processes

((2.3.4) and (2.3.5)) are used. It is well known [59] that for a convergent fixed-point

iteration xn+1 = Gxn, the asymptotic rate of convergence is given by ρ(G′(x∗)),

the spectral radius of the Jacobian matrix evaluated at the solution x∗. Moreover,

superlinear convergence is obtained when ρ(G′(x∗)) = 0. The following lemma gives

the rate of convergence for the nonlinear Gauss-Seidel and Jacobi processes.

Lemma 2.8. Suppose the residual function R : D ⊂ R
N → R

N is an M-function that

is continuously differentiable at x∗. Let the Jacobian matrix be written as R′(x∗) =

D − L − U , where D is a diagonal matrix and L, U are strictly lower and upper

triangular respectively. Then the asymptotic rates of convergence for the nonlinear

Gauss-Seidel and Jacobi processes ( (2.3.4) and (2.3.5)) are given by ρGS and ρJ

respectively, where

ρGS = ρ((D − L)−1U), ρJ = ρ(D−1(L+ U)).

Proof. Let G denote the Gauss-Seidel operator, i.e., y := xk+1 = Gxk, where xk+1 is

defined implicitly as a function of xk by (2.3.4). Then implicit differentiation gives,
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for each j = 1, . . . , N ,

∂r1
∂y1

∂y1

∂xj

+
∂r1
∂xj

= 0

∂r2
∂y1

∂y1

∂xj

+
∂r2
∂y2

∂y2

∂xj

+
∂r2
∂xj

= 0

...

∂rN

∂y1

∂y1

∂xj

+ · · · + ∂rN

∂yN

∂yN

∂xj

+
∂rN

∂xj

= 0

We can rewrite the above in matrix form as

[

D(y) − L(y)
]∂y

∂x
− U(x) = 0,

where D, L and U are the diagonal, strict lower-triangular and strict upper-triangular

part of ∂R/∂x respectively. Since R is an M -function, (D(y) + L(y)) is nonsingular

for all y ∈ D. Thus, G′ is given by

G′(x) =
∂y

∂x
=
[

D(y(x)) − L(y(x))
]−1

U(x).

Since R is continuously differentiable at x∗, letting x, y → x∗ shows that the asymp-

totic rate of convergence is given by ρ((D − L)−1U), as required. The argument for

the Jacobi process is similar.

In other words, the rates of convergence of the nonlinear processes are exactly the

same as the rates for the corresponding linear processes applied to the Jacobian matrix

of the residual function. For the residual function (2.3.25), the Jacobian matrix has

the following tridiagonal form:

∂R

∂u
=















d1 f1

e2 d2
. . .

. . . . . . fN−1

eN dN















,
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where

di = φi + λ

(

∂Fi+1/2

∂ui

− ∂Fi−1/2

∂ui

)

> 0,

ei = −λ∂Fi−1/2

∂ui−1

≤ 0,

fi = λ
∂Fi+1/2

∂ui+1

≤ 0.

Thus, di = φi − ei+1 − fi−1, so that ∂R/∂u is a column diagonally dominant matrix.

This guarantees that both ρGS and ρJ are strictly less than 1. Since ∂R/∂u is generally

not a diagonal matrix, it is clear that nonlinear Jacobi converges at most linearly.

One can compute an upper bound for ρJ as follows. We have

ρJ = ρ(D−1(L+ U)) = ρ((L+ U)D−1)

≤
∥

∥(L+ U)D−1
∥

∥

1
= max

i

(

ei+1 + fi−1

di

)

≤ 1 − minφi

max di

.

Since − log ρJ ≈ φmin/max di, it follows that − log ρJ is roughly inversely proportional

to the mesh ratio λ, especially when λ (and equivalently ∆t) is large. Thus, one

expects Jacobi to take roughly twice as many iterations to converge when one doubles

the time-step size while fixing the spatial grid (or, equivalently, when the grid is refined

by a factor of two while ∆t is kept constant).

For Gauss-Seidel, we exploit the fact that ∂R/∂u is tridiagonal. For this class

of matrices (and in fact, for any consistently ordered matrices in the sense of Young

[85]), the following theorem holds [68].

Theorem 2.9. Let A be a consistently ordered matrix such that aii 6= 0 for i =

1, . . . , N , and let the SOR parameter ω be nonzero. Then, if λ is a nonzero eigenvalue

of the SOR iteration matrix GSOR, any scalar µ such that

(λ+ ω − 1)2 = λω2µ2 (2.3.26)
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is an eigenvalue of the Jacobi iteration matrix GJ . Conversely, if µ is an eigenvalue

of GJ and if a scalar λ satisfies (2.3.26), then λ is an eigenvalue of GSOR.

Since Gauss-Seidel is simply SOR with ω = 1, it follows that either ρGS = 0

or ρGS = ρ2
J . The former happens when fi = 0 for i = 1, . . . , N − 1, i.e., when

∂R/∂u is lower triangular. In this case, Gauss-Seidel converges in one iteration (i.e.,

superlinearly), since the nonlinear system is actually decoupled and Gauss-Seidel is

essentially just a forward substitution. For 1D porous media flow, this occurs when

flow is purely cocurrent and the numerical scheme reverts to single-point upstream-

ing. When countercurrent flow is present, there is no symmetric permutation that

would render ∂R/∂u lower triangular, so Gauss-Seidel also converges linearly, requir-

ing about half as many iterations as Jacobi.

2.3.7 Extensions

In this section we show how to extend the results of Theorems 2.6 and 2.7 to deal

with:

1. conservation laws with non-uniform spatial grids,

2. spatially-varying flux functions,

3. problems in which the flux functions are only defined over a closed interval

I ⊂ R, and

4. problems in multiple dimensions.

Non-uniform grids and spatially-varying flux functions

Consider again the fully-implicit discretization (2.3.1):

φi(u
n+1
i − un

i ) + λ(F n+1
i+1/2 − F n+1

i−1/2) = 0, λ = ∆t/∆x, i ∈ Z,

with a spatially-varying φi and Fi+1/2. We assume that 0 < φi ≤ 1. Notice that the

non-uniform grid case is automatically included: for any non-uniform discretization
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of the form
φ̃i(u

n+1
i − un

i )

∆t
+
F n+1

i+1/2 − F n+1
i−1/2

∆xi

= 0, (2.3.27)

we can multiply (2.3.27) by ∆t∆xi/∆xmax to recover the form of (2.3.1) with

φi = φ̃i∆xi/∆xmax, λ = ∆t/∆xmax.

To ensure convergence of the Jacobi and Gauss-Seidel processes, we need the following

assumptions:

1. The family of flux functions {Fi+1/2}∞i=−∞ is equicontinuous [65] with the same

Lipschitz constant KB;

2. {φi} is uniformly bounded away from zero, i.e. there exists φmin > 0 such that

φi ≥ φmin for all i ∈ Z.

While the equicontinuity condition may appear severe, it is usually satisfied in practice

because the spatially-varying coefficients (e.g. K(x) in (2.1.10)) tend to be uniformly

bounded, ensuring equicontinuity in the flux functions. With the above assumptions,

we can mimic Theorem 2.6 exactly by replacing λ with λ/φi. Then the proof goes

through verbatim, except for (2.3.22), which must be modified to

2λKB

φmin + 2λKB

< β < 1. (2.3.28)

Bounded admissible solutions

Formally, Theorem 2.6 requires the discrete flux function F (ui, ui+1) to be defined on

R × R. In practice one may want to solve problems for which the flux function f is

only defined on an interval [umin, umax] rather than on all of R, so states outside these

physical bounds are not admissible. For instance, in the two-phase flow problem,

we must have Si ∈ [0, 1] for all i, and the flux function f(S) in (2.1.10) is not even

defined outside this range. Fortunately, the estimate (2.3.20) ensures that as long

as the initial conditions are within physical bounds, so will the solution remain for

subsequent time steps n > 0. Thus, in order to apply Theorem 2.6 to these problems,
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one can formally extend the domain of definition of the flux function f to R by

defining, for instance,

f̃(u) =



















f(umin), u < umin,

f(u), umin ≤ u ≤ umax,

f(umax), u > umax,

and similarly for the discrete flux F (u, v). Since all the Gauss-Seidel iterates {yk} and

{xk} satisfy the bound x0 ≤ xk ≤ yk ≤ y0, the exact manner in which the extension

is defined is unimportant as long as the monotonicity property (Assumption 1) is

satisfied.

Multiple dimensions

TheM -function analysis above can be extended to scalar conservation laws in multiple

dimensions. Consider once again the conservative, implicit monotone scheme

φi(u
n+1
i − un

i ) +
∑

l∈adj(i)

λilFil(u
n+1
i , un+1

l ) = 0, i ∈ I, (2.3.29)

of which the SEQ problem is an example. Recall that Fil is the flux from cell i to

cell l, λil = ∆t|∂Vil|/|Vi|, where |∂Vil| is the area of the surface separating cell i and

l, |Vi| is the volume of cell i and ∆t is the time step. In order to mimic Theorem 2.6,

we need the following assumption on the numerical flux:

1. Fil is equicontinuous with the same Lipschitz constant for all pairs of adjacent

cells (i, l),

as well as these assumptions on the grid:

2. The number of cells (control volumes) adjacent to cell i, |adj(i)|, is bounded for

all i;

3. The ratio |∂Vil|/|Vi| is bounded for all pairs of adjacent cells (i, l);

4. The quantity φi|Vi| is uniformly bounded away from zero for all i;
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5. For any cell i, the total number of cells reachable from i in k steps is O(kp) for

some fixed p > 0 (i.e. grows at most polynomially in k).

Items (1) and (4) are analogous to the conditions stated in the non-uniform grid case,

whereas the other conditions are new. These assumptions ensure that the residual

functions are all bounded and have the same Lipschitz constant over the set {u ∈
`∞(N) | ‖u‖∞ < B}. The polynomial growth assumption (5) allows us to assign

the weights {wB
i } to each cell i in the following manner: pick any node i0 and let

wB
i = βd(i0,i), where d(i, j) is the shortest distance between node i and j in the graph-

theoretic sense. Since the number of cells within k steps of i0 grows polynomially in

k, the series
∑

iw
B
i converges for any 0 < β < 1, so β can be chosen the same way

as in step 3 of Theorem 2.6 and the same argument will hold.

2.3.8 Maximum principle

We conclude this section by proving a stronger version of (2.3.20) that is satisfied by

implicit monotone schemes, as well as any Gauss-Seidel iterates.

Proposition 2.10 (Maximum principle). Suppose u∗ solves the problem

u∗ − u0 + λ
[

F (u∗, u+) − F (u−, u
∗)
]

= 0,

where F satisfies Assumption 1. Then u∗ satisfies

min{u0, u−, u+} ≤ u∗ ≤ max{u0, u−, u+}. (2.3.30)

Proof. If u∗ is equal to any one of u0, u−, u+, there is nothing to prove. So assume

u∗ /∈ {u0, u−, u+}. Define

C =
F (u∗, u∗) − F (u∗, u+)

u+ − u∗
≥ 0 (2.3.31)

D =
F (u∗, u∗) − F (u−, u

∗)

u∗ − u−
≥ 0. (2.3.32)
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The non-negativity of C and D follows from Assumption 1. Then

0 = u∗ − u0 + λ
[

F (u∗, u+) − F (u−, u
∗)
]

= u∗ − u0 + λ
[

F (u∗, u+) − F (u∗, u∗) + F (u∗, u∗) − F (u−, u
∗)
]

= (u∗ − u0) + λC(u∗ − u+) + λD(u∗ − u−).

Thus, if u∗−u0, u∗−u−, u∗−u+ all had the same sign, we would get a contradiction.

Thus, at least two of the three terms must have opposite signs, which implies (2.3.30).

2.4 Convergence to the entropy solution

In this section, we restrict our attention to implicit monotone discretizations corre-

sponding to the conservation law

ut + f(u)x = 0, (x, t) ∈ R × R
+, (2.4.1)

i.e. when φ(x) ≡ 1 is constant and the flux function does not vary in space (but is

generally non-convex and/or non-monotonic). Kružkov [45] has shown that (2.4.1)

has a unique entropy-satisfying weak solution, as stated in the following theorem.

Theorem 2.11 (Kružkov). If f is locally Lipschitz continuous, then for any u0 ∈
BV (R) and for any T > 0 there is a unique u ∈ BV (R × [0, T ]) ∩ C0([0, T ], L1

loc
(R))

such that u is a weak solution, i.e.

∫∫

R×[0,T ]

(uψt + f(u)ψx)dx dt+

∫

R

u0(x)ψ(x, 0)dx = 0 (2.4.2)

for all ψ ∈ C∞
0 (R × [0, T ]) and, in addition, satisfies the entropy condition: For all

ψ ∈ C∞
0 (R× [0, T ]) with ψ ≥ 0, and for all c ∈ R,

∫∫

R×[0,T ]

[|u− c|ψt + sgn(u− c)(f(u) − f(c))ψx] dx dt ≥ 0. (2.4.3)
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The classical approach for establishing convergence to the unique entropy solution

proceeds as follows (cf. [24, 41, 70]):

1. Show that the sequence of numerical approximations remains uniformly bounded

and has uniformly bounded total variation as ∆x,∆t→ 0. This ensures the set

of numerical approximations is precompact in L1
loc(R× [0, T ]), which allows one

to produce a convergent subsequence;

2. Show that the numerical flux is consistent and satisfies a discrete entropy in-

equality. By the Lax-Wendroff theorem [46], this implies the limit u of the

convergent subsequence satisfies (2.4.2) and (2.4.3) in Theorem 2.11;

3. Verify that the entropy-satisfying weak solution is unique. In the 1D scalar case

this is a result of Theorem 2.11. This ensures all subsequences have the same

limit point, so that the finite difference scheme is convergent as ∆x,∆t→ 0.

A detailed argument along the above lines can be found in [24, 50, 70] and will not

be repeated here. Instead we focus on checking the various criteria listed above. The

numerical flux is assumed to be consistent, and by Theorem 2.6, the discrete solution

is uniformly bounded for spatial and temporal grid size. Thus, we only need to verify

that the numerical approximations have bounded total variation, and that a discrete

entropy inequality exists. The following two lemmas address these questions.

Lemma 2.12. Assume the hypotheses of Theorem 2.6, and suppose for n ≥ 1 the

discrete solution {un
i }∞i=−∞ is given by the unique bounded solution satisfying (2.3.1).

Assume the initial data {u0
i }∞i=−∞ has bounded total variation, i.e.

TV (u0) :=
∞
∑

i=−∞

|u0
i+1 − u0

i | <∞.

Then TV (un) <∞ for all n ≥ 1, and

TV (un+1) ≤ TV (un) for all n.
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Proof. For notational simplicity we write ui = un+1
i , vi = un

i , ∆ui+1/2 = ui+1 − ui.

By a manipulation similar to the one in Proposition 2.10, we have, for each i ∈ Z,

ui − vi − λCi∆ui+1/2 + λDi∆ui−1/2 = 0, (2.4.4)

where

Ci =
F (ui, ui) − F (ui, ui+1)

ui+1 − ui

≥ 0,

Di =
F (ui, ui) − F (ui−1, ui)

ui − ui−1

≥ 0.

Writing (2.4.4) for cells i, i+ 1 and subtracting gives

∆ui+1/2 − ∆vi+1/2 − λCi+1∆ui+3/2

+ λDi+1∆ui+1/2 + λCi∆ui+1/2 −Di∆ui−1/2 = 0.

Rearrange and get

(1 + λCi + λDi+1)∆ui+1/2 = ∆vi+1/2 + λCi+1∆ui+3/2 + λDi∆ui−1/2.

Since Ci, Ci+1, Di, Di+1 are all non-negative, the triangle inequality gives

(1 + λCi + λDi+1)|∆ui+1/2| ≤ |∆vi+1/2| + λCi+1|∆ui+3/2| + λDi|∆ui−1/2|. (2.4.5)

Summing (2.4.5) for i from −N to N and making some cancellations, we get

N
∑

i=−N

|∆ui+1/2| ≤
N
∑

i=−N

|∆vi+1/2| + λCN+1|∆uN+3/2|

− λC−N |∆u−N+1/2| + λD−N |∆u−N−1/2| − λDN+1|∆uN+1/2|

≤
N
∑

i=−N

|∆vi+1/2| + λCN+1|∆uN+3/2| + λD−N |∆u−N−1/2|

≤ TV (v) + 4λKB ·B,
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where ‖u0‖∞ < B and KB is the local Lipschitz constant. Since the last expression

is finite and independent of N , the monotone convergence theorem guarantees that if

we let N approach infinity, the series will converge, so we get TV (u) <∞. Moreover,

it implies that for every ε > 0 there exists N (which depends on ε) such that

∑

|i|>N

|∆ui+1/2| ≤
1

2
min{ ε, ε

λKB

}.

Thus, we have

TV (u) ≤ ε

2
+

N
∑

i=−N

|∆ui+1/2|

≤ ε

2
+

N
∑

i=−N

|∆vi+1/2| + λCN+1|∆uN+3/2| + λD−N |∆u−N−1/2|

≤ ε

2
+ TV (v) + λKB(|∆uN+3/2| + |∆u−N−1/2|)

≤ ε

2
+ TV (v) + λKB

∑

|i|>N

|∆ui+1/2|

≤ ε

2
+ TV (v) + λKB · ε

2λKB

≤ TV (v) + ε.

Finally, letting ε→ 0 gives TV (u) ≤ TV (v), as required.

For the next lemma, recall that if u is an entropy-satisfying weak solution to

(2.4.1), it must satisfy an entropy inequality of the form

ϕ(u)t + ψ(u)x ≤ 0 (2.4.6)

in the weak sense, where ϕ(·) is an arbitrary C2 function with ϕ′′ > 0, and (ϕ, ψ) are

related by ψ′ = ϕ′f ′. Kružkov showed in [45] that this formulation is equivalent to

requiring that condition (2.4.3) be satisfied for all c ∈ R.

Lemma 2.13. Assume the hypotheses of Theorem 2.6, and let {un
i } be the unique
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bounded solution satisfying (2.3.1). Let (ϕ, ψ) be an entropy/flux pair. Then there ex-

ist functions Φ = Φ(u) and Ψ = Ψ(u−, u+) that are consistent with (ϕ, ψ) (i.e. Φ(u) =

ϕ(u) and Ψ(u, u) = ψ(u)) such that (Φ,Ψ) satisfies a discrete entropy inequality:

Φ(un+1
i ) − Φ(un

i ) + λ
[

Ψ(un+1
i , un+1

i+1 ) − Ψ(un+1
i−1 , u

n+1
i )

]

≤ 0. (2.4.7)

Proof. The development essentially follows [75]. Define the entropy variables

v := ϕ′(u).

Since ϕ′′ > 0, ϕ′ is one-to-one, so we can do a change of variables and let u = u(v).

So we can define the potential function

q(v) =

∫ v

0

f(u(η))dη,

which is used to define the discrete entropy/flux pair:

Φ(u) := ϕ(u)

Ψ(ui, ui+1) :=
1

2
(vi + vi+1)Fi+1/2 −

1

2
(q(vi) + q(vi+1)).

It is easily seen that Ψ is consistent with ψ (by showing that d
du

Ψ(u, u) = ϕ′f ′). Then

since ϕ = Φ is convex, we have

Φ(un+1
i ) + Φ′(un+1

i )(un
i − un+1

i ) ≤ Φ(un
i ),

so that

0 ≥ Φ(un+1
i ) − Φ(un

i ) + vn+1
i (un

i − un+1
i )

0 ≥ Φ(un+1
i ) − Φ(un

i ) + λvn+1
i (F n+1

i+1/2 − F n+1
i−1/2)

0 ≥ Φ(un+1
i ) − Φ(un

i ) + λ
[

(

vn+1
i F n+1

i+1/2 + q(vn+1
i )

)

−
(

vn+1
i F n+1

i−1/2 + q(vn+1
i )

)

]
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So for (2.4.7) to hold it is sufficient demonstrate the following inequalities:

Ψ(ui, ui+1) ≤ viFi+1/2 − q(vi), (2.4.8)

Ψ(ui−1, ui) ≥ viFi+1/2 − q(vi). (2.4.9)

From the definition of Ψ we get

Ψ(ui, ui+1) − viFi+1/2 + q(vi)

=
1

2
(vi + vi+1)Fi+1/2 −

1

2
(q(vi) + q(vi+1)) − viFi+1/2 + q(vi)

=
1

2
(vi+1 − vi)Fi+1/2 −

1

2
(q(vi+1) − q(vi))

=
1

2

∫ vi+1

vi

[

Fi+1/2 − f(u(η))
]

dη

=
1

2

∫ vi+1

vi

[F (ui, ui+1) − F (u(η), u(η))] dη

=
1

2

∫ vi+1

vi

[(

F (ui, ui+1) − F (ui, u(η))
)

+
(

F (ui, u(η)) − F (u(η), u(η))
)]

dη,

where η lies between vi and vi+1. If vi ≤ vi+1, then ui ≤ u(η) ≤ ui+1, so that

F (ui, ui+1) − F (ui, u(η)) ≤ 0

F (ui, u(η)) − F (u(η), u(η)) ≤ 0,

and hence the integrand is non-positive. Analogously, vi ≥ vi+1 implies that the

integrand is non-negative, so either way the integral cannot be positive, thus proving

(2.4.8). Relation (2.4.9) is proved similarly, and the lemma follows.

2.5 Accuracy of phase-based upstreamed solutions

In this section, we investigate the accuracy of the numerical solution obtained from

phase-based upstreaming when we vary the spatial and temporal grid. Our test case

consists of the 1D countercurrent flow problem (§2.2.1), with domain Ω = [0, 1].

Water is injected at the boundary xD = 0 and a pressure boundary condition is
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maintained at xD = 1. The hyperbolic form of the problem is described by

∂S

∂tD
+
∂f(S)

∂xD

= 0.

The flux function f(S) is shown in Figure 1(b), with a sonic point at S = 0.49;

countercurrent flow occurs whenever S ≥ 0.49. The initial saturation profile is a step

function with

S0(xD) =







1, 0 ≤ xD < 0.2

0 0.2 < xD ≤ 1.

The numerical solution is compared with the analytical solution at time tD = 0.15.

Because of the sonic point, the solution contains two shocks connected by a rarefac-

tion; one shock moves to the right with a velocity of 3.9, and the other travels to the

left with a velocity of −1.2. When considering the accuracy of a numerical solution,

two error measures are shown:

• The L1-error, which is the difference between the numerical and the analytical

solution in the L1-norm;

• The front dispersion, which is the distance between analytical shock front and

the leftmost point for which the numerical solution becomes zero.

We also measure how difficult the nonlinear problem is by showing, for each test case,

the average number of nonlinear Gauss-Seidel iterations required to converge each

time step. We remark that this measure is only useful for problems with countercur-

rent flow, since Gauss-Seidel always converges in one iteration in the cocurrent case

(cf. section 2.3.6).

2.5.1 Refinement under fixed mesh ratio

Here we refine the grid under a fixed mesh ratio ∆x/∆t, which in turn yields a fixed

CFL number of 4.10, which is above the CFL limit for explicit schemes. Figure 2.3

shows the plots for N = 25, 50, 100, 200, 400, and Table 2.1 shows the L1-error and

front dispersion data. The plots show that the numerical solution converges to the
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Table 2.1: Accuracy of numerical solutions for a fixed CFL number.

N tD/∆t CFL L1-error Front dispersion Average # iterations
25 5 4.10 0.0889 > 0.215 5.2
50 10 4.10 0.0665 > 0.215 4.9

100 20 4.10 0.0444 0.116 4.4
200 40 4.10 0.0273 0.066 4.2
400 80 4.10 0.0168 0.039 4.1

analytical solution even though the CFL number is greater than 1, which confirms

our analysis. Moreover, both the L1 error and the front dispersion are converging

a bit worse than linearly, with a ratio of about 0.61 and about 0.58 respectively

for every refinement by a factor of two. Also note the poor resolution near the left

boundary N = 25, 50, 100, where instead of approaching S = 1, the solution is closer

to Sc ≈ 0.27 at the left boundary. For these coarser grids, the numerical solution

has a hard time deciding whether the left-moving wave has reached the boundary,

which is maintained at S(x = 0) = Sc (see Equation (2.2.10)). For higher resolutions

(N = 200, 400), the artifact has disappeared and the numerical solution reproduces

the back end of the saturation profile quite accurately. The average number of Gauss-

Seidel iterations required for convergence are all similar, so refining the grid for a fixed

mesh ratio does not increase the difficulty of the problem for the nonlinear solver.

2.5.2 Spatial refinement for fixed time steps

Here, we refine the spatial grid only while fixing the time-step size. Figure 2.4

and Table 2.2 show the results for N = 25, 50, 100, 200, 400, and a time-step size

of ∆tD = 0.0075, i.e. we use 20 time steps to integrate up to tD = 0.15. We see that

even though the N = 25 case has a CFL number close to 1, the grid is clearly too

coarse, and the shock front is very poorly resolved. The accuracy increases substan-

tially when the spatial grid is refined to N = 50, 100, even though the CFL number

becomes progressively larger; thus, the CFL number by itself is not a good measure

of solution quality. However, the improvement due to spatial grid refinement be-

comes negligible for N > 100, since time discretization is now the dominant source of



2.5. ACCURACY OF PHASE-BASED UPSTREAMED SOLUTIONS 65

Table 2.2: Accuracy of numerical solutions for a fixed time step size.

N tD/∆t CFL L1-error Front dispersion Average # iterations
25 20 1.02 0.0673 > 0.215 2.6
50 20 2.05 0.0529 0.156 3.3

100 20 4.10 0.0444 0.116 4.4
200 20 8.20 0.0378 0.101 6.4
400 20 16.40 0.0366 0.094 9.2

error. In addition, the average number of iterations required to attain convergence in-

creases with each refinement: as we refine the grid, we are solving increasingly difficult

problems, even though the improvement in solution accuracy will stagnate beyond a

certain point. Thus, even though the fully-implicit method can tolerate arbitrarily

large CFL numbers, one should not hope to improve solution accuracy indefinitely

simply by using a finer spatial grid, without making a corresponding reduction of

time-step size.

2.5.3 Non-uniform grids

The real advantage of the fully-implicit method over an explicit scheme lies in its

efficiency when applied to a heterogeneous problem, where the porosity φ(x) and per-

meability K(x) can vary by orders of magnitude over the domain. In these problems,

the CFL condition is determined by the minimum porosity in the domain, which

can be much smaller than the average porosity. To illustrate this point, we show an

example in which the spatial grid is non-uniform (which, based on Remark 2.3.7, is

equivalent to the spatially-varying porosity case). The non-uniform grid contains 50

gridblocks, with ∆xmax/∆xmin = 96. Figure 2.5 and Table 2.3 compare the numeri-

cal solutions obtained from this grid to the uniform-grid solutions. We see that the

solutions are qualitatively (from the plots) and quantitatively (from the L1-error and

front dispersion) not very different from their uniform counterparts, even though the

CFL number is 50 times larger in the non-uniform case. Thus, an explicit integra-

tor would have to take unacceptably small time steps, whereas an implicit method

allows time steps that are much more reasonable. In addition, the average number
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Table 2.3: Accuracy of numerical solutions for a non-uniform grid.

N tD/∆t CFL L1-error Front dispersion Avg. # its
Non-uniform 50 20 105.80 0.0566 0.180 3.2

50 50 42.30 0.0475 0.132 2.2
Uniform 50 20 2.05 0.0529 0.156 3.3

50 50 0.82 0.0435 0.116 2.1

of iterations required for Gauss-Seidel convergence is roughly the same for both the

uniform and non-uniform case, so the resulting nonlinear equations are not harder to

solve, despite the large CFL numbers.
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Figure 2.3: Numerical solution at different resolutions, CFL = 4.10, tD = 0.15.
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Figure 2.4: Numerical solution for different spatial grids, 20 time steps, tD = 0.15.
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Figure 2.5: Numerical solutions obtained from a non-uniform grid ((a) and (b)) and
their uniform-grid counterparts ((c) and (d)), tD = 0.15.



Chapter 3

Potential Ordering

The main theme of this thesis is the reordering of equations and variables in a way

that allows a partial decoupling of the problem into a sequence of single-cell problems

that are easier to solve. The basic insight is to perform reordering based on flow

direction information, which is provided by the pressure field. This approach is in-

tuitive because saturation information travels from upstream to downstream, so one

expects methods that respect this ordering to be more efficient than methods that

are blind to upstream information. We have already seen in section 2.3.6 that in the

1D cocurrent case, nonlinear Gauss-Seidel converges in exactly one iteration if, and

only if, the cells are ordered from upstream to downstream. Thus, ordering can have

a large impact on the performance of solution algorithms.

For a problem with np phases, there are np equations and unknowns associated

with each block, which means there are multiple ways of ordering these equations

while respecting the direction of flow. We can distinguish between the following two

categories of ordering:

1. Cell-based ordering, in which all the equations and variables aligned with a cell

(control volume) are grouped together as a block, and reordering only applies

at the cell level;

2. Phase-based ordering, in which all the equations and variables corresponding

to a particular phase p are grouped together, and a different cell ordering can

be used for each block.

70
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The two approaches are useful in different situations and they both contribute to

the various nonlinear solvers and preconditioning algorithms presented in subsequent

chapters.

3.1 Methods derived from cell-based ordering

In cell-based approaches, the cells are ordered along the flow direction (based on either

the total velocity field or the pressure field of the “dominant” phase). The single-

cell problems thus obtained are generally np-by-np systems of nonlinear equations

corresponding to local mass balances, one per component. Decoupling occurs by

assuming that the inward fluxes from upstream cells are known, and that downstream

dependence is weak enough so that the single-cell solution will not be significantly

affected. These approaches work well for cocurrent flow problems because downstream

dependence is effectively nil in such cases, and there is no ambiguity in the ordering

since all phases flow in the same direction.

Cascade method

The Cascade method was proposed by Appleyard and Cheshire [4] as an acceleration

scheme for the basic Newton method. A brief description of the method follows.

Suppose we have an np-phase model (np= 2 or 3) in which we discretize the domain

into N gridblocks. The first step in the Cascade method is the same as in the ordinary

Newton method: namely, we linearize the npN conservation equations and solve the

npN -by-npN linear system J(x(ν))δx(ν) = −R(ν)(x(ν)) for δx(ν). Next, we apply a

linear update to pressure variables Po only, leaving the saturations intact for the time

being. Using this new pressure field, we update the potential for each phase, and

then we order the cells from the highest potential to the lowest. This is the order

in which the Cascade sweep should be performed. Note that there is a choice in the

ordering because the potential sequence can be different for each phase. Appleyard

and Cheshire suggest that one Cascade sweep be done for the potential sequence

of each phase, although the method was only demonstrated for a two-phase flow

problem.
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1 Form the full Jacobian J, evaluated at (Sk, P k
o ) ;

2 Solve J

[

δSk

δP k
o

]

= rk ;

3 Compute P k+1
o = P k

o + δP k
o ;

4 Reorder the cells so that Po,i ≥ Po,j whenever i > j ;
5 For i = 1, . . . , N :
6 Solve (3.1.1) at cell i for Sw,i and Po,i ;
7 Update Sk+1

w,i using the value from line 6 ;
8 Compute outward fluxes FOp(Sw, Po) for subsequent i ;
9 end for

Figure 3.1: One iteration of the Cascade method [4].

Each Cascade sweep requires the solution of N single-cell problems, where N is

the number of cells in the grid. For a two-phase problem, a single-cell problem has

the form

fo(Sw, Po) =
1

∆t
∆Mo(Sw, Po) + FOo(Sw, Po) − FIo − qo = 0

fw(Sw, Po) =
1

∆t
∆Mw(Sw, Po) + FOw(Sw, Po) − FIw − qw = 0,

(3.1.1)

where ∆Mp is the accumulation of phase p, FOp and FIp are the outward and inward

fluxes of phase p respectively, and qp are the well terms. For a three-phase problem,

we would have three such equations. We assume that the inward fluxes are known

and independent of the values of Sw and Po at the cell, which is valid provided

that all neighboring cells at a higher potential have been processed, and there is

no countercurrent flow. We now have a system of two nonlinear equations in two

unknowns, which can be efficiently solved for Sw and Po. The computed Sw are taken

to be the saturation solution for the nonlinear iteration, and the computed FOp are

used as the influx for subsequent single-cell problems. The computed Po, on the other

hand, are discarded, since their only purpose is to ensure local mass conservation for

both phases and do not yield an accurate approximation for the global pressure field.

In other words, the approximate solution (S(ν), P
(ν)
o ) takes its saturation values from

the single-cell problems, but the pressure values are obtained from the linear update.

Figure 3.1 outlines one step of the cascade method.
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Consider a one-dimensional model problem with

• incompressible flow,

• an injection boundary condition on the left,

• a pressure boundary condition on the right, and

• no countercurrent flow (e.g., horizontal reservoir with no capillarity).

It can be shown that the Cascade method converges to the solution in two iterations

for this problem (see Appendix C for a proof). However, this ceases to be true in the

presence of countercurrent flow or in multiple dimensions. Also, the formulation may

break down if the phase potential chosen to order the cells contains local minima; in

this case, the cell whose potential is at a local minimum will lack an outward flux term

FOp, so it would be impossible to satisfy mass balance for both phases no matter

what Sw and Po are. This is an important drawback because in practical applications

it is usually impossible to guarantee the absence of local minima in the pressure field

when the solution has not converged, especially when the initial guess is poor.

The Natvig approach

Natvig, Lie and Eikemo [56] proposed a cell-based reordering method for solving the

multiphase advection problem in the absence of gravity and capillarity. In [56] the

reordering was applied to equations obtained from a discontinuous Galerkin discretiza-

tion, but it can equally be applied to the standard finite volume methods described

in section 1.2.1. Basically, a topological sort (cf. [22]) is performed on the directed

acyclic graph G = (V,E), whose nodes V are the control volumes, and whose edges E

are the directions of the total velocity across cell interfaces (which coincide with the

flow directions for each phase, since there is no countercurrent flow). The single-cell

problems, each consisting of an np-by-np nonlinear system, are solved in the topologi-

cal order from upstream to downstream by Newton’s method, for example. Since the

pressure and total velocity fields are regarded as part of the data rather than the un-

knowns, this ordering completely decouples the system, just like Gauss-Seidel is exact

for cocurrent 1D flow. In fact, this approach can be regarded as a block nonlinear

Gauss-Seidel method, which is exact as long as the nonlinear system is block lower



74 CHAPTER 3. POTENTIAL ORDERING

triangular. Again, convergence is no longer superlinear when countercurrent flow is

present, and a robust implementation in the block case becomes non-trivial (see [28]

for a discussion).

3.2 Phase-based ordering

In this section, we present an ordering of equations and unknowns that allows us to

solve for saturation one unknown at a time, even in multiple dimensions and/or in

the presence of gravity and countercurrent flow. First, we explain how to construct

this ordering in the absence of countercurrent flow; in this case we recover the Ap-

pleyard and Cheshire Cascade ordering [4]. We then extend the ordering to treat

countercurrent flow due to gravity, and finally we show how to deal with capillarity.

3.2.1 Cocurrent flow

Consider the two-phase model outlined in section 1.1. In the absence of gravity and

capillary forces, all phases will be flowing in the same direction, which is given by the

negative pressure gradient −∇p (i.e., from high to low pressure). Thus, in the finite

volume discretization, the flux term between cells i and l,

Fil =















K · krp(Sl)

µp

pl − pi

∆x
, pl ≥ pi

K · krp(Si)

µp

pl − pi

∆x
, pl ≤ pi

(3.2.1)

depends only on the saturation of the upstream cell. Suppose we reorder the cells such

that they appear in decreasing order of pressure, i.e. pi ≥ pj whenever i < j. Then

for all j, the component conservation equations for cell j depend only on saturations

Si with i ≤ j. Thus, we can rearrange the system of nonlinear equations to the form

fc1(S1, p1, . . . , pN) = 0

fc2(S1, S2, p1, . . . , pN) = 0

...

fcN(S1, S2, . . . ,SN , p1, . . . , pN) = 0,

(3.2.2)
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where c = o, w are the oil and water components, respectively. Notice how the

saturation part of the equations becomes “triangular”. Thus, if we have the exact

pressure solution p1, . . . , pN , we can perform a “forward substitution” and solve a

series of single-variable nonlinear equations to obtain the saturations S1, . . . , SN . We

remark that the triangularity carries over to the Jacobian matrix, which now has the

form
Sw p

J =

[

Jww Jwp

Jow Jop

]

water equation

oil equation

(3.2.3)

where Jww is lower triangular.

In the three-phase case, we have two saturation variables per cell, which we can

choose as Sw and So without loss of generality. Since the black oil model assumes

that krw depends solely on Sw, the above construction can be used to order the water

equations. Now kro depends on both Sw and So, but we can maintain triangularity

by writing all the water equations first before writing the oil and gas equations. The

nonlinear system then looks like

fw1 (Sw1, p1, . . . , pN) = 0

fw2 (Sw1, Sw2, p1, . . . , pN) = 0

...

fwN(Sw1, . . . , SwN , p1, . . . , pN) = 0

fo1 (Sw1, . . . , SwN , So1, p1, . . . , pN) = 0

...

foN (Sw1, . . . , SwN , So1, . . . , SoN , p1, . . . , pN) = 0

and fgi (Sw1, . . . , SwN , So1, . . . , SoN , p1, . . . , pN) = 0, i = 1, . . . , N.

(3.2.4)

In this case the corresponding Jacobian would have the form



76 CHAPTER 3. POTENTIAL ORDERING

Sw So p

J =









Jww Jwp

Jow Joo Jop

Jgw Jgo Jgp









water equation

oil equation

gas equation

(3.2.5)

with Jww and Joo lower triangular, which implies the entire upper-left block is lower

triangular. Note that Jow will also be lower triangular, since all phases have the same

upstream direction. However, this fact is not needed to justify solving for Sw and So

using forward substitution.

3.2.2 Countercurrent flow due to gravity

In the presence of gravity, buoyancy forces can cause different phases to flow in

opposite directions. The upstream direction for each phase p is determined by the

sign of (Φp,i − Φp,l), where

Φp,i = pi − γpzi (3.2.6)

is the phase potential at cell i, zi is the depth of the cell, and γp is the specific gravity

of phase p. Despite possible differences in upstream directions, we are interested in

maintaining the triangular forms shown in (3.2.2) and (3.2.4) (and equivalently (3.2.3)

and (3.2.5)). For two-phase flow, one can simply use Φw for ordering, since one only

needs Jww (and not Jow) to be triangular. For three-phase flow, we need both Jww

and Joo to be lower triangular. Clearly, no cell-based ordering can accomplish this; we

need to order the water and oil phases separately. The trick is to exploit the relative

permeability dependencies (1.1.9) in such a way that triangularity is preserved.

Unlike the cocurrent flow case, we can no longer align the ordering of equations

and variables with cell ordering. Thus, in the sequel, subscripts (such as k in Φp,k)

always denote the value of the scalar field (in this case, the potential of phase p) at cell

k in the natural ordering. This is because we concentrate on ordering the equations

and unknowns, rather than the cells themselves.



3.2. PHASE-BASED ORDERING 77

Let σ1, . . . , σN and τ1, . . . , τN be permutations such that

Φw,σi
≥ Φw,σj

whenever i < j, (3.2.7)

Φo,τi
≥ Φo,τj

whenever i < j. (3.2.8)

In other words, if cell k is such that Φw,k > Φw,l for any other l, then σ1 := k.

Suppose we order first all the water equations and the associated variables Sw using

the σ ordering, and then order the oil equations and the associated variables So using

the τ ordering. The nonlinear system then looks like

fw,σ1
(Sw,σ1

, p1, . . . , pN) = 0

fw,σ2
(Sw,σ1

, Sw,σ2
, p1, . . . , pN) = 0

...

fw,σN
(Sw,σ1

, . . . , Sw,σN
, p1, . . . , pN) = 0

fo,τ1 (Sw,σ1
, . . . , Sw,σN

, So,τ1 , p1, . . . , pN) = 0

...

fo,τN
(Sw,σ1

, . . . , Sw,σN
, So,τ1 , . . . , So,τN

, p1, . . . , pN) = 0

and fgi (Sw,σ1
, . . . , Sw,σN

, So,τ1 , . . . , So,τN
, p1, . . . , pN) = 0, i = 1, . . . , N.

(3.2.9)

Now consider the pattern of the corresponding Jacobian matrix. Clearly, Jww is

still lower triangular because of (3.2.7), and Joo is lower triangular because of (3.2.8).

The only effect of countercurrent flow is that Jow will no longer be lower triangular,

because the Sw are not arranged in the order of decreasing oil potential, Φo. However,

as long as the upper-left 2× 2 block in (3.2.5) is lower triangular, we can use forward

substitution to solve for Sw and So once the pressures are known.

3.2.3 Capillarity

So far, in the absence of capillary effects, the saturation dependence in each equation

is purely upstream; thus, for a given phase, saturations downstream from cell i do not

appear in equation i. When capillary effects are present, equation i involves phase
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pressures from all neighboring cells, be they upstream or downstream from cell i. In

the standard approach, we can only choose one phase pressure as a primary variable;

the other phase pressures must be expressed as

pq = pp + Pcpq(S), (3.2.10)

where pp is the primary phase pressure and pq is the pressure of another phase. Thus,

when capillarity is present, we must choose our primary variables carefully to avoid

introducing downstream dependence on saturation that cannot be removed by simply

reordering the equations and unknowns. Choosing pw, the water-phase pressure, as

the primary pressure variable allows us to maintain the triangularity in the upper-left

block of (3.2.5). Note that choosing pg causes the water equations to depend on So,

since pw = pg − Pcog(Sg) − Pcow(Sw) and Sg = 1 − Sw − So. This would completely

destroy the triangularity of the block. If we instead choose po, then there would be

no So dependence, but there would be both upstream and downstream dependence

on Sw due to pw = po − Pcow(Sw), which is undesirable. Thus, the only choice that

leaves the water equation intact (i.e., a triangular Jww) is pw.

We need to ensure that Joo is still lower triangular when pw is used. We have

po = pw + Pcow(Sw), (3.2.11)

which means we introduce downstream dependence on Sw, but not on So. Hence, the

Jow block will now contain downstream terms, but the Joo block remains unchanged.

Thus, the upper-left block remains triangular, as before. The same analysis carries

over to the nonlinear equations (3.2.9). Table 3.1 summarizes the ordering strategies

for black oil models with different numbers of phases. Note that the gas equations,

whenever they are present, are always ordered last. This is because the gas compo-

nent exists in both the oil and gas phases, so no ordering can produce the required

triangular form when countercurrent flow is present.
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Table 3.1: Ordering strategies for different black-oil models.

Component Cell ordering Primary
Model ordering water oil pressure

2-phase, oil-water water/oil Φw * pw

2-phase, gas-water water/gas Φw * pw

2-phase, oil-gas oil/gas * Φo po

3-phase water/oil/gas Φw Φo pw

3.2.4 Remarks on implementation

In order to produce cell orderings that satisfy (3.2.7) and (3.2.8), it is not neces-

sary to sort the potentials in decreasing order. Instead, consider the directed graph

G = (V,E) where the nodes V are the cells and the edges E are such that (i, j) is

an edge whenever i and j are neighbors and Φi > Φj or Φi = Φj and i > j. Then

a topological ordering of this graph (cf. [22]) will yield an ordering consistent with

either (3.2.7) or (3.2.8), depending on which potential is used. The running time of

this operation is O(N), which is asymptotically faster than sorting (O(N logN)).

We also remark that in most simulations, the flow directions do not change very

often, so it may not be necessary to compute this ordering at every time step. For

instance, we could compute the potential ordering only at the beginning of a time

step. At each subsequent Newton iteration, we could simply verify the validity of the

ordering, and only recompute it when the submatrix ceases to be triangular.



Chapter 4

Reduced Newton Method

In this chapter, we use the phase-based ordering introduced in section 3.2 to reformu-

late the mass-balance equations into a system of smaller size that involves pressure

variables only. The Implicit Function Theorem [66] plays a central role in the formu-

lation. We first describe the algorithm that arises when Newton’s method is applied

to the reduced system.

4.1 Algorithm description

For notational convenience, we rewrite (3.2.9) by splitting the equations into two

blocks: the first block Fs = 0 contains all the water and oil equations, and the second

block Fg = 0 contains all the gas equations. Similarly, we denote the vector of all

saturation variables (Swi and Soi, i = 1, . . . , N) by S, and the vector of pressure

variables by p. Then (3.2.9) becomes







Fs(S, p) = 0

Fg(S, p) = 0,
(4.1.1)

and the corresponding Jacobian J in (3.2.5) becomes

J =

[

Jss Jsp

Jgs Jgp

]

, (4.1.2)

80
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where

Fs = [fw1, . . . , fwN , fo1, . . . , foN ]T ,

Fg = [fg1, . . . , fgN ]T ,

S = [Sw1, . . . , SwN , So1, . . . , SoN ]T ,

p = [pw1, . . . , pwN ]T ,

and

Jss = ∂Fs/∂S, Jsp = ∂Fs/∂p, Jgs = ∂Fg/∂S, Jgp = ∂Fg/∂p.

It can be shown that Jss is nonsingular as long as the monotonicity condition dkrp/dSp ≥
0 is valid for p = o, w (see Appendix D for the proof). For krw = krw(Sw) (which

is usually obtained from experimental data), monotonicity is almost always satisfied,

but the situation is less clear for kro = kro(Sw, Sg), since the latter is usually obtained

by interpolating data from oil-water and oil-gas experiments. Certain methods of

interpolation, such as Stone I and Stone II [6], yield monotonic kro under mild con-

ditions (see Appendix D), but this is not always the case for other methods (e.g.,

the segregation model [37]). In this work it is assumed that kro is a monotonically

increasing function of So when Sw is fixed, which would ensure the nonsingularity of

Jss.

Consequently, since Fs(S, p) has a triangular structure with respect to saturation,

one can solve for S one unknown at a time if p is given. In addition, the implicit

function theorem guarantees that if Fs(S0, p0) = 0 and ∂Fs/∂S is nonsingular at

(S0, p0), then there exists a neighborhood U of p0 and a unique differentiable function

S = S(p) such that S(p0) = S0 and Fs(S(p), p) = 0 for all p ∈ U . In other words, we

can use Fs as a constraint to define saturation as a function of pressure, and substitute

it into the remaining equations Fg. Thus, we obtain

Fg(S(p), p) = 0, (4.1.3)

which we need to solve for the pressure p. If we use Newton’s method to solve (4.1.3),
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the Jacobian becomes

Jreduced =
∂Fg

∂S

∂S

∂p
+
∂Fg

∂p
(4.1.4)

= Jgs
∂S

∂p
+ Jgp. (4.1.5)

Now ∂S/∂p is given by the implicit function theorem: Fs(S(p), p) ≡ 0 implies

∂Fs

∂S

∂S

∂p
+
∂Fs

∂p
= 0, (4.1.6)

which we can write as

Jss
∂S

∂p
+ Jsp = 0. (4.1.7)

Thus, the reduced Jacobian matrix is

Jreduced = Jgp − JgsJ
−1
ss Jsp, (4.1.8)

which is precisely the Schur complement of (4.1.2) with respect to pressure. Figure 4.1

summarizes the algorithm used to solve the reduced system. Notice that the only dif-

ference between the algorithm in Figure 4.1 and Newton’s method applied to the full

problem is the way we compute Sk+1. In the full method, we set Sk+1 = Sk + δSk; in

the reduced method, Sk+1 is updated nonlinearly by solving the constraint equations

F (Sk+1, pk+1) = 0, in which the special triangular structure of Jss is exploited. Also

note that since this is just the usual Newton method applied to a reduced problem,

convergence is locally quadratic.

Sequential updating of the saturations

The algorithm in Figure 4.1 requires the solution of Fs(S
k+1, pk+1

w ) = 0 for Sk+1 at

every step. Using the potential ordering presented in Section 3.2, we can triangular-

ize the constraint equations to obtain the system (3.2.9). Thus, given the pressure

values p1, . . . , pN , we first solve fw1 = 0 for Sw1. Then, using this Sw1 we can now

solve fw2 = 0 for Sw2, and so on until we obtain all saturation values. Thus, solving

Fs(S
k+1, pk+1

w ) = 0 reduces to solving (np − 1)N nonlinear scalar equations one at
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1 while
∣

∣Fg(S(pk
w), pk

w)
∣

∣ > tol , do

2 Form the full Jacobian J =

[

Jss Jsp

Jgs Jgp

]

, evaluated at (S(pk
w), pk

w) ;

3 Solve (Jgp − JgsJ
−1
ss Jsp)δp

k = −rk ;
4 Compute pk+1

w = pk
w + δpk ;

5 Update Sk+1 = S(pk+1
w ) nonlinearly by solving Fs(S

k+1, pk+1
w ) = 0,

6 one variable at a time in potential ordering ;
7 k := k + 1
8 end

Figure 4.1: Algorithm for solving the reduced system (4.1.3).

a time (where np is the number of fluid phases). A wide variety of reliable univari-

ate solvers are available to deal with the nonlinear single-cell problems. One such

choice is the van Wijngaarden-Dekker-Brent Method [14], which combines bisection

with inverse quadratic interpolation to obtain superlinear convergence. This is a

derivative-free algorithm, which means only function values are required, although an

initial guess based on the solution of the ordinary Newton step can be used to accel-

erate convergence. In a reasonably efficient implementation, each function evaluation

should only require a few floating-point operations. As shown in section 4.3, the extra

cost of the single-cell nonlinear solves is usually offset by a reduction in the number

of global Newton steps. The nonlinear updates can be performed quite efficiently if

more sophisticated zero-finders are used.

Solving the Schur complement system

There are two ways to solve the Schur complement system

Jreducedδp = −r. (4.1.9)

The first way is to notice that one can solve the equivalent system

[

Jss Jsp

Jgs Jgp

][

δS

δp

]

=

[

0

−r

]

. (4.1.10)
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Krylov subspace methods (such as GMRES) can be used, and effective preconditioners

(such as the Constrained Pressure Residual method [81]) are available. A second

way is to apply the Krylov method directly to the Schur complement system. In

this approach, matrix-vector multiplication by Jreduced would have the same cost as

multiplication by the full matrix, because Jss is lower triangular, so that multiplication

by J−1
ss is simply a forward substitution. In terms of preconditioning, one can either

precondition Jreduced directly with ILU type methods, or use an induced preconditioner

based on the full system by letting

M−1
reduced = RM−1

fullR
T , (4.1.11)

where M−1
full is the preconditioner for the full system, and R =

[

0 I
]

is the restriction

operator to the pressure variables. In other words, a preconditioning step for the

reduced system y = M−1
reducedx consists of the following steps:

1. Pad the vector x with zeros to form x̂ =

(

0(np−1)N

x

)

.

2. Compute ŷ = M−1
fullx̂.

3. Let y be the portion of ŷ corresponding to pressure variables, i.e., retain only

the last N elements of ŷ.

One potential advantage of applying the Krylov method to the Schur complement

system rather than the full system is that the resulting Krylov vectors are only of

length N rather than length npN , where np is the number of fluid phases. This greatly

reduces storage requirements and orthogonalization cost in methods such as GMRES,

so that more Krylov steps can be taken before restarting.

In fact, the Schur complement reduction can be used even if the nonlinear con-

straint equations are not exactly satisfied. This could happen if the initial pressure

guess is so poor that some of the residual constraints in the reduced Newton cannot

be satisfied. In that case we would have

[

Jss Jsp

Jgs Jgp

][

δS

δp

]

= −
[

rs

rg

]

(4.1.12)
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But this is equivalent to solving

Jreducedδp = −(rg − JgsJ
−1
ss rs) (4.1.13)

which has the same form as (4.1.9). All these options are evaluated in chapter 5.

4.2 Convergence analysis

This section is devoted to the analysis of the reduced Newton method. For simplicity

we assume we are dealing with the discrete version of the two-phase, 1D model prob-

lem outlined in section 2.2.1. Though simple, this model problem captures the nature

of the nonlinearity of the reduced objective function for transport in porous media. A

physical argument (supported by numerical evidence [82]) suggests that nonlinearity

due to pressure is negligible unless highly compressible components (such as gas) are

present in the system.

There are two basic mechanisms that guarantee the convergence of Newton’s

method. The first mechanism is contraction, i.e., when the Newton mapping

g : x 7→ x− (f ′(x))−1f(x)

is contractive. Classical convergence theorems of this type include the Newton-

Kanterovich and Newton-Mysovskikh theorems [29]. When the objective function

f is a scalar function, the proofs simplify, and the following theorem can be estab-

lished.

Theorem 4.1. Let f be a C2 function over some interval J , and let I = (a, b) ⊂ J

be an open interval such that f ′(x) 6= 0 on I and

x ∈ I =⇒ |f(x)f ′′(x)|
|f ′(x)|2 < 1. (4.2.1)

Let x∗ ∈ I be such that f(x∗) = 0, and let L = min{|x∗ − a|, |b − x∗|}. Then x∗ is

the unique root of f in I, and for any initial guess x0 ∈ (x∗ −L, x∗ +L), the Newton
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iteration

xk+1 = xk − f(xk)

f ′(xk)

converges quadratically to x∗.

The above theorem, while establishing quadratic convergence, is inherently a local

result. This is because the quantity |f(x)f ′′(x)/f(x)2| is typically small only in the

vicinity of a root. Since our goal is to prove global convergence over a very wide

parameter space of relative permeability functional forms and initial guesses, it is

very difficult to ensure that criterion (4.2.1) is satisfied in every case. Thus, we must

exploit the other mechanism for convergence, namely, the convexity of the objective

function.

4.2.1 Convex functions and Newton’s method

Recall that a function f : [a, b] → R is convex if, for all x, y ∈ [a, b] and 0 ≤ t ≤ 1,

we have

f((1 − t)x+ ty) ≤ (1 − t)f(x) + tf(y).

Convex functions enjoy many nice properties (such as continuity everywhere and

differentiability almost everywhere [59]), but for our purposes we mainly consider C2

functions. The following properties are used repeatedly in our analysis.

Lemma 4.2 (Properties of convex functions [59, §3.4]). Let f : [a, b] → R be a C2

function. Then the following are equivalent:

1. f is convex on [a, b];

2. f ′(x)(y − x) ≤ f(y) − f(x) for all x, y ∈ [a, b];

3. f ′′(x) ≥ 0 for all x ∈ [a, b].

Theorem 4.3 (Monotone convergence of Newton’s method). Let f : R → R be a C2

function such that f ′(x) > 0 everywhere, and let x∗ be such that f(x∗) = 0. Suppose

there is a semi-infinite interval I = [c,∞) such that x∗ ∈ I and f ′′(x) ≥ 0 for all



4.2. CONVERGENCE ANALYSIS 87

x ∈ I. Then Newton’s method converges to x∗ for an arbitrary initial guess x0. In

addition, if f(x0) ≥ 0, then the Newton iterates converge monotonically, i.e.

x0 ≥ x1 ≥ · · · ≥ xk ≥ · · · ≥ x∗.

Proof. First, assume that f(xk) ≥ 0 for some k ≥ 0. Then f is convex on the interval

[x∗, xk], so we have

f ′(xk)(xk − x) ≤ f(xk) − f(x∗) = f(xk).

Since f ′(xk) > 0, rearranging gives

x∗ ≥ xk −
f(xk)

f ′(xk)
= xk+1,

which, together with the fact that f(xk) ≥ 0, implies x∗ ≤ xk+1 ≤ xk. So f(xk+1) ≥ 0

and f is convex on [x∗, xk+1]. Induction now shows that

xk ≥ xk+1 ≥ · · · ≥ · · · ≥ x∗,

which means {xk}∞k=1 is a decreasing sequence bounded below by x∗; thus, the se-

quence converges to a limit x̃. Since the Newton mapping g : x 7→ x− (f ′(x))−1f(x)

is continuous, we must have

x̃ = lim g(xk) = g(x̃),

so that

x̃ = x̃− (f ′(x̃))−1f(x̃),

which implies f(x̃) = 0. Hence x̃ = x∗, and Newton’s method converges to x∗. The

second statement of the theorem now follows, since it is just the special case k = 0.

Now assume, on the contrary, that there is no k such that f(xk) ≥ 0. In other

words, we have f(xk) < 0 for every k ≥ 0. But this implies:

1. xk < x∗ for all k, since f is monotonically increasing, and
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2. xk+1 > xk for all k, since f(xk) < 0.

This means {xk}∞k=1 is an increasing sequence bounded above by x∗, so it converges to

some limit, which must then be equal to x∗ by the continuity of the Newton mapping.

So in both cases, Newton’s method converges to the root x∗, as required.

To exploit this useful connection between convex functions and Newton conver-

gence, we make the following assumptions on the relative permeability functions.

Assumption 4. We assume that the following properties hold for all saturations

0 ≤ Sw ≤ 1:

1. λT (Sw) = kw(Sw)/µw + ko(Sw)/µo > 0 (Uniform ellipticity),

2. k′w(Sw) ≥ 0, k′o(Sw) ≤ 0 (Phase mobilities increasing with phase saturations),

3. k′′w(Sw) ≥ 0, k′′o (Sw) ≥ 0 (Convex relperms).

Uniform ellipticity is an essential assumption that is required for the well-posedness

of the elliptic subproblem. The requirements on k′rw and k′ro are the same as those

in chapter 2, which, as indicated previously, are physically realistic. Convexity of the

relative permeabilities is the only additional assumption, and most commonly used

relative permeability functions, such as those due to Honarpour et al. [42], satisfy

this requirement.

4.2.2 The cocurrent case: large ∆t

Recall that in the cocurrent case, the upstream direction is the same for both phases,

i.e., λp,i+1/2 = λp(Si) for p = o, w. For analysis purposes, we perform a linear change

of variables by defining πi = (pi−pi+1)/∆x, the pressure gradient at the cell interface

i+ 1/2. Then the mass balance equations become

Fwi = ViSi −Ki−1λw(Si−1)πi−1 +Kiλw(Si)πi − qwi,

Foi = −ViSi −Ki−1λo(Si−1)πi−1 +Kiλo(Si)πi − qoi,
(4.2.2)
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where Vi = φi∆x/∆t and Ki is the (absolute) permeability between blocks i and i+1.

We note that applying Newton’s method to this modified system will yield pressure

profiles that are identical to those obtained from applying Newton’s method to the

original system, since all we did is a linear change of independent variables.

Now consider applying reduced Newton to (4.2.2), i.e., we use the water phase

equations as the constraints required to define the implicit functions

Si = Si(π1, . . . , πi).

Then we can rewrite (4.2.2) as

Fwi(π1, . . . , πi) = ViSi(π1, . . . , πi) +Kiλw(Si(π1, . . . , πi))πi − fwi(π1, . . . , πi−1) ≡ 0,

Foi(π1, . . . , πi) = −ViSi(π1, . . . , πi) +Kiλo(Si(π1, . . . , πi))πi − foi(π1, . . . , πi−1),

(4.2.3)

where fwi and foi are influxes from the upwind cell, which do not depend on the

pressure gradient πi. Thus, our approach for proving convergence is as follows: we

show that for fixed π1, . . . , πi−1, the objective function Foi is strictly increasing and

convex with respect to πi over a semi-infinite interval containing the root π∗
i . Thus,

Newton’s method converges for any starting point within this interval. Then an

induction argument, together with the continuous dependence of Foi on the influx

foi(π1, . . . , πi−1), will guarantee global convergence of Newton’s method for the whole

system.

Remark. Without loss of generality, we can restrict our attention to how reduced

Newton behaves inside the positive orthant {πi > 0, i = 1, . . . , N}. Let π∗
i denote the

solution of the i-th cell problem (so that Foi(π
∗
1, . . . , π

∗
i ) = 0). Since flow is cocurrent

and the total velocity is positive, each π∗
i must be positive. Moreover, because of

uniform ellipticity, we have the lower bound

π∗
i ≥ q

Ki(λT )max

=
qmin{µo, µw}

Ki

, (4.2.4)

where the last equality holds by convexity.
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We are now ready to show that reduced Newton converges when ∆t is large, pro-

vided we make a few additional assumptions that are satisfied by quadratic relative

permeabilities. In the next section, we derive a modified reduced Newton iteration

that is provably convergent for all ∆t without the need of these additional assump-

tions.

Proposition 4.4. Assume kw and ko are both uniformly convex, i.e., there exist

positive constants cw and co such that k′′w ≥ cw and k′′o ≥ co for all S ∈ [0, 1]. Let

k′w(0) = 0. Then there exists Sc > 0 such that λ′w + λ′o ≤ 0 for all 0 ≤ Sw ≤ Sc.

Proof. Since k′o(Sw = 1) ≤ 0 and k′′o (Sw) ≥ co > 0, we must have k′o(Sw = 0) ≤ −co,
so that λ′w + λ′o ≤ −co/µo < 0. Thus, by continuity, there exists a non-trivial

neighborhood around zero, say 0 ≤ Sw ≤ Sc, such that λ′w + λ′o takes on negative

values.

Lemma 4.5 (Monotonicity and convexity with respect to πi). Assume the hypotheses

of Proposition 4.4. Let πj > 0 for all j. Then ∂Foi/∂πi > 0, and there exists γ0 > 0

such that ∂2Foi/∂π
2
i ≥ 0 whenever Vi/Kiπi ≤ γ0.

Proof. The water phase constraint yields

∂Si

∂πi

= − Kiλw

Vi +Kiλ′wπi

,

implying that
∂Foi

∂πi

= Kiλo +
Kiλw(Vi −Kiλ

′
oπi)

Vi +Kiλ′wπi

,

which is positive for πi > 0 if the fluid properties in Assumption 4 hold. Similarly,

the second derivative is given by

∂2Foi

∂π2
i

= − Kiλw

(Vi +Kiλ′wπi)2

{

2ViKi(λ
′
w + λ′o)

− Kiλw

Vi +Kiλ′wπi

[

K2
i π

2
i (λ

′′
oλ

′
w − λ′′wλ

′
o) + ViKiπi(λ

′′
w + λ′′o)

]

}

.

The terms inside the square brackets are non-negative by Assumption 4. Thus, if
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λ′w + λ′o ≤ 0, then ∂2Foi/∂π
2
i ≥ 0 automatically. If λ′w + λ′o > 0, then we need

2ViKi(λ
′
w + λ′o) ≤

Kiλw

Vi +Kiλ′wπi

[

K2
i π

2
i (λ

′′
oλ

′
w − λ′′wλ

′
o) + ViKiπi(λ

′′
w + λ′′o)

]

.

Cross-multiplying and setting γ = Vi/Kiπi gives

Aγ2 +Bγ + C ≤ 0 (4.2.5)

with

A = 2(λ′w + λ′o),

B = 2λ′w(λ′w + λ′o) − λw(λ′′w + λ′′o),

C = −λw(λ′′oλ
′
w − λ′′wλ

′
o).

Since A > 0 and C < 0, we deduce that (4.2.5) is satisfied iff

γ ≤ −B +
√
B2 − 4AC

2A
=

−2C

B +
√
B2 − 4AC

.

Thus, ∂2Foi/∂π
2
i ≥ 0 if γ ≤ γ0, where

γ0 = min
Sc≤S≤1

−2C

B +
√
B2 − 4AC

. (4.2.6)

We exclude the interval [0, Sc) from the minimization because λ′w +λ′o < 0 there. This

implies γ0 > 0, since

−C ≥ λw(Sc)λ
′
w(Sc)λ

′′
o,min ≥ c3wco

2µ2
wµo

> 0

and the denominator is bounded.

Lemma 4.5 implies that if Vi ≤ θγ0qmin{µo, µw} with θ < 1, then Foi is convex

in the interval θqmin{µo, µw} ≤ πi <∞, which contains π∗
i . Hence, by Theorem 4.3,

the sequence of Newton iterates {π(k)
i } converges monotonically to π∗

i provided the

influx is constant. In particular, the first cell converges if ∆t is large enough. Global
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convergence follows by induction and continuity.

4.2.3 The general cocurrent case

The rather weak result on convergence in the previous section is due to our inability

to ascertain convexity of the objective function except under fairly limited circum-

stances. Figure 4.2 plots the objective function Foi(πi) for different time-step sizes.

We see that for large ∆t, the objective function is indeed convex over a semi-infinite

interval containing the root, but this is not always the case for smaller ∆t, espe-

cially for unfavorable mobility ratios. In practice, our numerical results show that

convergence still occurs, but this is due to contraction rather than convexity. In or-

der to ensure global convergence based on a convexity argument, we need to make a

small modification to the reduced Newton algorithm. The following lemma is the key

observation.

Lemma 4.6. Let (π1, . . . , πN) > 0 be given. Suppose we define the implicit functions

S
(1)
i (π1, . . . , πi) and S

(2)
i (π1, . . . , πi) via the constraints

Fwi(π1, . . . , πi) = ViS
(1)
i (π1, . . . , πi) +Kiλw(S

(1)
i (π1, . . . , πi))πi − fwi(π1, . . . , πi−1) ≡ 0,

Foi(π1, . . . , πi) = −ViS
(2)
i (π1, . . . , πi) +Kiλo(S

(2)
i (π1, . . . , πi))πi − foi(π1, . . . , πi−1) ≡ 0,

(4.2.7)

respectively. Now consider the reduced functions

F̄oi(π1, . . . , πi) = −ViS
(1)
i (π1, . . . , πi) +Kiλo(S

(1)
i (π1, . . . , πi))πi − foi(π1, . . . , πi−1),

F̄wi(π1, . . . , πi) = ViS
(2)
i (π1, . . . , πi) +Kiλw(S

(2)
i (π1, . . . , πi))πi − fwi(π1, . . . , πi−1).

(4.2.8)

Then both F̄oi and F̄wi are increasing with respect to πi, and at least one of F̄oi and

F̄wi must be a convex function over a semi-infinite interval containing the root π∗
i .

Proof. We have shown in Lemma 4.5 that

∂S
(1)
i

∂πi

= − Kiλw

Vi +Kiλ′wπi

,
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Figure 4.2: Reduced Newton residual functions for various ∆t. Top: favorable mo-
bility ratio (µo/µw = 0.1). Bottom: unfavorable mobility ratio (µo/µw = 10).
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and that the first and second derivatives of F̄oi are

∂F̄oi

∂πi

= Kiλo +
Kiλw(Vi −Kiλ

′
oπi)

Vi +Kiλ′wπi

and

∂2F̄oi

∂π2
i

= − Kiλw

(Vi +Kiλ′wπi)2

{

2ViKi(λ
′
w + λ′o)

− Kiλw

Vi +Kiλ′wπi

[

K2
i π

2
i (λ

′′
oλ

′
w − λ′′wλ

′
o) + ViKiπi(λ

′′
w + λ′′o)

]

}

,

where the λp and their derivatives are evaluated at S
(1)
i (π1, . . . , πi). A similar calcu-

lation shows that

∂S
(2)
i

∂πi

=
Kiλo

Vi −Kiλ′oπi

,

∂F̄wi

∂πi

= Kiλw +
Kiλo(Vi +Kiλ

′
wπi)

Vi −Kiλ′oπi

and

∂2F̄wi

∂π2
i

=
Kiλo

(Vi −Kiλ′oπi)2

{

2ViKi(λ
′
w + λ′o)

+
Kiλo

Vi −Kiλ′oπi

[

K2
i π

2
i (λ

′′
oλ

′
w − λ′′wλ

′
o) + ViKiπi(λ

′′
w + λ′′o)

]

}

,

where the λp and their derivatives are now evaluated at S
(2)
i (π1, . . . , πi). By definition,

at the solution π∗
i we must have S

(1)
i (π1, . . . , π

∗
i ) = S

(2)
i (π1, . . . , π

∗
i ) =: S∗

i . Moreover,

we must have S
(1)
i ≤ S∗

i ≤ S
(2)
i over the interval [π∗

i ,∞) because ∂S
(1)
i /∂πi ≤ 0 and

∂S
(2)
i /∂πi ≥ 0. We now consider two cases:

1. λ′w(S∗
i )+λ′o(S

∗
i ) ≥ 0. Then since S

(2)
i ≥ S∗

i for πi ≥ π∗
i , the convexity of λw and

λo implies λ′w(S
(2)
i ) + λ′o(S

(2)
i ) ≥ 0. Hence ∂F̄wi/∂πi ≥ 0 for all πi ≥ π∗

i .

2. λ′w(S∗
i )+λ′o(S

∗
i ) ≤ 0. Then since S

(1)
i ≤ S∗

i for πi ≥ π∗
i , the convexity of λw and

λo implies λ′w(S
(1)
i ) + λ′o(S

(1)
i ) ≤ 0. Hence ∂F̄oi/∂πi ≥ 0 for all πi ≥ π∗

i .
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Thus, at least one of the two reduced functions is convex over a semi-infinite interval

containing π∗
i , as required.

The above lemma tells us that if we knew ahead of time the slope of the total

mobility curve at the solution, we could always pick the correct reduced function (or

equivalently, the correct constraint) for each cell in order to achieve global conver-

gence. Unfortunately, this information is usually not available. However, if we switch

constraints when non-convexity is detected, then we can be certain that the new

reduced function must be convex, so convergence is now guaranteed. The modified

algorithm is shown in Figure 4.3. The convexity test in line 9 is motivated by Theorem

4.3. Assume all cells upstream of i have converged. If the current residual function

is convex and Fgi(π
k
i ) > 0, then we should have Fgi(π

k+1
i ) > 0 as well. Thus, if the

latter condition is violated, non-convexity is detected, so we should switch constraints

and work with the other residual function, which must be convex. In practice, we

may not want to swap constraints every time the residual becomes negative for the

following reasons:

• The upstream cells may not have converged;

• When the nonlinear iterate is close to the solution (but has not yet converged),

the residual can have the wrong sign even when convex objective functions are

used. This is because the linear and nonlinear equations that define the Newton

steps are themselves solved inexactly by inner iterations;

• Frequent constraint switches can lead to a deterioration in global convergence.

As a result, we should switch constraints only when the overshoot is severe enough

that we are certain no progress has been made. The parameter 0 < θ < 1 in line 9

achieves this purpose: if the new residual changes sign but has a significantly smaller

magnitude, we accept the current constraint and continue; on the other hand, large

overshoots cause the constraint to switch. It is fairly easy to convince oneself that

the modified algorithm converges for all initial guesses inside the positive orthant

{πi > 0, i = 1, . . . , N}.



96 CHAPTER 4. REDUCED NEWTON METHOD

1 Initialize constraint set s := {Fw1, . . . , FwN} and its complement g := s′

2 while
∣

∣Fg(S
k), pk)

∣

∣ > tol , do

3 Form the full Jacobian J =

[

Jss Jsp

Jgs Jgp

]

, evaluated at (Sk, pk) ;

4 Solve (Jgp − JgsJ
−1
ss Jsp)δp

k = −rk ;
5 Compute pk+1 = pk + δpk ;
6 Update Sk+1 nonlinearly by solving Fs(S

k+1, pk+1) = 0,
7 one variable at a time in potential ordering ;
8 for i = 1, . . . , n , do
9 i f Fgi(S

k+1, pk+1) < −θFgi(S
k, pk) , then

10 s := s ∪ {Fgi}\{Fsi} (Swap constraints)
11 g := g ∪ {Fsi}\{Fgi}
12 end i f
13 end
14 k := k + 1
15 end

Figure 4.3: Modified reduced Newton algorithm.

4.2.4 The countercurrent flow case

When gravity effects are included, countercurrent flow may be present in some parts

of the domain. In a cell experiencing countercurrent flow, the mass balance equations

take the form

Fwi = ViSi −Ki−1λw(Si−1)πi−1 +Kiλw(Si)πi − qwi,

Foi = −ViSi −Ki−1λo(Si)(πi−1 − ∆ρg∆z) +Kiλo(Si+1)(πi − ∆ρg∆z) − qoi.
(4.2.9)

Here πi = (Φw,i − Φw,i+1)/∆x denotes the gradient for the water potential. The

presence of countercurrent flow introduces several complications in our attempt to

analyze the convergence behavior of the reduced Newton algorithm:

1. Convergence can no longer be analyzed by considering a sequence of indepen-

dent single-cell problems. Since the objective functions Foi now contain down-

stream dependencies, all the cells within the countercurrent flow region are fully

coupled.
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2. The flow direction of the oil phase, which depends on π∗
i −∆ρg∆z, is generally

not known until the problem has converged.

3. The objective function becomes non-differentiable when the upstream direction

changes.

Our experiments show that when significant countercurrent flow is present, it is pos-

sible that reduced Newton no longer converges to the solution for every initial guess,

especially when a large time step is taken. It is then natural to try to identify condi-

tions for which the reduced Newton procedure converges.

A domain of dependence argument

To derive a criterion that would ensure convergence, we turn to a heuristic argument

based on the domain of dependence. In the theory of numerical methods for hyper-

bolic PDEs, the Courant-Friedrichs-Lewy (CFL) condition states that if a numerical

method is stable, then its numerical domain of dependence must be at least as large

as the domain of dependence of the underlying PDE (cf. [49]). In this context, the

superior convergence behavior of reduced Newton for cocurrent flow can be explained

as follows: the implicit function Si, defined by the water phase constraint

Fwi = Vi(Si − S0
i ) −Ki−1λw(Si−1)πi−1 +Kiλw(Si)πi − qwi ≡ 0,

is actually a function of the arguments

Si = Si(π1, . . . , πi;S
0
1 , . . . , S

0
i ),

where {S0
i } denotes the initial saturation profile, i.e., the saturation profile at the be-

ginning of the time step. Thus, the objective function Foi actually depends implicitly

on the old saturation values S0
1 , . . . , S

0
i as well as the pressure gradients π1, . . . , πi.

Since the characteristics of the PDE only travel from left to right in the cocurrent

case, the “domain of dependence” of reduced Newton contains the domain of depen-

dence of the PDE for any ∆t. As a result, one can expect a fairly stable method for

a wide range of initial guesses. On the other hand, in the countercurrent flow case,
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the objective function Foi takes the form

Foi = −ViSi −Ki−1λo(Si)(πi−1 − ∆ρg∆z) +Kiλo(Si+1)(πi − ∆ρg∆z) − qoi

= Foi(Si(· · · ), Si+1(· · · ), πi−1, πi)

= Foi(π1, . . . , πi+1;S
0
1 , . . . , S

0
i+1).

Thus, if ∆t is so large that the waves traveling to the left (i.e., countercurrent to

the main flow direction) can cross more than one cell boundary, then the domain of

dependence of reduced Newton will fail to cover the physical domain of dependence.

In such cases, one cannot generally expect global convergence of the reduced Newton

iterations. Since the fastest backward-moving wave travels at the speed of vmin =

minS∈[0,1] qTf
′
w, where

fw =
λw

λT

[

1 +
Kiλo

qT
∆ρg∆z

]

, (4.2.10)

we can expect reduced Newton to converge whenever

−∆tqTf
′
w,min ≤ φi∆x. (4.2.11)

Thus, if f ′
w ≥ 0 everywhere (i.e., we have cocurrent flow), we expect reduced Newton

to converge for any ∆t. If countercurrent flow is present, then there is a range of S

over which f ′
w < 0, in which case we would have the time-step restriction

∆t ≤ φi∆x

qT
∣

∣f ′
w,min

∣

∣

, (4.2.12)

which is effectively a CFL limit for backward-traveling waves.

A monotonicity argument

We have shown in Lemma 4.5 that in the cocurrent case, the objective function is

monotonically increasing (∂Foi/∂πi > 0). Monotonicity is an important property

if global convergence to a unique solution is to be expected: non-monotonic func-

tions necessarily have local minima or maxima, which cause breakdown in Newton’s

method. Thus, a reasonable criterion for ensuring convergence is one that guarantees
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monotonicity of the objective function. We can mimic the proof of Lemma 4.5 and

compute the partial derivative ∂F̂oi/∂πi, where

F̂oi = −ViSi +Kiλo(Si)(πi − ∆ρg∆z) − foi(π1, . . . , πi−1).

In other words, we perform the analysis as though the upstream direction is to the left.

Even though this upstream direction may be incorrect, the analysis is still valuable

for the following reason: since the correct upstream direction is generally unknown

before the solution has converged, a robust algorithm should still be able to make

some progress even when the upstream direction is wrong. The algorithm should

produce an answer that would cause a switch in the upstream direction in the next

iteration, but it should not overshoot by so much as to cause the overall algorithm

to fail. These desirable properties are only possible when F̂oi is monotonic, so our

analysis can still provide a useful criterion for convergence.

We have

∂F̂oi

∂πi

= −Vi
∂Si

∂πi

+Kiλo +Kiλ
′
o(πi − ∆ρg∆z)

∂Si

∂πi

,

=
Ki

Vi +Kiλ′wπi

[

λTVi +Kiλoλ
′
wπi −Kiλwλ

′
o(πi − ∆ρg∆z)

]

.

Using the relations

πi =
1

λT

[

qT/Ki + λo∆ρg∆z
]

πi − ∆ρg∆z =
1

λT

[

qT/Ki − λw∆ρg∆z
]

,

we can rewrite ∂F̂oi/∂πi as

∂F̂oi

∂πi

=
KiλT

Vi +Kiλ′wπi

[

Vi + qTf
′
w

]

,

where fw(S) is defined in (4.2.10). Thus, the objective function F̂oi is monotonically
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increasing whenever

Vi =
φi∆x

∆t
≥ −qTf ′

w,

which is exactly the same as (4.2.11). As it is shown in Example 4.3.1, criterion

(4.2.11) is usually enough for reduced Newton to converge. For problems of practical

interest, the backward CFL number is usually much smaller than the forward CFL

number, so reduced Newton can generally converge with much larger time steps than

standard Newton even in the countercurrent flow setting. In the next section, we

show a variety of examples that demonstrate the effectiveness of the reduced Newton

algorithm.

4.3 Numerical examples

To test the efficiency of the potential-based reduced Newton algorithm, we imple-

ment it inside the General Purpose Research Simulator (GPRS) developed by Cao

[16]. GPRS is used by Stanford University’s SUPRI-B and SUPRI-HW research

groups, as well as other research groups and companies for their in-house research.

By implementing our algorithm in GPRS we can guarantee that all the property

calculations and convergence checks are identical for both the standard and reduced

Newton methods. We can also ensure our reference point is indeed the basic Newton

method, rather than a version adorned with various heuristics. Consequently, all our

comparisons between the standard and reduced Newton methods are generated by

GPRS.

4.3.1 1D example with gravity

To demonstrate that the potential-based reduced Newton algorithm does indeed work

in the presence of countercurrent flow, we first test it on a simple pseudo-1D example.

The reservoir is discretized using 10 × 1 × 100 cells in the x, y and z directions

respectively, with Dx = 10 ft, Dy = 50 ft and Dz = 4 ft. A uniform porosity (φ = 0.3)

and permeability (kx = ky = kz = 758 md) are used. Water is injected across the top

layer at a rate of 213.6 bbl/day (0.002 pore volumes per day) and a production well is
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completed across the bottom layer and operates at a BHP (bottom hole pressure) of

500 psi. The densities of water and oil at standard conditions are 64 lb/cu.ft. and 49

lb/cu.ft., respectively, and the viscosities are µo = 1.0 cp, µw = 0.3 cp. The fractional

flow curve for this problem is shown in Figure 4.4. We see that flow is cocurrent for

0 ≤ Sw ≤ 0.38 and countercurrent for 0.38 ≤ Sw ≤ 1. The forward CFL number,

maxS∈[0,1] f
′
w, is 3.73, whereas the backward CFL number, −minS∈[0,1] f

′
w, is 0.638.

We test our algorithm for uniform initial water saturations of Swi = 0.0, 0.1, . . . , 0.9.

In each case, the simulation steps through T = 1, 3, 7, 15, 30, 45, 60 days (1 day =

0.002 pore volumes), and afterwards the time-step size is fixed at ∆T = 20 days

until T = 300 days is reached, for a total of 21 steps. Table 4.1 shows the results

for the standard and reduced Newton algorithms. We see that reduced Newton does

not need to cut any time steps to achieve convergence, whereas standard Newton

must cut the time step multiple times in four cases (Sw = 0.0, 0.6, 0.7, 0.8). Time-

step cuts are very expensive, since it means that we must throw away the results of

all previous iterations and start over. Moreover, the size of the next step following

a time-step cut is usually set to the last successfully integrated ∆t, i.e., the one

reduced by the time-step cut. This can lead to a significantly smaller average time

step size for a given simulation. Thus, a more stable algorithm that avoids time-step

cuts can significantly outperform one that cuts time steps frequently, especially if

their convergence rates are otherwise comparable. Table 4.1 shows that when neither

algorithm requires time-step cuts, standard Newton converges more quickly some of

the time (Sw = 0.4, 0.5, 0.9), whereas reduced Newton is quicker at other times (Sw =

0.1, 0.2, 0.3, 0.6). Nevertheless, the difference in average iteration count is less than

0.67 iterations per time step in all cases, so the convergence rates for both algorithms

are comparable when no time-step cuts are needed. As we observe in later examples,

the enhanced stability of reduced Newton does translate into gains in the overall run

time for larger problems. The primary goal of this example is to demonstrate the

robustness of reduced Newton, even in the presence of strong countercurrent flow.

This property is essential if the algorithm is to be used in heterogeneous reservoirs

with complicated permeability/porosity fields, especially since countercurrent flow

due to gravity can be important in regions where the total velocity is small.
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Figure 4.4: Fractional flow fw for the 1D gravity example.

Table 4.1: Convergence history for 1D water floods with different initial water
saturations. For both methods, Time steps = total number of time steps taken
to simulate up to 300 days; Newtons = number of Newton iterations (excluding
iterations wasted due to time-step cuts); Cuts = number of times the algorithm must
cut the time-step size by half due to non-convergence.

Standard Reduced
Swi Time steps Newtons Cuts Time steps Newtons Cuts
0.0 26 140 5 21 61 0
0.1 21 59 0 21 58 0
0.2 21 59 0 21 58 0
0.3 21 50 0 21 49 0
0.4 21 51 0 21 58 0
0.5 21 67 0 21 81 0
0.6 22 88 2 21 85 0
0.7 24 96 6 21 90 0
0.8 23 85 3 21 84 0
0.9 21 51 0 21 65 0
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4.3.2 Heterogeneous example with gravity

To demonstrate the effectiveness of reduced Newton on a large, complex heteroge-

neous reservoir, we test it on a water flood problem using a 2× 2× 2 upscaling of the

SPE 10 model [19]. This gives rise to a model with 141900 grid blocks (110×30×43).

The reservoir model is shown in Figure 4.5. The top 18 layers of the reservoir repre-

sent a Tarbert formulation with highly variable permeabilities ranging from 4.8×10−3

to 1.2 × 103 md. The bottom 25 layers consist of an Upper Ness sequence, which is

highly channelized. The porosity is 0.3 throughout the reservoir. Water is injected

at the center of the reservoir at 5000 bbl/day (= 0.0002 pore volumes per day); four

production wells are located in the four corners of the reservoir, operating at a bottom

hole pressure of 4000 psi. Quadratic relative permeabilities are used with a residual

saturation of 0.2 for both phases, and the viscosity ratio is 10. The rest of the parame-

ters are the same as those in the original specification [19]. The simulation is carried

out up to T = 500 days, which corresponds to 0.1 pore volumes injected (PV I). For

any time step, if the global nonlinear solver does not converge within 20 iterations, the

iterations are stopped, and the current time step is cut in half before restarting. Table

4.2 shows the convergence history of the standard and reduced Newton methods for

an initial time step of 0.1 days. Here the time stepping is gentle enough that standard

Newton does not need to cut time steps in order to achieve convergence. We see that

reduced Newton takes fewer iterations than standard Newton to converge, and that

the running time decreases from 728.6 seconds to 560.6 seconds. Thus, the savings

from reducing the number of Newton iterations are more than enough to offset the

cost of univariate solves.

Next we specify an initial time step of 1 day and track the number of Newton

iterations required to converge. Figure 4.6 shows the results. We see that reduced

Newton converges for the first time step in 9 iterations, whereas standard Newton

does not converge and needs to cut the time step twice to converge with an initial

time step of 0.25 days. Beyond the first time step, reduced Newton always takes fewer

iterations to converge than its standard counterpart, and the iteration count does not

exhibit the large variations that standard Newton does at the beginning.
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Table 4.2: Convergence history for the upscaled SPE 10 model with an initial time
step of 0.1 days. N = Number of Nonlinear (Newton) iterations; L = Number
of Linear (CPR) solves; CFL = Maximum CFL number in the reservoir; %CC =
Percentage of cell interfaces that experience countercurrent flow.

Standard Reduced
days N L N L CFL %CC
0.1 4 18 4 17 1.8 6.2
0.3 3 17 3 17 1.9 2.4
0.7 3 18 2 12 2.1 1.1
1.5 3 19 2 14 2.5 0.7
3.1 4 26 2 15 4.0 0.5
6.3 5 32 2 16 6.7 0.5
10 4 26 2 15 11.1 0.5
20 6 45 3 27 23.9 0.5
35 4 32 3 27 35.2 0.5
50 3 27 2 19 33.2 0.5
70 4 35 3 27 35.1 0.6
90 4 33 3 28 35.6 0.6
110 4 37 3 30 52.9 0.6
140 4 41 3 34 112.1 0.6
170 4 39 2 21 102.8 0.7
200 4 35 2 21 145.3 0.7
230 3 33 2 22 129.1 0.7
260 3 33 2 22 132.0 0.8
290 3 30 2 21 132.3 0.8
320 3 31 2 21 119.6 0.8
350 3 30 2 19 109.5 0.8
380 3 30 2 20 116.7 0.9
410 3 31 2 20 112.0 0.9
440 3 30 2 19 114.9 0.9
470 3 28 2 19 108.1 1.0
500 3 29 2 19 146.3 1.0

Total 93 785 61 542
Running time (s) 728.6 560.6
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Figure 4.5: Permeability field and well configuration for the upscaled SPE 10
problem[19]. The reservoir is displayed upside down so that the channels in the
bottom layers are clearly visible.
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4.3.3 Large heterogeneous example

Since the cost of the single cell solves scales linearly with the problem size, we ex-

pect that the savings from the potential-based reduced Newton method will become

even more evident in large heterogeneous examples, where the computational cost

is dominated by the solution of linear systems. We demonstrate this by simulating

the full SPE 10 problem (60 × 220 × 85 = 1.12 million grid blocks) and with the

variable porosity field as specified in [19]. The published relative permeabilities and

fluid properties are used, except that the formation volume factor Bo and the density

ρo are taken to be the same as the published Bw and ρw. The injection rate is 5000

bbl/day (0.000366 pore volumes per day). The simulation runs until T = 2000 days

(PV I = 0.732). Three time-stepping strategies are used:

• Short time steps: T = 0.01, 0.03, 0.07, 0.15, 0.31, 0.63, 1, 3, 7, 15, 31, 63, 90,

120, 150, 180, 220, 260, 300 days. After 300 days, ∆T = 50 days (0.0183 pore

volumes) until T = 2000 days is reached.

• Long time steps: T = 0.01, 0.31, 1, 7, 31, 90, 150, 220, 300 days. After 300

days, ∆T = 100 days (0.0366 pore volumes) until T = 2000 days is reached.

• Huge time steps: T = 0.01, 0.31, 1, 7, 31, 90, 200 days. After 200 days,

∆T = 500 days (0.183 pore volumes) until T = 2000 days is reached.

As before, the time step is cut in half if the global nonlinear solver does not con-

verge within 20 iterations. Table 4.3 summarizes the runs for both the standard and

reduced Newton algorithms, and Figure 4.7 compares the convergence histories of

standard and reduced Newton for the long time step case. We observe that reduced

Newton can easily handle the “long” and “huge” time step cases. Standard Newton,

on the other hand, needs to cut time steps multiple times in order to achieve conver-

gence, and this results in a significant number of wasted linear solves and a serious

degradation in performance. In fact, we were unable to run standard Newton for the

huge time step case because of the large number of time step cuts. Consistent with

the collective experience in the simulation community, taking too large a time step

in standard Newton actually makes the simulation slower. The opposite is true for
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Table 4.3: Summary of runs for the full SPE 10 problem. “Wasted Newton steps”
and “wasted linear solves” indicate the number of Newton iterations and linear solves
that are wasted because of time step cuts.

Standard Reduced
Short ∆t Long ∆t Short ∆t Long ∆t Huge ∆t

No. of time steps 58 38 53 26 11
No. of time step cuts 6 17 0 0 0
No. of Newton steps 353 516 128 90 55
− Wasted Newton steps 120 340 0 0 0

No. of linear solves 3818 6257 2271 2399 1805
− Wasted linear solves 860 3934 0 0 0

Total running time (sec) 24053 37388 16558 14727 10275
− Linear solves (sec) 22570 35457 11697 11301 7899
− Single-cell solves (sec) 0 0 4194 2996 2132

reduced Newton. Indeed, reduced Newton with long or huge time steps runs in less

than 60% of the time required by standard Newton with either time-stepping strategy.

Finally, Figure 4.8 shows the oil production rate and water cut for all four simulation

runs. The discrepancy between the solutions is insignificant, with the exception of

the huge time step case, in which the time truncation error becomes so large that the

water cut and production curves noticeably deviate from the cases. In practice, one

would probably not want to take such a large time step, but it is reassuring to know

that reduced Newton can still converge under such extreme circumstances. In general,

by using reduced Newton with (reasonably) larger time steps, we obtain substantial

speedups with little or no change in solution accuracy.

4.3.4 1D three-phase example with gravity

To show that the reduced formulation is applicable to three-phase flow, the algorithm

is tested on a three-phase model in which gas is injected into a reservoir initially

saturated with a mixture of 50% oil and 50% water in every cell. This saturation

is chosen to ensure that all phases are mobile, and that we have a truly three-phase
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problem. The reservoir is identical to the one used in Example 4.3.1. The PVT data

and relative permeabilities are shown in Tables 4.4 and 4.5, respectively. For simplic-

ity, the gas component is assumed not to dissolve into the oil phase (i.e., Rgo = 0).

The oil relative permeability is interpolated from the oil-gas and oil-water tables using

the Stone I method. Gas is injected into the top layer at a rate of 100 MSCF/day

(0.000768 pore volumes/day at 4000 psi), and a producer in the bottom layer is main-

tained at a constant pressure of 4000 psi. The production curve is shown in Figure

4.9. Even though gas is highly mobile (µw/µg = 11.6, µo/µg = 111.9), breakthrough

occurs relatively late (at T = 521 days or 0.4 pore volumes) because gas preferentially

stays in the upper layers because of buoyancy. In addition, since the simulation does

not start from gravity equilibrium, gravity segregation between oil and water must

occur at the initial stages of the simulation. Up to 98% of cell interfaces experi-

ence countercurrent flow at some point before gas breaks through. This accounts for

the rather complicated behavior of the water and oil production curves prior to gas

breakthrough. Even though this is a rather small example, we believe it captures the

essence of the types of nonlinearity present in countercurrent three-phase flow, and

provides a good test case for comparing the convergence behavior of the standard and

reduced Newton algorithms. In this example, two time-stepping strategies are used:

• Short time steps: T = 0.1, 1, 5, 10 days. After 10 days, ∆t = 10 days (0.00768

pore volumes) until T = 1000 days.

• Long time steps: After an initial time step of 0.1 days, ∆t is automatically

chosen based on saturation and pressure changes, with a minimum of ∆t = 10

days and gradually increasing until ∆t = 100 days (0.0768 pore volumes).

Table 4.6 summarizes the runs for the standard and potential-based reduced New-

ton algorithms. Running times have little meaning because of the small size of the

problem, and are thus omitted. We once again observe that reduced Newton has no

difficulty handling both short and long time steps, whereas standard Newton needs

to cut the time-step size repeatedly throughout the simulation. Thus, the presence of

three phases does not negatively impact the convergence behavior of reduced Newton.
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Table 4.4: PVT relations for all three-phase examples.

P Bo µo Bw µw Bg µg

(psi) (RB/STB) (cp) (RB/STB) (cp) (RB/SCF) (cp)
14.7 1.062 2.200 1.0410 0.31 0.166666 0.0080
264.7 1.061 2.850 1.0430 0.31 0.012093 0.0096
514.7 1.060 2.970 1.0395 0.31 0.006274 0.0112
1014.7 1.059 2.990 1.0380 0.31 0.003197 0.0140
2014.7 1.056 2.992 1.0350 0.31 0.001614 0.0189
2514.7 1.054 2.994 1.0335 0.31 0.001294 0.0208
3014.7 1.053 2.996 1.0320 0.31 0.001080 0.0228
4014.7 1.050 2.998 1.0290 0.31 0.000811 0.0268
5014.7 1.047 3.000 1.0258 0.31 0.000649 0.0309
9014.7 1.033 3.008 1.0130 0.31 0.000386 0.0470

Table 4.5: Relative permeabilities for all three-phase examples.

Sw krw krow Sg krg krog

0.12 0 1.00 0 0 1.00
0.121 1.67E-12 1.00 0.001 0.0002 1.00
0.14 2.67E-07 0.997 0.02 0.0033 0.997
0.17 1.04E-05 0.98 0.05 0.0106 0.98
0.24 3.46E-04 0.7 0.12 0.0364 0.70
0.32 2.67E-03 0.35 0.20 0.0919 0.35
0.37 6.51E-03 0.2 0.25 0.1459 0.20
0.42 0.014 0.09 0.30 0.2226 0.09
0.52 0.043 0.021 0.40 0.4588 0.021
0.57 0.068 0.01 0.45 0.6336 0.01
0.62 0.104 0.001 0.50 0.7449 0.001
0.72 0.216 0.0001 0.60 0.8887 0.0001
0.82 0.400 0 0.70 0.9563 0
1.00 1.000 0 0.88 1.0000 0
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Figure 4.9: Production curve for the 1D three-phase example. The units are STB/day
for oil and water, and MSCF/day for gas.

Table 4.6: Summary of runs for the 1D three-phase example with gravity. “Wasted
Newton steps” and “wasted linear solves” indicate the number of Newton iterations
and linear solves that are wasted because of time step cuts.

Standard Reduced
Short ∆t Long ∆t Short ∆t Long ∆t

No. of time steps 111 74 103 26
No. of time step cuts 16 36 0 0
No. of Newton steps 888 1223 480 229
− Wasted Newton steps 320 720 0 0

No. of linear solves 1763 2421 973 480
− Wasted linear solves 641 1418 0 0
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4.3.5 2D Heterogeneous three-phase example

We now test the reduced Newton algorithm on a three-phase example with hetero-

geneity. The reservoir consists of the 51st layer of the SPE 10 problem, which is a

slice in the Upper Ness formation (see Example 4.3.3). Initially the reservoir contains

a mixture of 50% oil and 50% water, and gas is injected through a well in the center at

a rate of 1000 MSCF/day (0.00005 pore volumes per day). The four production wells

(one in each corner) are each maintained at a bottom hole pressure of 4000 psi. The

PVT and relative permeability data are the same as in Example 4.3.4 and are given

in Tables 4.4 and 4.5. The simulation is run up to T = 500 days (0.025 PVI), which

is much larger than the breakthrough time (TBT ≈ 40 days or 0.002 PVI). Note that

the early breakthrough time is due to the extremely high mobility of the gas. Figure

4.10 shows the gas saturation of the reservoir at T = 500 days. Two time-stepping

strategies are used:

• Short time steps: T = 1, 3, 7, 15, 31, 63, 100 days. After 100 days, ∆t = 50 days

(0.00125 pore volumes) until T = 500 days is reached.

• Long time steps: T = 10, 30, 60, 100 days. After 100 days, ∆t = 100 days

(0.0025 pore volumes) until T = 500 days is reached.

Table 4.7 shows the performance of the standard and reduced Newton algorithms.

Once again no time step cuts are required by reduced Newton, demonstrating its

stability compared with the standard Newton’s method. This translates to an im-

provement in running time for the long time step case. This example shows that

the improvement obtained from reduced Newton in three-phase flow is not limited to

simple 1D cases.

4.3.6 3D three-phase example

Here, the algorithm is tested on a 3D three-phase model in which gas is injected into

a reservoir containing a mixture of 50% oil and 50% water. The reservoir (20×20×3

cells) is a 2×2 areal refinement of the one used in the SPE1 test set [57] and is shown

in Figure 4.11. The PVT data and relative permeabilities are the same as the two
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Figure 4.10: Gas saturation at T = 500 days in the 2D heterogeneous three-phase
example. Dark blue indicates 100% gas, whereas dark red indicates a cell consisting
purely of liquid phases.

Table 4.7: Summary of runs for the 2D heterogeneous three-phase example. “Wasted
Newton steps” and “wasted linear solves” indicate the number of Newton iterations
and linear solves that are wasted because of time step cuts.

Standard Reduced
Short ∆t Long ∆t Short ∆t Long ∆t

No. of time steps 16 10 15 8
No. of time step cuts 1 3 0 0
No. of Newton steps 74 101 58 40
− Wasted Newton steps 20 60 0 0

No. of linear solves 1264 1529 1172 881
− Wasted linear solves 276 698 0 0

Total running time (sec) 63.5 75.6 73.8 53.9
− Linear solves (sec) 53.7 66.1 50.5 37.9
− Single-cell solves (sec) 0 0 18.6 13.0
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previous examples (Table 4.4 and 4.5), and the Stone I model is used to interpolate

the oil-gas and oil-water data. The gas-injection well is completed in cell (1,1,1)

and operates at 100000 MSCF/day (0.000073 pore volumes per day at 9000 psi); a

production well, completed in cell (20,20,3), operates at a bottom-hole pressure of

1000 psi. The simulation is run up to T = 5000 days (0.365 PVI). Because of the

high gas mobility, breakthrough occurs very early (TBT ≈ 100 days or 0.0073 PVI).

Since the oil and water are not in gravity equilibrium at the start of the simulation,

there is significant countercurrent flow in the problem. Two time-stepping strategies

are used:

• Short time steps: T = 30, 100, 200, 250, 400, 600, 900 days. After 900 days, ∆t

= 400 days (0.0292 pore volumes) until T = 5000 days.

• Long time steps: T = 100, 250, 600 days. After 600 days, ∆t = 800 days (0.0584

pore volumes) until T = 5000 days.

Table 4.8 shows the performance of the standard and reduced Newton algorithms.

Again we see that the reduced Newton method requires no time step cuts and fewer

iterations to converge compared to the standard Newton method.
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Figure 4.11: Reservoir description for the 3D three-phase example.

Table 4.8: Summary of runs for 3D three-phase example. “Wasted Newton steps”
and “wasted linear solves” indicate the number of Newton iterations and linear solves
that are wasted because of time step cuts.

Standard Reduced
Short ∆t Long ∆t Short ∆t Long ∆t

No. of time steps 18 11 17 9
No. of time step cuts 1 3 0 0
No. of Newton steps 95 117 74 57
− Wasted Newton steps 20 60 0 0

No. of linear solves 1083 1624 974 838
− Wasted linear solves 178 855 0 0

Total running time (sec) 4.9 6.5 6.1 4.9
− Linear solves (sec) 3.7 5.5 3.4 2.9
− Single-cell solves (sec) 0 0 2.1 1.6



Chapter 5

Linear Preconditioning

When an immiscible np-phase flow problem is discretized on a grid containing N cells,

Newton’s method requires the solution of a sparse npN × npN linear system Jx = r

at every iteration. The matrix J , which comes from the linearized residual functions

Viφi

∆t
(Sn+1

p,i − Sn
p,i) +

∑

l∈adj(i)

|∂Vil|Fp,il(S, p) = qp,i, (5.0.1)

inherits the mixed hyperbolic-parabolic character of the underlying PDEs, which

means methods developed for a specific type of discretized PDE (e.g., elliptic PDEs)

will not work well for J . For this reason, efficient solution of the linear systems

remains a challenging problem in reservoir simulation. Direct solvers become pro-

hibitively expensive as the grid is refined; this is especially true for 3D problems,

where LU factorization requires O(N2) floating-point operations and O(N4/3) stor-

age, even when an optimal ordering strategy such as nested dissection is used [38].

On the other hand, when iterative methods are used, standard preconditioners such

as incomplete LU factorizations and multigrid perform poorly because the problem

is neither purely hyperbolic nor purely elliptic.

It is well known that the ordering of equations and unknowns can have a huge

impact on the quality of various preconditioners [25, 30, 10]. In most of these works

the orderings considered tend to belong to the following categories:

118
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1. Coloring-based orderings, in which the nodes in the adjacency graph are parti-

tioned into a finite number of colors, and nodes with the same color are ordered

within the same block. The red-black ordering is a classical example of such

orderings, which are often motivated by parallelization considerations or in the

context of cyclic reduction.

2. Fill-minimizing orderings, which are developed in the context of sparse direct

solvers in order to minimize the number of fill-in entries in the LU factoriza-

tion. Examples include the reverse Cuthill-McKee method and minimum degree

ordering [38].

The above ordering strategies, while having the advantage of being applicable to

general sparse matrices, do not exploit the underlying physics of the problem. For

advection dominated problems, a natural idea is to order the cells according to flow

direction (e.g., from upstream to downstream). Ordering of this type has been consid-

ered in the CFD community (cf. [54]), but its use is limited in reservoir simulation.

The aim of this chapter is to exploit the cell-based and phase-based orderings in-

troduced in Chapter 3 for preconditioning purposes. In particular, we proceed as

follows:

1. Propose an improvement to the standard CPR-BILU(0) preconditioner that

exploits cell-based ordering;

2. Use phase-based ordering to derive preconditioned Krylov solvers based on

Schur complement preconditioning.

5.1 Structure of the Jacobian matrix

In this chapter, we mainly consider Jacobians that arise from a fully implicit, five-

point finite-volume discretization of the incompressible black-oil equations, with up-

stream weighting for saturation-dependent terms. When phase-based ordering is used,
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the Jacobian will be denoted by J , which has the form (cf. (3.2.3),(3.2.5))

Sw p

J =

[

Jss Jsp

Jps Jpp

]

water equation

oil equation

(5.1.1)

In addition, we will often use cell-based ordering, in which all the equations and

variables belonging to the same control volume are grouped into a single block. In

this case, the Jacobian is denoted by A, where

A =









A11 · · · A1N

...
. . .

...

AN1 · · · ANN









(5.1.2)

is a block matrix with np × np blocks. Each block row represents the derivatives of

the conservation equations (oil and water) with respect to the discrete unknowns (Si

and pi) at the gridblock and its adjacent cells. For example,

Aii =

[

(Jss)ii (Jsp)ii

(Jps)ii (Jpp)ii

]

.

Clearly, A = PJP T for some permutation matrix P . For simplicity, we assume two-

phase flow throughout this chapter, while noting that many results can be extended

to three-phase flow. We make the following additional assumptions.

Assumptions 5.

1. The phase mobilities are non-negative and satisfy λ′w = ∂λw/∂Sw > 0 and

λ′o = ∂λo/∂Sw < 0;

2. The total mobility λt = λo + λw across each cell boundary is strictly positive;

3. Phase-based upstreaming is performed based on the upstream directions given

at the linearization point (P `, S`);
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4. A pressure Dirichlet boundary condition is prescribed on a segment of the

boundary with positive measure. (Alternatively, one can assume there exists at

least one production well operating at a fixed bottom-hole pressure.)

Assumption 5.1 has already been stated in Theorem 2.1. Assumption 5.2 is similar

to the uniform ellipticity condition in Section 4.2. When the flow is cocurrent, it is

purely an assumption on the fluid mobilities. In the countercurrent flow case, however,

it is also an assumption on the linearization point (S`, P `), since it is possible that

λw and λo are evaluated at two different saturations because of upstreaming. Thus,

if there are adjacent cells i and i+1 such that S`
i = 0 and S`

i+1 = 1, then Assumption

5.2 would disallow the possibility that the upstream directions for water and oil are

i and i + 1 respectively, which is essentially a restriction on the set of admissible

pressure profiles P `. Assumption 5.3 ensures monotonicity of the discretization (in

the sense of Chapter 2), and assumption 5.4 is needed for a unique pressure solution.

Lemma 5.1. Assume the hypothesis given in Assumptions (5.1–4). Then the sub-

blocks of the Jacobian J have the following properties:

1. Jss = (1/∆t)D+J0
ss and Jps = −(1/∆t)D+J0

ps, where D is a positive diagonal

matrix, and J0
ss and −J0

ps are weakly column diagonally-dominant M-matrices;

2. Jsp and Jpp are weakly diagonally dominant, symmetric, positive semi-definite

matrices;

3. Jsp + Jpp is a symmetric, positive-definite, irreducibly diagonally dominant M-

matrix;

Moreover, the matrices J0
ss, J

0
ps, Jsp and Jpp are independent of ∆t.

Based on the above lemma, the following theorems concerning the rank of J can

be proven. Clearly, we have

J =

[

Jss Jsp

Jps Jpp

]

nonsingular ⇐⇒ J̃ =

[

Jss Jsp

Jts Jtp

]

nonsingular,
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where Jts = Jss + Jps and Jtp = Jsp + Jpp. That is, Jts and Jtp are the Jacobian

matrices corresponding to the total mass balance equation (1.1.19).

Since Jtp is nonsingular, J̃ is nonsingular if and only if the Schur complement

S1 := Jss − JspJ
−1
tp Jts

is also nonsingular.

Theorem 5.2. There exists T > 0 such that J is nonsingular for 0 < ∆t < T .

Proof. First, note that Jts = Jss +Jps = J0
ss +J0

ps is independent of ∆t. Thus, we can

write

S1 =
1

∆t
D + (J0

ss − JspJ
−1
tp Jts),

where the terms in brackets are independent of ∆t. Now S1 is nonsingular if and only

if

∆tD−1S1 = I + ∆tD−1(J0
ss − JspJ

−1
tp Jts)

is also nonsingular, which is the case whenever

ρ(∆tD−1(J0
ss − JspJ

−1
tp Jts)) < 1,

where ρ(·) denotes the spectral radius. Thus, S1 is nonsingular whenever 0 < ∆t < T ,

where

T =
1

ρ(D−1(J0
ss − JspJ

−1
tp Jts))

,

or T = ∞ if ρ(D−1(J0
ss − JspJ

−1
tp Jts)) = 0.

Theorem 5.3. For 1D flow problems, J is nonsingular for all ∆t > 0.

Proof. For 1D problems, it is possible to write explicitly down the form of the Schur

complement S1 by eliminating the pressure terms directly. Since the discretization

and linearization steps commute, it is notationally more convenient to manipulate

the PDE itself, although one can also perform the same calculation on the discrete
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equations. We start with the two-phase conservation law:

φSt −
∂

∂x

[

λw(px + ρwgzx)
]

= 0, (5.1.3)

−φSt −
∂

∂x

[

λo(px + ρogzx)
]

= 0. (5.1.4)

Linearize around (S`, P `) by letting S = S` + σ, p = P ` + π:

φS`
t −

∂

∂x

[

λw(P `
x + ρwgzx)] +

{

φσt −
∂

∂x

[

λ′wσ
w(P `

x + ρwgzx) + λwπx

]

}

= 0,

(5.1.5)

−φS`
t −

∂

∂x

[

λo(P
`
x + ρogzx)] +

{

−φσt −
∂

∂x

[

λ′oσ
o(P `

x + ρogzx) + λoπx

]

}

= 0.

(5.1.6)

In the above equations, all coefficients are evaluated at the linearization point, so

they do not depend on σ and π. We also used the notation σw and σo to denote the

upwind direction of the water and oil phase in the finite volume discretization, which

can be different in general. By keeping the terms separate we can easily mimic this

manipulation in the discrete case. If we define

F (x, t) := −φS`
t +

∂

∂x

[

λw(P `
x + ρwgzx)], (5.1.7)

G(x, t) := φS`
t +

∂

∂x

[

λo(P
`
x + ρogzx)], (5.1.8)

we obtain the linearized PDE

φσt −
∂

∂x

[

λ′wσ
w(P `

x + ρwgzx) + λwπx

]

= F (x, t), (5.1.9)

−φσt −
∂

∂x

[

λ′oσ
o(P `

x + ρogzx) + λoπx

]

= G(x, t). (5.1.10)

We can now eliminate πx to obtain a single equation involving σ. Adding (5.1.9) and
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(5.1.10) and integrating gives

λ′wσ
w(P `

x +ρwgzx)+λ
′
oσ

o(P `
x +ρogzx)+λTπx = −

∫ x

0

(F (ξ, t)+G(ξ, t))dξ =: −H(x, t)

(5.1.11)

so that

πx = − 1

λT

{

H(x, t) + λ′wσ
w(P `

x + ρwgzx) + λ′oσ
o(P `

x + ρogzx)
}

. (5.1.12)

Substituting into (5.1.9) gives

φσt −
∂

∂x

[

λ′wσ
w(P `

x + ρwgzx) −
λw

λT

(

H(x, t)

+ λ′wσ
w(P `

x + ρwgzx) + λ′oσ
o(P `

x + ρogzx)
)

]

= F (x, t).

(5.1.13)

Simplify and get

φσt −
∂

∂x

[

λoλ
′
w(P `

x + ρwgzx)

λT

σw − λwλ
′
o(P

`
x + ρogzx)

λT

σo

]

= R(x, t), (5.1.14)

where R(x, t) is some combination of F (x, t) and H(x, t) that does not depend on

σ and π, and hence is unimportant for the analysis. To derive the discrete form of

(5.1.14), we need to resolve the upstreamed saturations σw and σo, which are given

by

σw
i+1/2 =







σi+1, P `
x + ρwgzx ≥ 0

σi, P `
x + ρwgzx < 0,

and similarly for σo. Thus, the discrete algebraic equations that arise from Newton’s

method are of the form

φiσi

∆t
+

1

∆xi

[

αi+1/2σi − βi+1/2σi+1 − αi−1/2σi−1 + βi−1/2σi

]

= Ri, (5.1.15)
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where

αi+1/2 =
λw,i+1/2λ

′
o,i min{P `

i+1 − P `
i + ρog∆z, 0}

∆xi+1/2(λo,i+1/2 + λw,i+1/2)

− λo,i+1/2λ
′
w,i min{P `

i+1 − P `
i + ρwg∆z, 0}

∆xi+1/2(λo,i+1/2 + λw,i+1/2)
≥ 0,

βi+1/2 = −λw,i+1/2λ
′
o,i+1 max{P `

i+1 − P `
i + ρog∆z, 0}

∆xi+1/2(λo,i+1/2 + λw,i+1/2)

+
λo,i+1/2λ

′
w,i+1 max{P `

i+1 − P `
i + ρwg∆z, 0}

∆xi+1/2(λo,i+1/2 + λw,i+1/2)
≥ 0.

Thus, with proper scaling, the Schur complement S1 has the form

S1 =





















γ1 + α3/2 + β1/2 −β3/2

−α3/2 γ2 + α5/2 + β3/2
. . .

. . . . . . . . .
. . . . . . −βN−1/2

−αN−1/2 γN + αN+1/2 + βN−1/2





















,

where γi = ∆xiφi/∆t. This is a tridiagonal, column diagonally dominant M -matrix,

which means S1 is nonsingular (and in fact positive-stable) whenever ∆t > 0. Hence,

the full Jacobian J is also nonsingular.

We remark that, in most practical reservoir flow simulations, it is extremely rare

to encounter a singular Jacobian unless the linearization point (S`, P `) is so far from

the solution that it is physically inadmissible (e.g., when P ` no longer satisfies the

maximum principle).

5.2 CPR preconditioning

One of the most successful approaches for preconditioning fully-implicit Jacobians is

the two-stage constrained pressure residual (CPR) method proposed by Wallis [81].

The method can be viewed as the linear analog of the sequential implicit (SEQ)
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method, in the sense that it first decouples the full problem into an elliptic and

a hyperbolic subproblem; then at each iteration, one would first solve the elliptic

problem to obtain an approximate pressure, and then use this pressure to solve the

transport problem. A more precise description in terms of two-stage preconditioners

follows.

For a linear system Jx = r, the general two-stage preconditioner is given by

M−1 = T2

[

I − JT1

]

+ T1, (5.2.1)

where T1 and T2 are approximate inverses for J , or for the restriction of J onto

some subspace. When T1 and T2 are both invertible, then M−1 is equivalent to the

preconditioner derived from the two-stage stationary iteration

T−1
1 xk+1/2 = (T−1

1 − J)xk + b,

T−1
2 xk = (T−1

2 − J)xk+1/2 + b.

Examples of this type include ADI preconditioners [68], the symmetric SOR method

[39] and the HSS method [7]. The Ti can be singular as well. The special case of

Ti = Ri(R
T
i ARi)

−1RT
i ,

where RT
i is a restriction operator, corresponds to either a block Gauss-Seidel or a

multiplicative Schwarz method, depending on whether the blocks overlap (cf. [68]).

Since

I −M−1J = (I − T2J)(I − T1J), (5.2.2)

one can generally expect M to be a good preconditioner if T1 and T2 complement

each other by closely approximating J on different parts of the spectrum. Other ways

of combining two or more preconditioners to solve a single linear system can be found

in [15].
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5.2.1 True-IMPES reduction

The CPR preconditioner, which operates on the matrix J of size 2N × 2N , also has

the form (5.2.1):

M−1
CPR = M−1

2

[

I − JC(W TJC)−1W T
]

+ C(W TJC)−1W T , (5.2.3)

where W T and C, of size N × 2N and 2N × N respectively, are the restriction and

prolongation operators; M2, of size 2N × 2N , is typically a local preconditioner such

as ILU. The goal of the first stage preconditioner is to form a pressure equation

Apδp = −rp,

where Ap = W TJC, that can be solved easily and gives a meaningful approximate

pressure solution δp. Different choices of W T and C give rise to different first-stage

preconditioners, which is the subject of study in [44]. One popular choice of the first-

stage preconditioner, called the True-IMPES reduction, uses the IMPES pressure

matrix directly; in this case, Ap is an elliptic operator, so efficient solvers such as

algebraic multigrid [74] can be used to solve the pressure equation. In addition, since

Ap is simply the pressure matrix that arises from a different time discretization, the

solution δp is also a meaningful approximation of the FIM pressure solution, at least

when ∆t is small.

In the general black-oil case with np phases, it is possible to obtain the IMPES

pressure matrix by manipulating J directly. We describe the procedure here infor-

mally (but see [44] for a detailed discussion). Since IMPES treats the transmissibility

derivatives explicitly, one needs to first eliminate these terms from J . This can be done

by performing a column sum (i.e., for each phase p, sum the equations corresponding

to phase p over the whole domain): since mass is conserved, all the flux terms must

cancel, so the transmissibility derivatives will also cancel out. Only accumulation

terms remain, which means that

Ĵss := Colsum(Jss) and Ĵps := Colsum(Jps)
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are now diagonal matrices. Finally, the pressure equation is obtained by eliminating

the pressure variables, which is equivalent to forming the Schur complement

Ap = Jpp − ĴpsĴ
−1
ss Jsp.

The resulting pressure matrix Ap will have the same sparsity pattern as Jpp and Jsp,

since the scaling matrix ĴpsĴ
−1
ss is diagonal and does not modify the sparsity pattern

of Jsp. In the incompressible two-phase flow case, Lemma 5.1 shows that

Ĵss = −Ĵps =
1

∆t
D,

so we have the very simple relation Ap = Jps + Jpp = Jtp. Thus, the restriction and

prolongation operators are

W T =
[

I I
]

, C =

[

0

I

]

,

and the first-stage preconditioner becomes

T1 = C(W TJC)−1W T =

[

0 0

J−1
tp J−1

tp

]

.

We wish to investigate the effect of the CPR preconditioner on J by computing

M−1
CPRJ = M−1

2 J(I − T1J) + T1J.

A straightforward calculation shows that

J(I − T1J) =

[

Jss − JspJ
−1
tp Jts 0

Jps − JppJ
−1
tp Jts 0

]

.

Recall that S1 = Jss − JspJ
−1
tp Jts is the Schur complement with respect to the (1,1)-

block. If we partition M2 into M2 =

[

J̃ss J̃sp

J̃ps J̃pp

]

and define S̃1 = J̃ss − J̃spJ̃
−1
tp J̃ts, we
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obtain

M−1
CPRJ =

[

S̃−1
1 S1 0

J−1
tp Jts − J̃−1

tp J̃tsS̃
−1
1 S1 I

]

. (5.2.4)

As a result, M−1
CPRJ has λ = 1 as an eigenvalue with (geometric) multiplicity at

least N , so the first-stage preconditioner clusters all the eigenvalues associated with

the pressure part into the point z = 1. Equation (5.2.4) also implies that GMRES

converges in at most N + 1 iterations in exact arithmetic. To see this, consider any

matrix of the form

G :=

[

S 0

Y I

]

.

Let q(t) =
∑k

i=0 βit
i be the minimal polynomial of S, where β0 6= 0 if and only if S is

nonsingular. Then since

Gi+1 −Gi =

[

Si+1 − Si 0

Y Si 0

]

,

we see that
k
∑

i=0

βi(G
i+1 −Gi) = 0.

So the minimal polynomial of G, q̃(t), has degree at most k + 1, and q̃(0) 6= 0 if

and only if S is nonsingular. In the case of G = M−1
CPRJ , q̃(t) has degree at most

N + 1; this implies the convergence of GMRES within N + 1 iterations, since the

m-th residual rm of GMRES satisfies

‖rm‖2 = min
pm∈Pm

pm(0)=1

‖pm(G)r0‖2,

where Pm denotes the set of polynomials with degree at most m.

Given the role the matrix S̃−1
1 S1 plays, the convergence behavior of CPR is pre-

dominantly dictated by how well the second-stage preconditioner M2 approximates

the Schur complement S1 with respect to the transport problem.
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5.2.2 Improved second-stage preconditioner via ordering

The choice of second-stage preconditioners has a significant impact on the effectiveness

of the overall CPR preconditioner. Based on (5.2.4), it is clear that an effective second-

stage preconditioner must perform well on the transport problem. Popular choices

for the second-stage preconditioners include ILU(k) (typically k = 0) as well as block

ILU(k), where the np-by-np blocks correspond to the np equations in np unknowns

aligned with a given control volume. Even though both pointwise and cell-based

block ILU(k) have similar performance in practice, the block variant is generally

more robust and easier to analyze, since no special procedure is needed to handle

accidental zero entries arising from residual saturations. For instance, the (i, j) entry

in Jsp is generally nonzero if i and j are adjacent gridblocks, but can become zero

occasionally if λw = 0 at the i− j interface. When this happens, pointwise ILU will

drop any fill-in that occurs at the (i, j) position, whereas block ILU will retain the

fill-in entry. For the remainder of this section, we mainly focus on block ILU to avoid

complications of this sort.

The effectiveness of BILU(0) on the transport problem is demonstrated next.

Proposition 5.4. Let A be the Jacobian (in block form) of a 1D flow problem, with

the cells ordered from left to right. Then if the BILU(0) factorization of A exists

(i.e., if no singular diagonal block occurs during factorization), it is exact.

Proof. Since A is block tridiagonal, no fill-in occurs during block Gaussian elimina-

tion, so the block LU and BILU(0) factorizations coincide. As a result, the BILU(0)

factorization is exact.

Note that ILU is only exact if the cell-based block form of the Jacobian is used.

Fill-in necessarily occurs if the partitioned form of the Jacobian is used, since the

Schur complement

S2 := Jpp − JpsJ
−1
ss Jsp

is not tridiagonal. In fact, JpsJ
−1
ss is in general a full lower-triangular matrix, which

means S2 is in general a full lower Hessenberg matrix. Thus, one should expect

BILU(0) to be a better second-stage preconditioner than ILU on the partitioned

matrix J .
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It is usually difficult to ascertain a priori that the BILU(0) factorization exists for

the general two-phase flow problem. However, in the special case of cocurrent flow,

we can prove the existence of BILU(0) when a cell-based potential ordering is used.

Theorem 5.5. Let J be the Jacobian corresponding to a cocurrent flow problem lin-

earized at (S`, P `), and suppose the pressure profile P ` satisfies the maximum princi-

ple. Assume the cell-centered grid admits a two-coloring. Let A = PJP T be the block

form of the Jacobian, in which the cells are arranged in decreasing order of pressure.

Then the block ILU(0) factorization of A exists with nonsingular factors L and U .

Moreover, we have

P T (LU)P = J + E, (5.2.5)

where E =

[

0 Esp

0 Epp

]

.

In other words, BILU(0) is exact on the saturation part. The assumption that P `

satisfies the maximum principle implies that the cell(s) with the lowest pressure must

be on a Dirichlet boundary. Also note that this theorem is applicable to cocurrent

flow problems in any dimension, and not just for 1D flows, as long as the grid is

two-colorable. This applies to many grids of practical interest (Cartesian and other

orthogonal grids, radial grids, etc.). In light of (5.2.2) and the fact that T1 is exact

on the pressure part, Theorem 5.5 indicates that BILU(0) should be an excellent

preconditioner as long as Esp and Epp are not too large.

Proof. Let A = PJP T and Aij be the 2 × 2 blocks. Let A(k) be the block (N − k +

1) × (N − k + 1) matrix that remains to be factored at the kth step, i.e., we have
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A = A(1),

A(k) =















A
(k)
kk A

(k)
k,k+1 · · · A

(k)
kN

A
(k)
k+1,k

. . .
...

...
. . .

...

A
(k)
Nk · · · · · · A

(k)
NN















,

A
(k+1)
ij =







0, A
(k)
ij = 0;

A
(k)
ij − A

(k)
ik (A

(k)
kk )−1A

(k)
kj , A

(k)
ij 6= 0

for i, j ≥ k + 1.

1. We argue that

Aij = A
(1)
ij = · · · = A

(K)
ij (5.2.6)

whenever i 6= j and K ≤ min(i, j). This is true because a two-coloring exists for

any Cartesian grid, i.e., one can partition the gridblocks V = {1, 2, . . . , N} into

disjoint sets VR and VB such that Aij = 0 whenever i 6= j and either i, j ∈ VR

or i, j ∈ VB. Thus, when i 6= j, either A
(k)
ij = 0 or A

(k)
ik (A

(k)
kk )−1A

(k)
kj = 0, which

implies (5.2.6). Thus, the only blocks that change during the elimination are the

diagonal blocks A
(k)
ii .

2. Because of upstream weighting in the finite-volume discretization, we see that for

i < j,

Aij =

[

0 Xij

0 Yij

]

.

Thus, A
(k)
ik (A

(k)
kk )−1A

(k)
kj also has the form

[

0 ∗
0 ∗

]

, (5.2.7)

which means only the second column of A
(k)
ii gets updated during the elimination.
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So we have

A
(k)
ii =

[

aii X
(k)
ii

−bii Y
(k)
ii

]

; A
(k)
ij = Aij =

[

−aij −Xij

bij −Yij

]

(i 6= j). (5.2.8)

3. Let γi = φiVi/∆t ≥ γmin > 0. The following properties hold for A = A(1):

• aij, bij, Xij, Yij are all non-negative;

• Xij = Xji and Yij = Yji for all i 6= j,

• ajj ≥ γj +
∑

i>j aij;

• bjj ≥ γj +
∑

i>j bij;

• Xii ≥
∑

j 6=iXij;

• Yii ≥
∑

j 6=i Yij;

• For a cell i on the Dirichlet boundary, Xii + Yii >
∑

j 6=i(Xij + Yij).

We prove inductively that for any given k and any i, j ≥ k,

(a) X
(k)
ii ≥∑j≥k,j 6=iXij ≥ 0;

(b) Y
(k)
ii ≥∑j≥k,j 6=i Yij ≥ 0.

(c) X
(k)
ii + Y

(k)
ii >

∑

j≥k,j 6=i(Xij + Yij) ≥ 0 for a cell i on the Dirichlet boundary.

Then (a)–(c) together would imply that A
(k)
ii is nonsingular for all k ≤ i. Assume

first that cell i is not on the Dirichlet boundary. Then by the maximum principle,

there is at least one cell downstream from i. Thus,

detA
(k)
ii = aiiY

(k)
ii + biiX

(k)
ii ≥ γmin(X

(k)
ii + Y

(k)
ii ) ≥ γminλt,min > 0.

Similarly, if i is on the Dirichlet boundary, then (c) implies

detA
(k)
ii ≥ γmin(X

(k)
ii + Y

(k)
ii ) > 0.
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Clearly, conditions (a)–(c) are satisfied for k = 1. For the inductive step, we

compute

A
(k)
ik (A

(k)
kk )−1A

(k)
ki =

1

detA
(k)
kk

[

−aik −Xik

bik −Yik

][

Y
(k)
kk −X(k)

kk

bkk akk

][

0 −Xki

0 −Yki

]

=

[

0 dX
(k)
ii

0 dY
(k)
ii

]

.

We have

(

detA
(k)
kk

)

dX
(k)
ii = aikY

(k)
kk Xki − aikX

(k)
kk Yki +XikbkkXki +XikakkYki

≤ aikY
(k)
kk Xki − aikXkiYki +XikbkkXki +XikakkYki

= Xik

(

aikY
(k)
kk − aikYki + bkkXki + akkYki

)

= Xik

(

aikY
(k)
kk + (akk − aik)Yki + bkkXki

)

≤ Xik

(

aikY
(k)
kk + (akk − aik)Y

(k)
kk + bkkX

(k)
kk

)

= Xik(akkY
(k)
kk + bkkX

(k)
kk )

=
(

detA
(k)
kk

)

Xik.

Thus, dX
(k)
ii ≤ Xik, and by a similar calculation, we get dY

(k)
ii ≤ Yik. Hence,

X
(k+1)
ii = X

(k)
ii − dX

(k)
ii ≥

(

∑

j≥k
j 6=i

Xij

)

−Xik ≥
∑

j≥k+1
j 6=i

Xij,

proving (a); (b) and (c) are proved similarly.

4. The above argument shows that the block ILU(0) factorization of A exists and

has the form

L =













I

L21 I
...

. . .

LN1 · · · LN,N−1 I













, U =















U11 U12 · · · U1N

U22
...

. . . UN−1,N

UNN















,



5.2. CPR PRECONDITIONING 135

where

Lij =



















Aij

(

A
(j)
jj )−1, i > j, Aij 6= 0,

I, i = j,

0, otherwise;

(5.2.9)

Uij =



















Aij, i < j, Aij 6= 0,

A
(i)
ii , i = j,

0, otherwise.

(5.2.10)

Clearly, L and U are both nonsingular. Each 2×2 block in the factorization error

PEP T has the form AikA
(k)
kk Akj, which has the pattern shown in (5.2.7). Thus,

after permutation, we get

E =

[

0 Esp

0 Epp

]

,

as required.

As we pointed out in section 3.2.4, it is not necessary to perform an exact sorting on

the cell pressures in order to obtain a potential ordering. Instead, a topological sort,

which can be calculated in O(N) time, suffices. This implies there exist many ways to

order the cells in such a way that Jss and Jps are triangular. Although it is conceivable

that the different topological orderings will lead to different ILU prconditioners, the

next theorem shows that they are in fact identical up to permutation.

Theorem 5.6. Assume the hypotheses of Theorem 5.5. Let G = (V,E) be the up-

stream graph, i.e., V is the set of cells in the domain, and (i, j) ∈ E iff (1) i is

adjacent to j, and (2) either P `
i > P `

j or P `
i = P `

j and i > j. Let

σ1 : V → {1, . . . , N}
σ2 : V → {1, . . . , N}

be two topological orderings of G, and define Ar = ΠrAΠT
r (r = 1, 2), where the Πr
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are block N ×N permutation matrices with

(Πr)ij =







I, j = σr(i)

0 otherwise.

Then

ΠT
1L1U1Π1 = ΠT

2L2U2Π2,

where Lr and Ur are the block ILU(0) factors of Ar.

Proof. Let τr : {1, . . . , N} → V be the inverse of σr, r = 1, 2. Based on the expressions

for Lr and Ur given by (5.2.9) and (5.2.10), it suffices to show that the diagonal blocks

of ΠT
1U1Π1 and ΠT

2U2Π2 are identical. These diagonal blocks are given by

(Ur)ii = (Ar)
(i)
ii = (Ar)ii −

∑

k<i

(Ar)ik((Ar)
(i)
ii )−1(Ar)ki,

but since (Ar)ik = 0 unless (τr(k), τr(i)) ∈ E, we really have

(Ur)ii = (Ar)ii −
∑

(τr(k),τr(i))∈E

(Ar)ik(Ur)
−1
kk (Ar)ki.

Thus, for any j ∈ V , we have (U1)σ1(j),σ1(j) = (U2)σ2(j),σ2(j) if and only if

(U1)σ1(k),σ1(k) = (U2)σ2(k),σ2(k) for all k such that (k, j) ∈ E,

which is true by induction (recall that G is a directed acyclic graph).

Theorem 5.6 says that there is essentially only one BILU(0) preconditioner that

respects flow directions.

Structure of the factorization error

It is possible to describe the nonzero pattern of the error matrices Esp and Epp in

terms of the upstream graph G. A fill-in entry is created (and subsequently dropped

by BILU(0)) at position (i, j), with i 6= j, if there exists k < i, j such that both Aik
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and Ajk is nonzero. In other words, if Esp and Epp are nonzero at position (i, j), then

nodes i and j must be siblings in the upstream graph G, i.e., i and j must share the

same parent k. This immediately provides an upper bound on the number of entries

in Esp and Epp: the number of error entries due to the elimination of node k is given

by dk(dk − 1), where dk is the out-degree of node k (i.e., the number of edges coming

out of k). So the total number of entries in Esp and Epp is bounded by

∑

i

di(di − 1) =
∑

i

d2
i −

∑

i

di = |V |D2 − |E|,

where D is the maximum out-degree of any node in G. On a Cartesian grid, the

parameters are

• 2D problems: D ≤ 4, |E| ≈ 5|V |;

• 3D problems: D ≤ 6, |E| ≈ 7|V |.

So in either case, the error matrices are sparse, since the number of entries scales

linearly with |V |. Moreover, the value of the entries are given by

[

0 (Esp)ij

0 (Epp)ij

]

= −Aik(A
(k)
kk )−1Akj.

Physically, this corresponds to the flux from cell j to cell i (traveling via k) that is

generated by a change in pressure pj. Since the potential ordering always orders the

cells according to the major flow direction, the fluxes between siblings are generally

much smaller than fluxes along upstream edges. This implies the error matrices

Esp and Epp are small. Contrast this with a lexicographical ordering, where there

is no guarantee that the flux between siblings should be small. Thus, a second-

stage preconditioner that uses potential ordering should be more effective than one

that uses the natural ordering. This is what we observe in our numerical examples

(section 5.2.4).
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5.2.3 Spectrum of the preconditioned matrix

To understand the effectiveness of two-stage CPR preconditioning, it is instructive to

examine the spectrum of the preconditioned matrix M−1
CPRJ and compare it with the

spectrum obtained from other preconditioners. Generally speaking, iterative solvers

such as GMRES perform well when the spectrum of M−1J consists of a few compact,

well-separated clusters far away from the origin (z = 0 on the complex plane), and

preferably close to z = 1. It is important to note that when M−1J is non-normal,

its eigenvalues do not completely determine the convergence behavior of GMRES

(cf. [40, 55]); however, spectral plots still have heuristic value, because they allow us

to compare visually the quality of various preconditioners.

We have already seen that, thanks to the first stage exact pressure solve, the

preconditioned matrix has N eigenvalues at z = 1, while the remaining eigenvalues

are given by the spectrum of S̃−1
1 S1. We compute these eigenvalues for the BILU(0)

case. We have

I −M−1
CPRJ = (I −M−1

2 J)(I − C(W TJC)−1W TJ)

= M−1
2 (M2 − J)(I − C(W TJC)−1W TJ)

= M−1
2

[

0 Esp

0 Epp

][

I 0

−J−1
tp Jts 0

]

=

[

−ÊspJ
−1
tp Jts 0

−ÊppJ
−1
tp Jts 0

]

.

So S̃−1
1 S1 = I + ÊspJ

−1
tp Jts, where

[

Êsp

Êpp

]

= M−1
2

[

Esp

Epp

]

=

[

S̃−1
1 J̃ppJ̃

−1
tp −S̃−1

1 J̃spJ̃
−1
tp

−S̃−1
2 JpsJ

−1
ss S̃−1

2

][

Esp

Epp

]

=

[

S̃−1
1 (J̃ppJ̃

−1
tp Esp − J̃spJ̃

−1
tp Epp)

S̃−1
2 (Epp − JpsJ

−1
ss Esp)

]

.
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Thus,

ÊspJ
−1
tp Jts = S̃−1

1

[

J̃ppJ̃
−1
tp (J̃sp − Jsp) − J̃spJ̃

−1
tp (J̃pp − Jpp)

]

J−1
tp Jts

= S̃−1
1

[

(J̃sp − Jsp) − J̃spJ̃
−1
tp (J̃tp − Jtp)

]

J−1
tp Jts

= S̃−1
1

[

J̃spJ̃
−1
tp − JspJ

−1
tp

]

Jts.

It is interesting to compare the above expressions with the spectrum one would get

with a single-stage BILU(0) preconditioner (i.e., no pressure solve). In that case, we

would have

M−1
2 J =

[

I −Êsp

0 I − Êpp

]

.

Therefore, in the single-stage BILU case, we would still have termination within N+1

steps when flow is cocurrent, but the convergence behavior from iteration 1 to N is

dictated by I − Êpp, instead of I + ÊspJ
−1
tp Jts. We expect the CPR preconditioner to

outperform single-stage BILU(0) based on the following (somewhat heuristic) reasons:

1. If ‖Jts‖ is small (e.g., when the overall flow (total mass balance equations) is

slowly varying with respect to the time-step size), then S̃−1
1 S1 will be close to

the identity matrix, whereas this is not the case for single-stage BILU. In many

practical applications, the total velocity, which dictates Jtp, does not vary much

within a time step, so CPR would have a significant advantage over BILU(0).

2. It can be shown (see Appendix E) that both JspJ
−1
tp and JppJ

−1
tp are similar to

a symmetric positive semi-definite matrix, with eigenvalues between 0 and 1.

Thus, even though factorization errors are present, one can also expect J̃spJ̃
−1
tp ,

and hence the term J̃spJ̃
−1
tp − JspJ

−1
tp , to be relatively benign. On the other

hand, one cannot bound the eigenvalues of JpsJ
−1
ss : when ∆t is large, JpsJ

−1
ss

can have both very large eigenvalues (when |λo,i| � |λw,i|) and very small ones

(when |λo,i| � |λw,i|). So any bound on Êsp is likely to be much tighter than a

bound on Êpp.

3. It is easy to see that I − Êpp = S̃−1
2 S2, so the use of single-stage BILU(0) is

equivalent to preconditioning the Schur complement with respect to pressure
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(S2) by a fixed-pattern ILU preconditioner. Contrast this with CPR, which

attempts to precondition S1, the Schur complement with respect to saturation.

The two Schur complements S1 and S2 are related by

S1 = Jss − JspJ
−1
tp Jts = Jss(I − J−1

ss JspJ
−1
tp Jts),

S2 = Jtp − JtsJ
−1
ss Jsp = Jtp(I − J−1

tp JtsJ
−1
ss Jsp).

Since the two matrices inside the parentheses have the same eigenvalues, it is

evident that S1 behaves more like the transport part Jss, whereas S2 behaves

more like the elliptic part Jtp. In particular, one expects κ(S1) to scale like

O(∆t/h), whereas κ(S2) would be O(1/h2). We also know that fixed-pattern

ILU preconditioners tend to perform poorly on elliptic problems. This indicates

CPR should, in general, outperform single-stage BILU(0).

To illustrate these arguments, we show the spectral plots of J , M−1
2 J and M−1

CPRJ ,

as well as their condition numbers, for various time-step sizes in Figures 5.1 and 5.2.

For this test case, we have a 2D homogeneous reservoir (with uniform porosity),

discretized on a 20 × 10 grid. A constant injection rate is imposed along the left

edge, and pressure is held constant along the right edge, with no flow boundaries

along the top and bottom. We see that the spectrum of J changes significantly as

∆t varies. The condition number is very large for all cases, and there is no obvious

clustering of eigenvalues, which means GMRES will likely perform poorly without

preconditioning. When BILU(0) is used, the spectrum lies almost completely on the

positive real axis, but the distribution is continuous and no obvious clustering exists;

in fact, the spectrum looks very similar to one belonging to an elliptic operator

(possibly due to Jtp appearing as a multiplicative factor in S2). When two-stage CPR

is used, the clustering around z = 1 becomes very obvious, and the high quality of

the clustering is remarkably consistent across time steps.

Figures 5.3 and 5.4 show the same spectral plots when countercurrent flow is

present. The same comments concerning the spectra of J and M−1
2 J apply, except

that the condition numbers become much higher. As for the CPR-preconditioned

matrix, we still see a very good clustering of eigenvalues around z = 1, but the cluster
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Table 5.1: Convergence behavior for the block ILU(0) and CPR preconditioners.
Each figure represents the average number of GMRES iterations per Newton step
required for convergence.

∆t = 1.6 ∆t = 3.1 ∆t = 7.8
Cocurrent BILU(0) 23.0 22.7 23.0

CPR 3.7 4.3 5.0
Countercurrent BILU(0) 22.4 22.0 22.0

CPR 5.4 6.0 7.0

is not as tight, and we start to see more spreading along the positive real axis. This

is probably due to the fact that M2 is no longer exact with respect to saturation, and

this factorization error manifests itself as a spreading of the eigenvalues. Fortunately,

the outlying eigenvalues are well separated from one another, so GMRES should

have little problem eliminating the subspaces associated with them within a few

iterations. Table 5.1 shows the linear iteration counts per Newton step for both the

CPR and block ILU(0) preconditioners on the 20 × 10 grid. For both the cocurrent

and countercurrent flow cases, it is evident that the higher quality clustering produced

by CPR does, in fact, translate into much faster convergence compared with block

ILU(0).
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Figure 5.1: Spectra of Jacobian (no preconditioning), BILU(0) and CPR precondi-
tioning for the cocurrent flow problem (∆t = 1, 5).
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Figure 5.2: Spectra of Jacobian (no preconditioning), BILU(0) and CPR precondi-
tioning for the cocurrent flow problem (∆t = 20, 100).
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Figure 5.3: Spectra of Jacobian (no preconditioning), BILU(0) and CPR precondi-
tioning for the countercurrent flow problem (∆t = 1, 5).
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Figure 5.4: Spectra of Jacobian (no preconditioning), BILU(0) and CPR precondi-
tioning for the countercurrent flow problem (∆t = 20, 100).
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5.2.4 Numerical examples

To illustrate the importance of ordering on the CPR preconditioner, we provide the

following two numerical examples. The first example shows how the performance

of CPR with the standard ordering can vary significantly depending on the flow

configuration, even on the same problem, whereas CPR with potential ordering is

insensitive to flow configurations. The second example shows the effect of ordering

on a 3D complex flow problem.

Quarter 5-spot problem

For this test problem, we have a two-dimensional reservoir that is discretized on a

20 × 20 grid. Water is injected through a well at one corner of the reservoir, at

a constant rate of 0.005 pore volumes per day; a production well, maintained at

a fixed pressure, is located at the opposite corner (see Figure 5.5). The no-flow

condition is imposed on the remaining sections of the boundary. Quadratic relative

permeabilities are used, with a mobility ratio of M = 10. The simulation is run until

T = 100 days (0.5 pore volumes injected). The cells are numbered in lexicographical

order (i.e., from left to right, then from bottom to top). We solve the same problem

under two different configurations: in the first case (a), the injection and production

wells are located at the lower-left and upper-right corners respectively, so that the

lexicographical ordering coincides with the potential ordering. In the second case (b),

the wells are located at the lower-right and upper-left corners instead, so the natural

ordering is no longer a valid potential ordering. Table 5.2 shows the total iteration

counts over the whole simulation, as well as running time information. (Data for

single-stage BILU(0) are omitted, since there are many Newton steps within which

BILU(0) fails to converge within 1500 iterations.) The two configurations require

exactly the same number of time steps and Newton steps, as expected. However,

the number of GMRES iterations for the two cases are significantly different (a 36%

increase) when CPR-BILU(0) with lexicographical ordering is used. This difference

is insignificant when potential ordering is used, which is expected since the upstream

graphs for the two problems are isomorphic, i.e., the two graphs are the same up to

relabeling. (The discrepancy in iteration counts is probably due to the inexact solve
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Figure 5.5: Two configurations of the quarter 5-spot problem.

in the first stage.) This example provides experimental confirmation of Theorem 5.6

and illustrates the ability of potential ordering to shield this type of grid orientation

effect from the linear solver.

Upscaled SPE 10 problem

In this example, the reservoir is a 2 × 2 × 2 upscaling of the SPE 10 problem, i.e.,

it is identical to the one used in example 4.3.2 in Chapter 4. It is initially saturated

with oil, and we inject water at the center of the reservoir at a rate of 0.0002 pore

volumes per day (or 29 cell pore volumes per day). A production well, maintained at

constant pressure, is completed at one corner of the reservoir. Once again, we test

the solvers on two configurations:

(a) The production well is located at (1,1,:), so that the major direction of flow is

aligned with the lexicographical ordering;

(b) The production well is located at (110,1,:), so that the major direction of flow

is transverse to the lexicographical ordering.

We run the simulation to T = 100 days (0.02 pore volumes injected). Table 5.3

summarizes the runs for both preconditioners. The number of time steps and New-

ton steps are again exactly the same in all cases, indicating that the problems are
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Table 5.2: Performance of CPR-ILU for the quarter 5-spot problem.

Config. (a) Config. (b)
Natural Potential Natural Potential
ordering ordering ordering ordering

No. of time steps 21 21 21 21
No. of Newton steps 80 80 80 80
No. of GMRES iterations 254 254 346 246
No. of AMG V-cycles 286 286 368 274
Total running time (sec) 1.37 1.45 1.49 1.43
− Top. sort (sec) 0 0.02 0 0.02
− Permutation (sec) 0 0.08 0 0.09
− BILU solve (sec) 0.10 0.14 0.15 0.09
− Pressure solve (sec) 0.32 0.27 0.39 0.33

completely equivalent. Even in configuration (a), the number of GMRES iterations

decreases somewhat when potential ordering is used, because the lexicographical or-

dering is no longer a valid potential ordering because of the strong spatial hetero-

geneity of the permeability field. When configuration (b) is used instead, we observe

an increase in GMRES iterations when the lexicographical ordering is used, since the

major direction of flow is no longer aligned with this ordering. However, the iteration

count is almost exactly the same when potential ordering is used, once again illustrat-

ing the invariance of potentially-ordered BILU(0) with respect to flow configuration

details.

In our current implementation, the savings due to the use of potential ordering

are rather modest, even though the GMRES iteration count decreases substantially.

We believe this is due to our inefficient implementation. Currently, we physically

permute the blocks of the Jacobian matrix into the potential ordering before feeding

it into a library routine that computes the block ILU factorization. This simplifies the

implementation, but adds unnecessary cost to the solver, because one can actually

modify the ILU routine to use the unpermuted data structure, and only change the

order of elimination when the factorization is computed. (This is what modern direct
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Table 5.3: Performance of CPR-ILU for the upscaled SPE 10 problem.

Config. (a) Config. (b)
Natural Potential Natural Potential
ordering ordering ordering ordering

No. of time steps 37 37 37 37
No. of Newton steps 106 106 106 106
No. of GMRES iterations 389 349 447 351
No. of AMG V-cycles 524 502 570 504
Total running time (sec) 595.99 614.37 630.55 616.21
− Top. sort (sec) 0 4.49 0 4.57
− Permutation (sec) 0 30.79 0 30.93
− BILU solve (sec) 46.82 42.72 52.76 42.34
− Pressure solve (sec) 229.33 224.60 242.93 225.89

solvers typically do when a symmetric permutation is required.) Since the permuta-

tion step represents about 5% of the total running time, eliminating this step should

lead to a significant performance improvement. Note that the cost of computing the

topological ordering is insignificant, and it can be shared with other modules. For

instance, if reduced Newton is used as a nonlinear solver, then a topological order-

ing would already have been calculated, so there would be no need to compute it

again for the linear solver. If all these efficiency measures are taken, the potential-

ordered CPR-ILU preconditioner should outperform lexicographical ordering in most

practical cases.

5.3 Schur complement preconditioning

Recall that the first-stage True-IMPES preconditioning corresponds to the following

choice of restriction and prolongation operators in the first stage:

W T =
[

I I
]

, C =

[

0

I

]

.
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Another reasonable choice of W T and C would be

W T =
[

−JpsJ
−1
ss I

]

, C =

[

0

I

]

,

which leads to the first stage preconditioner being

T1 = C(W TJC)−1W T =

[

0 0

−S−1
2 JpsJ

−1
ss S−1

2

]

.

The overall preconditioned matrix M−1J then becomes

M−1J =

[

S̃−1
1 (Jss − J̃spJ̃

−1
tp Jps) 0

0 I

]

,

meaning that if M2 is exact on saturation (e.g., BILU(0) for cocurrent flow), then the

two-stage preconditioner would be exact. Note that the “pressure matrix” W TJC in

this case would be

W TJC = −JpsJ
−1
ss Jsp + Jpp = S2,

meaning we are actually solving the Schur complement problem with respect to pres-

sure. S2 is in general a dense matrix; however, as we noted in section 4.1, we can

perform the matrix-vector product S2v with exactly the same computational cost as

performing Jv, since multiplication with J−1
ss is simply a forward substitution when

we exploit potential ordering. It is thus worthwhile to attempt to devise effective

preconditioners for the Schur complement problem. In fact, a good preconditioner

for S2 (i.e., one that converges as quickly as two-stage CPR on the full problem)

would eliminate the need for a two-stage preconditioner on J , since one can always

obtain the saturation solution from the pressure solution by a back substitution (i.e.,

a multiplication by J−1
ss ).

The structure of this section is as follows. First, we study the properties of S2 by

examining its spectrum, nonzero pattern and relative magnitudes of its entries. Then

we look at different approximations to the Schur complement and how they behave

as preconditioners for cocurrent and countercurrent cases.
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5.3.1 Spectrum and nonzero pattern

We consider a pseudo-1D flow situation, where water is injected from one edge of the

reservoir and pressure is held constant at the other edge. The reservoir is initially

filled with water between the injection edge and the middle of the reservoir, while the

remaining part is filled with oil. Flow is cocurrent (i.e. no gravity is present). For

both the 1D (20 × 1) case and the 2D (20 × 20) case, we show the nonzero pattern

of the full matrix in Figure 5.6. We also show the spectrum, as well as the absolute

value of the entries, for the following time steps:

(a) 0.1 cell pore volumes,

(b) 1 cell pore volume,

(c) 10 cell pore volumes.

The spectral and profile plots are shown in Figures 5.7 (for 1D problems) and 5.8. The

profile plots show the magnitudes of the entries along a row of S2 that corresponds

to a gridblock near the center of the reservoir, behind the flood front.

Let us first look at the spectrum of S2. When the time step is small, the transport

problem contributes little to the spectrum of the Schur complement; the eigenvalue

plot is similar to that of a positive definite elliptic operator. For the medium and large

time step, though, we start to see a rather complicated spectral plot consisting of two

parts: eigenvalues along the positive real axis corresponding to the pressure part, and

complex conjugate pairs that arise from the saturation part of the problem. The plots

for the 2D case are especially revealing, since the complex eigenvalues are roughly in

the shape of a parabola and bear a striking resemblance to the pseudospectra of

convection-diffusion operators [63]. Based on the spectral plots, we conclude that

preconditioners that depend strongly on the matrix being nearly symmetric positive

definite (such as algebraic multigrid) will probably perform poorly on problems with

moderate to large time steps.

As for the nonzero pattern, darker colors in Figure 5.6 indicate larger magnitudes.

In the 1D case, most of the energy (i.e., Frobenius norm) of the matrix lies within the

tridiagonal part; even though the lower triangular part is technically nonzero, most
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1D flow 2D flow

Figure 5.6: Nonzero pattern of S2 for the 1D and 2D reservoirs. Darker colors indicate
larger magnitudes.

of the entries outside the tridiagonal region are tiny and can be neglected. Thus,

ILU(0) can potentially be a good preconditioner for the 1D Schur complement. In

contrast, the 2D Jacobian has large entries outside the pentadiagonal region, and the

magnitude of the fill-in entries increases as the time step is increased. Hence, it is

unlikely that a preconditioner with small bandwidth (such as an ILU preconditioner

induced from the partitioned matrix J) would be effective for 2D problems.

5.3.2 Convergence behavior

Recall the partitioned form J of the Jacobian matrix J :

J =

[

Jss Jsp

Jps Jpp

]

.

We investigate the convergence behavior of the following preconditioners:

• M0 = Jpp − Colsum(Jps) Colsum(Jss)
−1Jsp (True-IMPES),

• M1 = Jpp − diag(Jps) diag(Jss)
−1Jsp (Quasi-IMPES),

• M2 = Jpp − Jps diag(Jss)
−1Jsp,

• M3 = Jpp − diag(Jps)Ĵ
−1
ss Jsp,
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Figure 5.7: Spectrum and nonzero profiles of S2 for the 1D reservoir.
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Figure 5.8: Spectrum and nonzero profiles of S2 for the 2D reservoir.
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• M4 = Jpp − JpsĴ
−1
ss Jsp,

where Ĵ−1
ss is a first-order approximation of J−1

ss , defined as follows. Suppose we order

Jss so that it is lower triangular. Then Jss = D − L = (I − LD−1)D, where D is

diagonal and L is strictly lower triangular. Then

J−1
ss = D−1(I − LD−1)−1

= D−1(I + LD−1 + · · · + (LD−1)N−1).

Then the first order approximation is taken to be Ĵ−1
ss = D−1(D + L)D−1.

Tables 5.4 and 5.5 illustrate the rate of convergence for each of these precondi-

tioners. The flow setting is the same as the 2D case in the previous section, except we

now show results for both cocurrent and countercurrent flow. Each figure represents

the average number of linear iterations per Newton iteration that GMRES takes to

reduce the linear residual by a factor of 10−6. The ‘AMG’ column corresponds to

the case where the preconditioner is applied using one cycle of AMG, whereas the

‘exact’ column corresponds to the case where the preconditioner is applied using a

direct method. The time step size ∆t is measured in cell pore volumes injected.

‘DNC’ means the linear iteration does not converge within 100 iterations, and the

approximate linear solution is so poor that it causes Newton’s method to diverge.

For comparison purposes we include results for when the following preconditioners

are used:

1. Induced ILU: single-stage preconditioner induced from the ILU(0) factorization

of the partitioned matrix J .

2. AMG on S2: the full Schur complement is handed to AMG, and one V-cycle is

used per GMRES iteration;

3. CPR on J : two-stage preconditioner applied to the full Jacobian;

4. CPR on S2: two-stage preconditioner induced from the CPR method.

The induced preconditioners (items (1) and (4)) are defined as follows. If MJ is a

preconditioner for the full matrix J , then the induced preconditioner MS is defined
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Table 5.4: Convergence of GMRES in the absence of gravity.

AMG Exact
∆t 1.6 3.1 7.8 1.6 3.1 7.8
M0 10.7 19.3 24.7 4.0 8.3 10.0
M1 10.0 13.3 15.3 3.7 6.0 7.0
M2 11.7 17.7 21.7 4.3 8.3 11.0
M3 11.0 29.0 45.0 4.3 7.3 9.0
M4 21.3 33.3 41.0 3.0 5.0 5.0

Induced ILU 33.7 38.3 40.7
AMG on S2 7.7 16.3 14.3
CPR on S2 5.7 8.7 11.3
CPR on J 4.0 6.3 5.3

as

M−1
S =

[

0 I
]

M−1
J

[

0

I

]

,

meaning the preconditioning step z = M−1
S r is computed via

z =
[

0 I
]

M−1
J

[

0

r

]

.

Note that the induced ILU preconditioner can always be applied exactly because if

MA = LAUA, then MS = LSUS, where

LS = RTLAR, US = RTUAR, RT =
[

0 I
]

(see Chapter 14 in [68] for a proof).

Based on the convergence data, the following observations can be made:

1. The convergence rates of all the Schur complement methods have a fairly strong

dependence on the time-step size. CPR on the full matrix, on the other hand,

exhibits a convergence behavior that is nearly independent of ∆t, which is

consistent with the spectral plots of Figures 5.1–5.4.
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Table 5.5: Convergence of GMRES in the presence of gravity.

AMG Exact
∆t 1.6 3.1 7.8 1.6 3.1 7.8
M0 19.5 42.3 63.2 8.5 16.8 22.6
M1 16.8 27.5 86.2 6.8 12.0 32.2
M2 14.2 24.5 55.2 7.3 12.3 22.8
M3 17.5 45.0 >100 7.2 12.3 23.8
M4 44.0 DNC DNC 6.2 10.0 15.2

Induced ILU 35.0 42.0 63.3
AMG on S2 18.0 DNC DNC
CPR on S2 8.2 11.5 22.6
CPR on J 5.7 6.8 6.6

2. The “best” preconditioner depends on the flow situation. While Quasi-IMPES

beats True-IMPES in the cocurrent case, the opposite is true for countercurrent

flow.

3. A more accurate approximation of the Schur complement does not imply faster

convergence when AMG is used. In particular, M4 (which has the most fill

among the M ’s) and the exact Schur complement S2 both do poorly in the

countercurrent flow case when AMG is used. As expected, AMG has trouble

when the matrix is far from being an elliptic operator. This is in contrast with

the exact preconditioner case, where a more accurate preconditioner usually

requires fewer iterations to converge.

4. Induced ILU performs poorly, since S2 contains a large elliptic component.

5. Keeping off-diagonal blocks, or at least treating them properly, is important for

convergence in the countercurrent flow case, as seen in the faster convergence

of M2 relative to the other preconditioners.

Given our comment about the performance of narrow-band preconditioners, it

is not surprising that M0 through M4 have a hard time competing with the CPR

preconditioner. What is surprising, though, is that the induced preconditioner MS
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requires more iterations to converge than M−1
CPR on the full system, even though it is

operating on a smaller system. One possible explanation is as follows. A direct (but

tedious) calculation shows that

M−1
S = (I + S̃−1

2 J̃tsJ̃
−1
ss Jsp)J

−1
tp ,

where S̃2 = J̃pp − J̃psJ̃
−1
ss J̃sp is the Schur complement of the second stage precondi-

tioner M2 with respect to pressure. If we assume cocurrent flow and that BILU(0)

with potential ordering is used, we would have J̃ss = Jss and J̃ps = Jps, so the

preconditioned matrix S2M
−1
S would become

S2M
−1
S = (Jtp − JtsJ

−1
ss Jsp + S2S̃

−1
2 JtsJ

−1
ss Jsp)J

−1
tp

= I + (S2S̃
−1
2 − I)JtsJ

−1
ss JspJ

−1
tp .

Once again,the convergence behavior depends on how close S2S̃
−1
2 is to the identity,

when such a term is absent from M−1
CPRJ . This could explain why CPR on the Schur

complement S2 scales less well than CPR on the full Jacobian J .



Chapter 6

Conclusions

The efficient simulation of immiscible multiphase flow in porous media requires the

use of nonlinear solvers and linear preconditioners that can take advantage of the

underlying structure of the problem, such as flow direction information. The phase-

based potential ordering in Chapter 3 exploits the upstream nature of the spatial

discretization in order to triangularize the saturation part of the nonlinear system of

equations. This ordering is valid for any flow configuration, and it can handle coun-

tercurrent flow due to gravity and capillarity. To compute the ordering, one simply

needs to perform a topological sort on the upstream graph, so the time complexity

scales linearly with the size of the grid. Moreover, this cost can be amortized over

several Newton and time steps, since in practice flow directions reverse only sparingly.

The proposed phase-based potential ordering allows a partial decoupling of the

transport problem from the flow problem, since the saturations can be computed via

back substitution once the pressures are known. This allows us to derive a reduced-

order Newton algorithm, which is the nonlinear analog of a Schur complement ap-

proach in matrix computations. We have proved that for 1D countercurrent flow, the

reduced Newton method converges unconditionally for large ∆t. In addition, a minor

modification to the method (which can be thought of as pivoting) yields provable

convergence for any time-step size. As demonstrated in various examples, reduced

Newton has a much more robust convergence behavior than the usual Newton method,

which translates into the ability to take larger time steps without risking divergence of
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the nonlinear iterations. This, in turn, leads to a more efficient and robust simulator

overall.

Ordering techniques can also lead to improvements in the linear solver. For a

cocurrent flow problem, a block ILU(0) factorization always exists provided the cells

are ordered according to the phase potential, and this factorization is unique over all

topological orderings. Moreover, this factorization is exact on the saturation part of

the Jacobian. Since block ILU is used as the second stage of CPR preconditioning,

exactness on saturation means that the pairing with True-IMPES reduction, which

is exact on pressure, is practically ideal. Moreover, its uniqueness over topological

orderings means CPR is much less sensitive to flow configuration variations if potential

ordering is used. Spectral plots and numerical experiments demonstrate the power

of this combination. Finally, experiments reveal that it is difficult to construct a

preconditioner for the pressure Schur complement S2 that rivals two-stage CPR in

performance. This is likely because S2 is a dense matrix that exhibits both advective

and diffusive characters, as indicated by the spectral plots.

A rigorous analysis is performed on the phase-based upstream discretization.

This discretization handles sonic points differently from the classical Godunov and

Engquist-Osher schemes, since the upstream directions are obtained from the poten-

tial gradient of each phase, rather than by manipulating the fractional flow curve

directly. Even though the numerical flux function becomes non-differentiable when-

ever the upstream direction changes, our analysis shows that the nonlinear algebraic

system resulting from a fully-implicit time discretization has a unique bounded solu-

tion for any time-step size, and the resulting solution profiles are always monotonic.

Since the analysis is based on the nonlinear Gauss-Seidel process, it also leads to

an implementable algorithm for solving these nonlinear systems. The convergence

rate is generally linear, but can become superlinear when the correct ordering is

used. In addition, the phase-based upstream scheme satisfies an entropy inequality,

so the method converges under mesh refinement. This is verified experimentally for a

countercurrent flow problem. Finally, when a non-uniform grid is used, the solution

accuracy is often comparable to the uniform-grid case, even though the maximum

CFL number is usually much higher for the non-uniform grid. This reveals the real
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advantage of the fully-implicit method over an explicit scheme: the ability to handle

the large CFL numbers that naturally arise from heterogeneity.

Future directions

In this section, we outline several possible future research directions stemming from

our work.

Treatment of strong countercurrent flow due to gravity

In section 4.2.4, we showed that the reduced Newton method is expected to converge

when the countercurrent flow due to gravity satisfies a backward CFL condition. On

the other hand, when the backward CFL number is much larger than 1, it is possible

for reduced Newton to cycle or diverge, especially when the initial guess is poor. In

practical simulations, it is generally too restrictive to require a backward CFL number

that is less than 1 everywhere. This is because the flow in regions far away from wells

can be dominated by gravity segregation, since the total velocity is close to zero there.

Thus, the backward CFL numbers in these regions (which are close to the foward

CFL numbers) determine the convergence behavior of reduced Newton. Ongoing

work focuses on hybridizing reduced Newton with a globally convergent scheme (e.g.,

nonlinear Gauss-Seidel) in such a way that reduced Newton handles regions with low

backward CFL numbers, whereas regions with strong countercurrent flow are to be

handled by the globally convergent scheme.

Extending reduced Newton to compositional models

Compositional simulations are even more expensive than black-oil simulations, es-

pecially when a large number of components are present. It would be beneficial to

extend the ordering and reduction paradigm introduced in Chapters 3 and 4 to a

compositional setting. A natural starting point would be the IMPSAT formulation

[16], in which pressure and saturations are treated implicitly, whereas compositions

(mole fractions of each component) are treated explicitly. Since compositions are not
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primary variables, the nonlinear algebraic system contains only pressure and satu-

rations; in other words, the implicit part looks exactly like a black-oil system, so

we can use reduced Newton without modifications. A possible difficulty is that in

a compositional model, heavy hydrocarbon components are allowed to vaporize into

the gas phase, whereas this is not allowed in the standard black-oil model. This could

complicate the triangularization process, as both the oil and gas equations contain

flow terms from both phases. However, since the amount of heavy components in

the vapor phase is generally small for heavy oils, it may still be possible to trian-

gularize the system by temporarily freezing or linearizing the Sg dependent terms in

the oil equation. More numerical experiments and theory are needed to verify the

effectiveness of this approach.

Extensions of stability analysis

The stability and convergence analysis presented in Chapter 2 are generally applica-

ble to scalar hyperbolic conservation laws. This is adequate for one-dimensional flow,

since the total velocity there is constant and known. However, for multiple dimen-

sions, our existence and stability results apply only if we temporarily fix the total

velocity field and solve the scalar transport problem on this frozen velocity field.

Thus, our approach does not directly apply to the fully-implicit method, which solves

for both the updated flow field and saturations in a coupled fashion. Our next step

is to extend our analysis to handle this coupling properly. Ongoing work also focuses

on extending the analysis to handle three-phase flow.



Appendix A

Pressure Equation Derivation

Here we derive the pressure equation (1.1.18). Assume no gravity, capillarity or source

terms. Then the phase equations are given by:

Water:
∂

∂t
(φρwSw) −∇ · (Kλwρw∇p) = 0, (A.1)

Oil:
∂

∂t
(φρoSo) −∇ · (Kλoρo∇p) = 0, (A.2)

Gas:
∂

∂t
(φρgSg + φρoRsSo) −∇ · (Kλgρg∇p+KλoρoRs∇p) = 0. (A.3)

We assume ρw, ρo, ρg, φ and Rs are all smooth functions of pressure p, and p is

differentiable with respect to t. We multiply the water equation by 1/ρw and expand

the time derivative:

1

ρw

(φ′ρw + φρ′w)
∂p

∂t
Sw + φ

∂Sw

∂t
− 1

ρw

∇ · (Kλwρw∇p) = 0. (A.4)

For the oil equation, we multiply by (ρg − ρoRs)/(ρoρg):

(

ρg − ρoRs

ρoρg

)

(φ′ρo+φρ
′
o)
∂p

∂t
So+φ

(

1 − ρoRs

ρg

)

∂So

∂t
−
(

ρg − ρoRs

ρoρg

)

∇·(Kλoρo∇p) = 0.

(A.5)
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Finally, we multiply the gas equation by 1/ρg:

1

ρg

[

(φ′ρg + φρ′g)Sg + (φ′ρoRs + φρ′oRs+ φρoR
′
s)So

]∂p

∂t

+ φ
∂Sg

∂t
+ φ

ρoRs

ρg

∂So

∂t
− 1

ρg

∇ · (Kλgρg∇p+KλoρoRs∇p) = 0.

(A.6)

We now add (A.4)–(A.6) together. First, the sum of the saturation derivatives is

φ
∂Sw

∂t
+ φ

(

1 − ρoRs

ρg

)

∂So

∂t
+ φ

∂Sg

∂t
+ φ

ρoRs

ρg

∂So

∂t
= φ

(

∂Sw

∂t
+
∂So

∂t
+
∂Sg

∂t

)

= 0,

since Sw + So + Sg ≡ 1. Next, the coefficient of ∂p/∂t is given by

φ′
[

Sw+So

(

1 − ρoRs

ρg

)

+ Sg +
ρoRs

ρg

So

]

+φ

[

ρ′w
ρw

Sw +
ρ′o
ρo

(

1 − ρoRs

ρg

)

So +
ρ′g
ρg

Sg +
(ρ′oRs

ρg

+
ρoR

′
s

ρg

)

So

]

=φ′(Sw +So + Sg) + φ

[

ρ′w
ρw

Sw +

(

ρ′o
ρo

+
ρoR

′
s

ρg

)

So +
ρ′g
ρg

Sg

]

=φ(cr+ cw + co + cg) =: φcT ,

where

cr =
φ′

φ
, cw =

ρ′w
ρw

, co =
ρ′o
ρo

+
ρoR

′
s

ρg

, cg =
ρ′g
ρg

.

So the pressure equation is

φcT
∂p

∂t
−
[

1

ρw

∇ · (Kλwρw∇p) +

(

ρg − ρoRs

ρoρg

)

∇ · (Kλoρo∇p)

+
1

ρg

∇ · (Kλgρg∇p+KλoρoRs∇p)
]

= 0.

(A.7)

We can simplify (A.7) further by assuming that p is differentiable with respect to the

spatial variable x. We use the identity

∇ · (fv) = ∇f · v + f∇ · v,
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where f : R
n → R and v : R

n → R
n are differentiable functions. The water term can

be written as

1

ρw

∇ · (Kλwρw∇p) =
1

ρw

[

(ρ′w∇p) · (Kλw∇p) + ρw∇ · (Kλw∇p)
]

= Kλwcw|∇p|2 + ∇ · (Kλw∇p).

Similarly, the oil term becomes

(

ρg − ρoRs

ρoρg

)

∇ · (Kλoρo∇p) =
1

ρo

(

1 − ρoRs

ρg

)

[

(ρ′o∇p) · (Kλo∇p) + ρo∇ · (Kλo∇p)
]

=

(

1 − ρoRs

ρg

)[

Kλo
ρ′o
ρo

|∇p|2 + ∇ · (Kλo∇p)
]

.

Finally, the gas term takes the form

1

ρg

∇ · (Kλgρg∇p+KλoρoRs∇ p)

=
1

ρg

[

(ρ′g∇p) · (Kλg∇p) + ρg∇ · (Kλg∇p)

+ (ρ′oRs + ρoR
′
s)∇p · (Kλo∇p) + ρoRs∇ · (Kλo∇p)

]

=Kλgcg|∇p|2 + ∇ · (K λg∇p) +
ρoRs

ρg

∇ · (Kλo∇p)

+
ρoRs

ρg

ρ′o
ρo

Kλo|∇p|2 +
ρoR

′
s

ρg

Kλo|∇p|2.

Substituting the above terms into (A.7) gives

φcT
∂p

∂t
−∇ · (KλT∇p) − χTK|∇p|2 = 0, (A.8)

where λT := λw + λo + λg is the total mobility and χT := λwcw + λoco + λgcg is the

mobility-weighted compressibility.



Appendix B

Diagonal Dominance and

L1-Accretivity

Here we prove the equivalence between column diagonal dominance and m-accretivity

in the L1-norm for linear maps over R
n. Recall that for the space L1(Rn), A is m-

accretive if it is continuous and for any u, v ∈ R
n,

n
∑

i=1

(A(u)i − A(v)i) sgn(ui − vi) ≥ 0. (B.1)

Theorem B.1. Let A : R
n → R

n be a linear map with matrix A = [aij]. Then A is

m-accretive if and only if A is column diagonally dominant, i.e.,

ajj ≥
∑

i6=j

|aij| for j = 1, . . . , n. (B.2)

Proof. Since A is linear, it suffices to show equivalence between condition (B.2) and

n
∑

i=1

(Au)i sgn(ui) ≥ 0 (B.3)

for any u ∈ R
n. Assume (B.3) holds for any vector u. For a given ε > 0, define

u(j) = (−ε sgn(a1j), . . . ,−ε sgn(aj−1,j), 1,−ε sgn(aj+1,j), . . . ,−ε sgn(anj))
T .

166



167

Then

Au(j) = Aj + εv(j),

where Aj is the j-th column of A and ‖v(j)‖1 ≤ n‖A‖1. Since sgn(u
(j)
i ) = − sgn(aij)

for i 6= j, we obtain

∑

i=1n

(Au(j))i sgn(u
(j)
i ) = ajj −

∑

i6=j

|aij| + ε
n
∑

i=1

v
(j)
i sgn(u

(j)
i ),

which must be non-negative by (B.3). Thus, we have

ajj −
∑

i6=j

|aij| ≥ −ε
n
∑

i=1

v
(j)
i sgn(u

(j)
i ) ≥ −nε‖A‖1,

which is true for all j. Letting ε→ 0 yields column diagonal dominance, as required.

Conversely, assume A is column diagonally dominant. Then so is AD, where D is

a diagonal matrix with dii > 0. Now, for any u ∈ R
n,

n
∑

i=1

(Au)i sgn(ui) =
n
∑

i=1

n
∑

j=1

aijuj sgn(ui) =
n
∑

i=1

n
∑

j=1

(aij|uj|) sgn(ui) sgn(uj). (B.4)

If u has no zero entries, the above is equivalent to evaluating sTMs, where s is a

vector of ±1s, and M = AU , U = diag(|u1|, . . . , |un|) > 0, so that M is also column

diagonally dominant. Thus,

sTMs =
n
∑

j=1

n
∑

i=1

mijsisj

=
n
∑

j=1

[

mjjs
2
j +

∑

i6=j

mijsisj

]

≥
n
∑

j=1

[

mjj −
∑

i6=j

|mij|
]

≥ 0,

so (B.3) holds for u. The general case where u has zero entries is similar, except the

double summation will skip over any index i or j for which ui or uj is zero.



Appendix C

Convergence of the Cascade

Method

Consider a one-dimensional model problem with

• incompressible flow,

• an injection boundary condition on the left,

• a pressure boundary condition on the right, and

• no countercurrent flow (e.g. horizontal reservoir with no capillarity).

The continuous form of the problem is given by the conservation law

φ(x)
∂Sp(x)

∂t
+
∂up(x)

∂x
= 0, xL < x < xR (C.1)

for p = w, o, with

up(x) = −K(x)krp(Sw(x))
dp(x)

dx

and boundary conditions

up(xL) = qp,L,

p(xR) = pR.
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Proposition C.1. For the above 1D model problem, the Appleyard-Cheshire Cascade

method [4] converges in two iterations, provided the cells are ordered from upstream

to downstream (left to right). In particular, the saturation of each cell will be correct

at the end of the first iteration, and the pressures will be correct at the end of the

second iteration.

Proof. Under the Cascade (left-to-right) ordering, the discretized equations have the

form

φi(Sw,i − Sold
w,i)

∆t
+

1

∆x

(

Klikrw(Sw,i)
pi − pi+1

∆x
− FIw,i

)

= 0,

φi(S
old
w,i − Sw,i)

∆t
+

1

∆x

(

Klikro(Sw,i)
pi − pi+1

∆x
− FIo,i

)

= 0.

(C.2)

Let the exact solution be S∗
w,i and p∗w,i, i = 1, . . . , N , and let the initial guess be S

(0)
w,i

and p
(0)
w,i. Consider the first iteration of the Cascade method. In line 3 in Figure 3.1,

the pressures are updated to p
(1)
i , but this has no impact on convergence in this model

problem. The saturations Sw,i are updated inside the loop from lines 4 to 8. We show

by induction that at the ith step of the loop, Sw,j and FOp,j are correct for j < i.

For the base case, let i = 1. The single-cell problem becomes

φ1(Sw,1 − Sold
w,1)

∆t
+

1

∆x

(

K12krw(Sw,1)
p1 − p

(1)
2

∆x
− Aqw,L

)

= 0,

φ1(S
old
w,1 − Sw,1)

∆t
+

1

∆x

(

K12kro(Sw,1)
p1 − p

(1)
2

∆x
− Aqo,L

)

= 0.

(C.3)

which we can solve for Sw,1 and p1. Since the exact solution also solves the single-cell

problem, the uniqueness of solutions tells us that

Sw,1 = S∗
w,1 and p1 − p

(1)
2 = p∗1 − p∗2.
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Thus, Sw,1 is exact, and the outward flux

FOp,1 = K12krp(Sw,1)(p1 − p
(1)
2 )/∆x

= K12krp(S
∗
w,1)(p

∗
1 − p∗2)/∆x

is exact as well. This proves the base case. For i > 1, note that the outward fluxes for

j = 1, . . . , i− 1 are assumed to be exact. This means the Cascade solution, and the

exact solution at cell i, both solve the same single-cell problem. Hence, Sw,i = S∗
w,i,

and the outward fluxes will match as well. Thus, the induction step goes through,

and we have Sw,i = S∗
w,i for all i after one iteration. It follows that during the second

iteration of the Cascade method, in which we solve the linearized problem

J

[

δS(2)

δp(2)

]

= −r(2), (C.4)

we get δS(2) = 0, which means (1) the transmissibility coefficients are exact, and (2)

the fully implicit problem and the IMPES problem have the same pressure solution.

But since the residual function is linear (affine) in pressure, solving (C.4) will yield

the exact pressure, i.e.

p∗i = p(1) + δp(2).

So at the end of the second iteration, both the saturations and the pressures are

correct, and the Cascade method converges to the solution.



Appendix D

Nonsingularity of Jss

Proposition D.1. Let the relative permeability functions krw and kro be such that

dkrw/dSw ≥ 0 and ∂kro/∂So ≥ 0. Then Jss = ∂Fs/∂S is nonsingular.

Proof. Since Jss is a lower triangular matrix, it suffices to show that none of its

diagonal entries is zero. A typical oil conservation equation for cell i is

Foi =
φSoiρo(pi)

∆t
+

∑

l adjacent to i

KilHo,il(Φoi − Φol) + Fcap, (D.1)

where

Ho,il =







kro(Si)ρo(pi)/µo(pi) if Φoi ≥ Φol,

kro(Sl)ρo(pl)/µo(pl) if Φoi < Φol,

and Fcap denotes capillary forces, which are independent of So. Hence

∂Foi

∂Soi

=
φρo(pi)

∆t
+Kil

∂Ho,il

∂Soi

(Φoi − Φol). (D.2)

The accumulation term φρo(pi)/∆t will always be positive. The sign of the flux term

depends on the upstream direction. If Φoi ≥ Φol, then

∂Ho,il

∂Soi

=
ρo(pi)

µo(pi)

∂kro

∂So

(Soi) ≥ 0

by assumption. On the other hand, if Φoi < Φol, then Ho,il is independent of Soi, so
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the derivative is zero. Thus, the flux derivative will always be non-negative, which

means ∂Foi/∂Soi > 0 for all cells i. The argument for the water equations is similar.

Thus, Jss has a positive diagonal, so it is nonsingular.

Under certain mild conditions (to be specified below), the Stone I and II models

(cf. [6]) can be shown to satisfy ∂kro/∂So ≥ 0, as required by Proposition D.1. Note

that we are only concerned with saturations inside the region

D = {(Sw, So, Sg) |Sw ≥ Swc, So ≥ Som, Sg ≥ 0, Sw + So + Sg = 1},

where Swc is the connate water saturation and Som is the minimum oil saturation at

which oil is simultaneously displaced by water and gas. Also note that the derivative

∂kro/∂So is taken along the line Sw = constant, so by the relation Sw + So + Sg = 1,

the criterion ∂kro/∂So ≥ 0 is equivalent to ∂kro/∂Sg ≤ 0, which turns out to be more

natural to show.

Proposition D.2. Assume dkrog/dSg ≤ 0. Then for saturations in D, the Stone I

model satisfies ∂kro/∂Sg ≤ 0 provided ∂Som/∂Sg ≥ −1
2
.

Proof. The Stone I model is defined as kro(Sw, Sg) = krocwS
∗
oβwβg, where

βw =
krow(Sw)/krocw

1 − S∗
w

, βg =
krog(Sg)/krocw

1 − S∗
g

, krocw = krow|Sw=Swc
,

and the normalized saturations are defined as

S∗
w =

Sw − Swc

1 − Swc − Som

, S∗
o =

So − Som

1 − Swc − Som

, S∗
g =

Sg

1 − Swc − Som

.

Combining all these relations, we see that kro = U(Sw, Sg, Som)/V (Sw, Sg, Som), where

U = (1 − Sw − Som − Sg)(1 − Swc − Som)krow(Sw)krog(Sg),

V = (1 − Swc − Som − Sg)(1 − Sw − Som).
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Remembering that Som = Som(Sw, Sg), we deduce that

∂kro

∂Sg

=
1

V 2

[(

V
∂U

∂Sg

− U
∂V

∂Sg

)

+
∂Som

∂Sg

(

V
∂U

∂Som

− U
∂V

∂Som

)]

=
1

V 2

[

R1 +R2 ·
∂Som

∂Sg

]

,

so the sign of ∂kro/∂Sg is determined by the quantity within the square brackets.

After some manipulation, we get

R1 = −(Sw − Swc)(1 − Swc − Som)(1 − Sw − Som)krowkrog

+ (1 − Swc − Som − Sg)(1 − Sw − Som)(1 − Swc − Som)×
(1 − Sw − Som − Sg)krowk

′
rog

≤ −(Sw − Swc)(1 − Swc − Som)(1 − Sw − Som)krowkrog

≤ 0,

since k′org ≤ 0. In addition, we get

R2 = −Sg(Sw − Swc)
[

(1 − Sw − Som − Sg) + (1 − Swc − Som)
]

krowkrog

≤ 0.

Hence R1 +R2 · ∂Som

∂Sg
≤ 0 if either ∂Som/∂Sg ≥ 0 or

∣

∣

∣

∣

∂Som

∂Sg

∣

∣

∣

∣

≤ (Sw − Swc)(1 − Swc − Som)(1 − Sw − Som)

Sg(Sw − Swc)
[

(1 − Sw − Som − Sg) + (1 − Swc − Som)
] . (D.3)

But since Sg ≤ 1 − Sw − Som and 1 − Sw − Som − Sg ≤ 1 − Swc − Som, we see that

(Sw − Swc)(1 − Swc − Som)(1 − Sw − Som)

Sg(Sw − Swc)
[

(1 − Sw − Som − Sg) + (1 − Swc − Som)
] ≥ 1

2
.

Thus, in order to ensure that ∂kro/∂Sg ≤ 0, it is sufficient to require either ∂Som/∂Sg ≥
0 or |∂Som/∂Sg| ≤ 1

2
, which is equivalent to requiring ∂Som/∂Sg ≥ −1

2
.
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Note that if the Fayers and Matthews [35] model for Som is used, we would have

∂Som

∂Sg

= − Sorw − Sorg

1 − Swc − Sorg

,

so the condition in Proposition D.2 would be satisfied as long as Sorw − Sorg is small,

which is usually the case. In particular, the monotonicity condition is always satisfied

whenever Sorw = Sorg.

Proposition D.3. Assume that dkrg/dSg ≥ 0, dkrog/dSg ≤ 0, and that krw and krow

are convex functions of Sw. Then for all saturations in D, the Stone II model satisfies

∂kro/∂Sg ≤ 0.

Proof. The Stone II model is defined as

kro(Sw, Sg) = krocw

[(

krow

krocw

+ krw

)(

krog

krocw

+ krg

)

− (krw + krg)

]

.

Differentiating with respect to Sg gives

∂kro

∂Sg

=

(

krow

krocw

+ krw − 1

)

k′rg +

(

krow

krocw

+ krw

)

k′rog

krocw

.

The second term is clearly non-positive because k′rog ≤ 0. To show that the first term

is also non-positive, first note that k′rg ≥ 0. Next, define g(Sw) = krw + krow/krocw.

Then g(Swc) = g(1 − Sorw) = 1. But since g is convex, it must be that g(Sw) ≤ 1 for

all Swc ≤ Sw ≤ 1−Sorw. So g(Sw)−1 ≤ 0, which implies the first term is non-positive

as well. Hence, we have shown that ∂kro/∂Sg ≤ 0, as required.



Appendix E

Properties of Pressure Matrices

This appendix deals with the spectral properties of various combinations of the pres-

sure matrices Jsp, Jpp and Jtp. These properties are useful in evaluating the relative

importance of various terms that appear in the preconditioned matrices in Chapter

5.

Let G = (V,E) be a connected undirected graph with nodes V and edges E.

Suppose the nodes V can be partitioned into V = V int ∪ V bdy, where V bdy 6= ∅. (For

our purposes, V int consists of the control volumes in the domain; an edge in E is

either an interface separating two cells, or the face of a boundary cell that is subject

to a pressure boundary condition; V bdy consists of “ghost cells” outside the domain

that are used by the finite volume method to deal with pressure boundary conditions.)

Suppose there exists a function σ : E → [0,∞) that assigns a non-negative weight

(transmissibility) to each edge in E, and let σij denote the weight assigned to edge

(i, j). Then we can define a |V int| × |V int| matrix Mσ by

Mσ
ij =



















∑

(i,l)∈E σil i = j,

−σij i 6= j, (i, j) ∈ E,

0 i 6= j, (i, j) /∈ E.

(E.1)

Then Mσ is a symmetric M-matrix, and by Gershgorin theorem its eigenvalues are

non-negative, so that Mσ is positive semi-definite. If in addition σ > 0 then Mσ is
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irreducible, so by the Peron-Frobenius theorem it is also nonsingular, i.e. symmetric

positive definite. Moreover, for any constant c > 0 we have M cσ = cMσ.

Given two weight functions σ and τ we say σ ≤ τ if σij ≤ τij for all edges (i, j).

The following lemma is a slight modification of a theorem by Ostrowski and Reich

(cf. [78]).

Lemma E.1. Let A = M −N , where A = A∗, A and M are both nonsingular, and

define Q = M +M∗−A. If A is positive definite and Q is positive semi-definite, then

ρ(M−1N) ≤ 1, where ρ(·) is the spectral radius. In addition, if Q is positive definite,

then ρ(M−1N) < 1.

Proof. Define B = M−1N = I −M−1A. It follows that if Bu = λu, u 6= 0, then

Au = (1 − λ)Mu,

where λ 6= 1 since A is nonsingular. Taking the inner product of both sides with u

yields

u∗Au = (1 − λ)u∗Mu,

but since A is symmetric positive definite, we also have

u∗Au = (1 − λ̄)u∗M∗u.

Adding these relaions yields

u∗(M +M∗)u =

(

1

1 − λ
+

1

1 − λ̄

)

u∗Au

= 2<
(

1

1 − λ

)

u∗Au,

which can be rewritten as

u∗(Q+ A)u

u∗Au
= 1 +

u∗Qu

u∗Au
= 2<

(

1

1 − λ

)

.

Since A is positive definite andQ is positive semi-definite, we must have 2<
(

1
1−λ

)

≥ 1,
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with strict inequality if Q is positive definite. If we write λ = α+ iβ, it follows that

2(1 − α)

(1 − α)2 + β2
≥ 1,

which yields α2 + β2 = |λ|2 ≤ 1 (again with strict inequality if Q is positive definite).

Corollary E.2. Let σ and τ be weight functions on the edges E. If τ > 0 and

0 ≤ σ ≤ τ , then ρ((M τ )−1Mσ) ≤ 1.

Proof. Let M = M τ and N = −Mσ in Lemma E.1. Then A = M τ + Mσ and

Q = M τ −Mσ, which corresponds to matrices with weights τ +σ > 0 and τ −σ ≥ 0,

so that A is symmetric positive definite and Q is symmetric positive semi-definite.

Thus, we have ρ((M τ )−1Mσ) ≤ 1 by Lemma E.1, as required.

The above corollary immediately implies ρ(JspJ
−1
tp ) ≤ 1 and ρ(JppJ

−1
tp ) ≤ 1, since

λw, λo are both bounded above by λT . The corollary also leads to a bound on the

condition number of Mσ:

Theorem E.3. Let σ and τ be weight functions on the edges E. If there exist con-

stants 0 < b ≤ B such that 0 < bτ ≤ σ ≤ Bτ , then

κ2(M
σ) ≤ B

b
κ2(M

τ ),

where κ2(A) = ‖A‖2 ‖A−1‖2 is the 2-norm condition number.

Proof. Let M τ = R2, where R is the symmetric square root of M τ . In other words,

R = UΛ1/2UT , where M τ = UΛUT is the spectral decomposition of the symmetric

positive definite matrix M τ . Then by the above corollary we must have

bρ(R(Mσ)−1R) = bρ((Mσ)−1R2) = ρ((Mσ)−1(bM τ )) ≤ 1,

1

B
ρ(R−1MσR−1) =

1

B
ρ(R−2Mσ) = ρ((BM τ )−1Mσ) ≤ 1.

But since ρ(·) = ‖ · ‖2 for symmetric matrices, this implies

‖R(Mσ)−1R‖2‖R−1MσR−1‖2 ≤ B/b,
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so that
‖(Mσ)−1‖2

‖R−1‖2
2

· ‖M
σ‖2

‖R‖2
2

≤ B

b
.

Finally, by the symmetry of R we have

‖R‖2
2 = ρ2(R) = ρ(R2) = ρ(M τ ) = ‖M τ‖2,

and similarly ‖R−1‖2
2 = ‖(M τ )−1‖2, so we must have

‖Mσ‖2‖(Mσ)−1‖2 ≤
B

b
‖M τ‖2‖(M τ )−1‖2,

as required.

The Laplacian of a graph G (cf. [68]), denoted by L(G), is the matrix M τ when

τ ≡ 1. Theorem E.3 can yield useful bounds for Jtp when κ2(L(G)) is known. For a

Cartesian grid, it is well known that κ2(L(G)) = O(1/h2); as a result, κ2(Jtp) is also

O(1/h2), provided the absolute permeability K(x) and total mobility λT (S) satisfy

0 < kmin ≤ K(x) ≤ kmax,

0 < λT,min ≤ λT (S) ≤ λT,max.
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