
Performance of Waveform Relaxation with
Adaptive Pipelining on the Wave Equation

Laurence Halpern[0000−0002−7877−7130] and
Felix Kwok[0000−0002−8360−6328]

1 Introduction

The Waveform Relaxation with Adaptive Pipelining (WRAP) algorithm was intro-
duced in [4] to parallelize Schwarz waveform relaxation (SWR) iterations across
different time steps. In that paper, a recurrence involving error norms on the initial
and transmission conditions allows one to bound the wall-clock time (excluding
communication costs). The key assumption in this recurrence is that the error in the
transmission condition decreases geometrically to zero for exact initial conditions.
However, for wave-type problems, one often has a nilpotent iteration, i.e., the error
exhibits no decrease until after 𝑘 > 1 iterations, when it drops to zero. The goal of
this paper is to understand the behaviour of WRAP for such iterations, as well as the
effect of communication cost on overall performance. Here, we concentrate on initial
value problems, although we get similar results when we useWRAP for gradient cal-
culations arising from optimal control problems. Note that other time parallelization
strategies exist for the wave equation, e.g. Parareal [5] and tent-pitching methods [3].

2 Convergence of SWR for the 1D wave equation

In [2], the authors introduced transparent transmission conditions for the 1D wave
equation. For ease of presentation,we assume a constantwave speed 𝑐 = 1 throughout
the domain Ω, which is divided into non-overlapping spatial subdomains (Ω𝑖)𝑀𝑖=1 of
equal length 𝐻, arranged from left to right. Then for 𝑘 = 1, 2, . . ., one solves on each
subdomain Ω𝑖

Laurence Halpern
LAGA, Université Sorbonne Paris Nord, France, e-mail: halpern@math.univ-paris13.fr

Felix Kwok
Université Laval, Canada, e-mail: felix.kwok@mat.ulaval.ca

1

2 Laurence Halpern and Felix Kwok

𝜕 𝑡
𝑒
𝑘
3
− 𝜕

𝑥
𝑒
𝑘
3
=

cst
𝜕
𝑡 𝑒 𝑘1 +

𝜕
𝑥 𝑒 𝑘1 = cst

1 1 1

1+ 1+ 1+1− 1− 1−

2 2 2

2+ 2+ 2+2− 2− 2−

3 3 3

𝑒𝑘1 = 0
𝜕𝑡𝑒

𝑘
1 = 0

𝑒𝑘2 = 0
𝜕𝑡𝑒

𝑘
2 = 0

𝑒𝑘3 = 0
𝜕𝑡𝑒

𝑘
3 = 0

0 𝐻 2𝐻 3𝐻

𝐻

2𝐻

𝑥

𝑡
Ω1 Ω2 Ω3

Fig. 1 Definition of regions used in the proof of Theorem 1. Regions 𝑘 , 𝑘+ and 𝑘− correspond
to places where 𝑒𝑘

𝑖
, B+𝑒𝑘𝑖 or B−𝑒𝑘𝑖 first becomes zero at iteration 𝑘.

𝜕2𝑡 𝑢
𝑘
𝑖 = 𝜕

2
𝑥𝑢
𝑘
𝑖 + 𝑓 on Ω𝑖 × [0, 𝑇], (1a)

B±𝑢
𝑘
𝑖 = B±𝑢

𝑘−1
𝑖±1 on (𝜕Ω𝑖 ∩Ω𝑖±1) × [0, 𝑇], (1b)

𝑢𝑘𝑖 = 𝑢, 𝜕𝑡𝑢
𝑘
𝑖 = 𝜕𝑡𝑢 on Ω𝑖 × {0} (1c)

where B± = 𝜕𝑡 ± 𝜕𝑥 , with suitable adjustments for any Dirichlet or Neumann bound-
ary conditions on the physical boundary. Periodic boundary conditions can also be
handled by identifying Ω0 with Ω𝑀 and Ω𝑀+1 with Ω1. A slight modification of
Theorem 3.4 in [2] allows us to prove the following.

Theorem 1 Let 𝑢(𝑥, 𝑡) be the exact solution of 𝜕2𝑡 𝑢 − 𝜕2𝑥𝑢 = 𝑓 and 𝑢𝑘
𝑖

be defined by
(1a)–(1c). Then for any 𝑘 ≥ 0 and any 𝑖, we have 𝑢𝑘+1

𝑖
(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) for any 𝑥 ∈ Ω𝑖

and 𝑡 ∈ [0, 𝑘𝐻]. In other words, optimized SWR with transparent transmission
conditions converges to the exact solution in 𝑘 + 1 iterations, where 𝑘 = ⌈𝑇/𝐻⌉.

Proof. By linearity, it suffices to consider the error 𝑒𝑘
𝑖
= 𝑢𝑘

𝑖
− 𝑢 |Ω𝑖×[0,𝑇] , where

𝑒𝑘
𝑖
satisfies (1a)–(1c) with 𝑓 = 0, 𝑒𝑘

𝑖
(𝑥, 0) = 0, 𝜕𝑡𝑒𝑘𝑖 (𝑥, 0) = 0, and homogeneous

Dirichlet or Neumann conditions on the outer boundary. Consider the diagram in
Figure 1, where the vertical edge separating the regions 𝑗+ and 𝑗− corresponds to
the time interval [(𝑗 − 1)𝐻, 𝑗𝐻]. We now show by induction on 𝑘 that

(i) 𝑒𝑘
𝑖
= 0 in any region 𝑗 of Ω𝑖 with 𝑗 ≤ 𝑘;

(ii) B−𝑒𝑘𝑖 = 0 in region 𝑘− ofΩ𝑖 , and 𝑒
𝑘
𝑖
= 0 in any region 𝑗− ofΩ𝑖 with 𝑗 ≤ 𝑘 −1;

(iii) B+𝑒𝑘𝑖 = 0 in region 𝑘+ ofΩ𝑖 , and 𝑒
𝑘
𝑖
= 0 in any region 𝑗+ ofΩ𝑖 with 𝑗 ≤ 𝑘 −1.

Note that the above implies 𝑒𝑘
𝑖
= 0 for 0 ≤ 𝑡 ≤ (𝑘 − 1)𝐻, as required. We start by

observing that the wave equation can be factorized as

Waveform Relaxation with Adaptive Pipelining on the Wave Equation 3

(𝜕𝑡 + 𝜕𝑥) (B−𝑒
𝑘
𝑖) = (𝜕𝑡 − 𝜕𝑥) (B+𝑒

𝑘
𝑖) = 0,

which implies that B−𝑒𝑘𝑖 is constant along characteristics with slope +1. Thus, at
iteration 𝑘 = 1, the initial conditions 𝑒1

𝑖
(𝑥, 0) = 𝜕𝑡𝑒

1
𝑖
(𝑥, 0) = 0 imply B−𝑒1𝑖 = 0

within the regions 1 and 1− . Similarly, since B+𝑒1𝑖 is constant along characteristics
with slope −1, the initial conditions imply that B+𝑒1𝑖 = 0 within the regions 1 and
1+ . Since B−𝑒1𝑖 = B+𝑒1𝑖 = 0 in region 1 , we conclude that 𝑒

1
𝑖
= 0 there. We have

therefore proved (i)–(iii) for 𝑘 = 1.
We assume inductively that (i)–(iii) hold up to 𝑘−1. Let 𝑗 ≤ 𝑘−1 and Γ𝐿 (𝑖, 𝑗+) be

the portion of the left boundary ofΩ𝑖 adjacent to the region 𝑗+ . If this is an interface
with Ω𝑖−1, then it coincides with Γ𝑅 (𝑖 − 1, 𝑗−), the portion of the right boundary of
Ω𝑖−1 adjacent to its own region 𝑗− . Then from the transmission condition (1b), we
have

(B−𝑒
𝑘
𝑖) |Γ𝐿 (𝑖, 𝑗+) = (B−𝑒

𝑘−1
𝑖−1) |Γ𝑅 (𝑖−1, 𝑗−) = 0 by (ii).

If Γ𝐿 (𝑖, 𝑗+) is an outer boundary, conditions of the Dirichlet or Neumann type will
lead to either 𝜕𝑡𝑒𝑘𝑖 = 0 or 𝜕𝑥𝑒

𝑘
𝑖
= 0, which can be combined with B+𝑒𝑘𝑖 = 0 (by (iii))

to deduce that B−𝑒𝑘𝑖 = 0 on Γ𝐿 (𝑖, 𝑗+). Propagating this information within Ω𝑖 along
characteristics with slope +1 leads to B−𝑒𝑘𝑖 = 0 in regions 𝑗+ , 𝑗 + 1 and (𝑗 + 1)− .
The same argument on the right boundary Γ𝑅 (𝑖, 𝑗−) shows that we have B+𝑒𝑘𝑖 = 0 in
regions 𝑗− , 𝑗 + 1 and (𝑗 + 1)+ . In summary, we have B−𝑒𝑘𝑖 = B+𝑒𝑘𝑖 in regions 1 ,
2 , . . ., 𝑘 , as well as in regions 1− , . . . , (𝑘 − 1)− and 1+ , . . . , (𝑘 − 1)+ , so 𝑒𝑘𝑖 = 0
in all these regions. Furthermore, we have B−𝑒𝑘𝑖 = 0 in region 𝑘− and B+𝑒𝑘𝑖 = 0 in
region 𝑘+ , so (i)–(iii) is verified up to 𝑘 , and the induction is complete. ⊓⊔

Remark 1 The above proof shows that if 𝑡 > 𝑗𝐻 for some integer 𝑗 , then the
errors 𝑒1

𝑖
(·, 𝑡), 𝑒2

𝑖
(·, 𝑡), . . . , 𝑒 𝑗

𝑖
(·, 𝑡) have no influence on the subsequent convergence

behaviour of the algorithm, since the solution at time 𝑡 will be overwritten by
incoming data anyway at a later iteration. This behaviour is typical of SWRmethods
for hyperbolic problems and for problems where information propagates with finite
speed, such as explicit time discretizations. This observation will be important for
understanding the convergence of the adaptive pipeline in the next section.

3 Convergence of the adaptive pipeline

We now apply the previous convergence analysis to study the convergence of the
adaptive pipeline, see [4] for the full description of the algorithm. In essence, WRAP
subdivides the SWR iteration into “tasks”T 𝑘

𝑖,𝑛
, indexed by their associated subdomain

Ω𝑖 , time interval (or time block) [𝑇𝑛−1, 𝑇𝑛] and iteration number 𝑘 . The WRAP
algorithm then assigns 𝑃 processors per spatial subdomain to perform tasks that
can be processed in parallel; see Figure 2 for an illustration for 𝑃 = 3 processors,
where tasks that are connected by a line are performed in parallel. When there are
more outstanding tasks than processors available, earlier time blocks are prioritized,

4 Laurence Halpern and Felix Kwok

Ite
ra
tio
ns

𝑡
𝐻 2𝐻 3𝐻 4𝐻 5𝐻

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 2 Tasks executed by the adaptive pipeline running 𝑃 = 3 processors per subdomain in parallel.
Tasks that are connected are run in parallel, with a different colour identifying each processor. Each
task integrates over a time block of size 𝐻/4. Some tasks are delayed initially due to the lack of
available processors. In this example, we have 𝐷12..15 = 1, 𝐷16..19 = 2 and 𝐷20 = 3. The pipeline
converges after 𝑘 = 6 SWR iterations, after executing 𝑘 + 𝑁 − 1 = 25 non-concurrent tasks, for a
theoretical speedup of 2𝑁/(𝑘 + 𝑁 − 1) = 1.6 over sequential integration.

meaning that other tasks are delayed due to a lack of processors; this is the case for
time block 12 in Figure 2, which cannot be processed until iteration 2. We define 𝐷𝑛
to be the delay in starting the 𝑛th time block: here, we have 𝐷12 = 1. Time block 𝑛
eventually converges after iteration 𝐸𝑛 (e.g., 𝐸12 = 4 in Figure 2), which frees up a
processor for computation in subsequent time blocks. The iteration terminates after
𝑘 = 𝐸𝑁 iterations, where 𝑁 is the total number of time blocks.
Note that 𝑢𝑘

𝑖,𝑛
does not necessarily coincide with the restriction of the SWR iterate

𝑢𝑘
𝑖
onto 𝑡 ∈ [𝑇𝑛−1, 𝑇𝑛], since no updates can be performed in time block 𝑛 during the

first 𝐷𝑛 iterations. Nonetheless, the following theorem characterizes 𝐸𝑛 for all 𝑛:

Theorem 2 Let 0 = 𝑇0 < 𝑇1 < · · · < 𝑇𝑁 = 𝑇 be a partition of [0, 𝑇]. For any 𝑘 ≥ 1,
1 ≤ 𝑖 ≤ 𝑀 and 1 ≤ 𝑛 ≤ 𝑁 , let T 𝑘

𝑖,𝑛
be the task that computes 𝑢𝑘

𝑖,𝑛
, the approximate

solution in the time block [𝑇𝑛−1, 𝑇𝑛], within an adaptive pipeline running 𝑃 ≥ 2
tasks in parallel. If (𝑘, 𝑛) satisfies (𝑘 − 1)𝐻 < 𝑇𝑛 ≤ 𝑘𝐻, then for all 1 ≤ 𝑖 ≤ 𝑀 ,
T 𝑘+1
𝑖,𝑛

produces the exact solution on Ω𝑖 , i.e., 𝑢𝑘+1
𝑖,𝑛

(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) for all 𝑥 ∈ Ω𝑖 ,
𝑡 ∈ [𝑇𝑛−1, 𝑇𝑛]. In other words, we have 𝐸𝑛 = ⌈𝑇𝑛/𝐻⌉ + 1.

Proof. We proceed by induction on 𝑛. For the base case, let us consider 1 ≤ 𝑛 ≤ 𝑃.
Then 𝐷𝑛 = 0, since there are enough processors to start the 𝑛th task T 1

𝑖,𝑛
without

any delay. Therefore, 𝑢𝑘+1
𝑖,𝑛

(𝑥, 𝑡) is identical to the SWR iterate 𝑢𝑘+1
𝑖

(𝑥, 𝑡) for any
𝑡 ∈ [𝑇𝑛−1, 𝑇𝑛], so by Theorem 1, we have 𝑢𝑘+1𝑖,𝑛 = 𝑢𝑘+1

𝑖
= 𝑢 on Ω𝑖 × [𝑇𝑛−1, 𝑇𝑛]

whenever 𝑇𝑛 ≤ 𝑘𝐻. Now suppose the theorem statement is true up to 𝑛−1. We need
to prove that it is true for 𝑛. As noted in Remark 1, the value of the initial iterates
𝑢
𝑗

𝑖
(𝑥, 𝑡) has no effect on convergence if 𝑡 > 𝑗𝐻. Therefore, if (ℓ−1)𝐻 < 𝑇𝑛−1 ≤ ℓ𝐻,

then the values of 𝑢 𝑗
𝑖,𝑛
has no effect as long as 𝑗 ≤ ℓ − 1; thus, as long as the delay of

the 𝑛th task satisfies 𝐷𝑛 ≤ ℓ − 1, we still have 𝑢 𝑗
𝑖,𝑛

= 𝑢
𝑗

𝑖
on Ω𝑖 × [𝑇𝑛−1, 𝑇𝑛] for any

𝑗 ≥ ℓ. But 𝐷𝑛 = 𝐸𝑛−𝑃+1−𝑃 = ⌈𝑇𝑛−𝑃+1/𝐻⌉ +1−𝑃 ≤ ℓ+1−𝑃 ≤ ℓ−1, since 𝑃 ≥ 2.
Thus, 𝑢𝑘+1

𝑖,𝑛
= 𝑢𝑘+1

𝑖
= 𝑢 on Ω𝑖 × [𝑇𝑛−1, 𝑇𝑛] whenever 𝑇𝑛 ≤ 𝑘𝐻, as required. ⊓⊔

Waveform Relaxation with Adaptive Pipelining on the Wave Equation 5

The above theorem implies that for the 1D problem, as long as we use 𝑃 ≥ 2
processors, the pipeline will converge in a fixed number of iterations proportional to
𝑇 . Since this iteration count is the same for any 𝑃 ≥ 2, no additional speedup will
be gained by using more than two processors.

4 Choosing the time block size to maximize speedup

Theorem 2 shows that for a fixed time horizon 𝑇 , the number of iterations required
for convergence is independent of the number of time blocks 𝑁 used, and the
theoretical speedup increases as 𝑁 becomes large. However, this will change when
communication costs are non-negligible, sincemore frequent communication will be
required if we use a large number of time blocks. We therefore need a computational
model that takes communication into account.
To fix ideas, we consider spatial subdomains of width 𝐻 and apply the discretiza-

tion in [2], which is second order in time and space and equivalent to the leap-frog
scheme for constant wave speeds. We then choose the time step size Δ𝑡 to be equal to
the spatial mesh size ℎ, which makes the numerical scheme exact. We also assume
from now on that all the time blocks have the same length Δ𝑇 , such that 𝑁 = 𝑇/Δ𝑇 .
We consider the following costs incurred by the algorithm:

0. Costs that are independent of the size of the problem (i.e., setup costs);

and for each of the 𝑁 +𝐾 non-concurrent tasks, where 𝐾 is the number of iterations:
1. Costs that are proportional to (Δ𝑇/Δ𝑡) · (𝐻/ℎ)𝑑 , where 𝑑 is the number of spatial
dimensions1 (e.g. time integration, exchange of interface traces);

2. Costs that are constant per task (e.g., communication latency, task management)

These costs are represented by the proportionality constants 𝑐0, 𝑐1 and 𝑐2 in the
following model for 𝑅, the total running time:

𝑅 = 𝑐0 + (𝑁 + 𝐾)
(
𝑐1

Δ𝑇

Δ𝑡
· 𝐻

𝑑

ℎ𝑑
+ 𝑐2

)
(2)

Substituting 𝑑 = 1, Δ𝑇 = 𝑇/𝑁 , 𝐾 = 𝑇/𝐻 and ℎ = Δ𝑡 (since CFL=1), we obtain

𝑅(𝑁) = 𝑐0 + 𝑐1
𝑇

ℎ2

(
𝐻 + 𝑇

𝑁

)
+ 𝑐2

(
𝑁 + 𝑇

𝐻

)
, (3)

which is minimized for the optimal value of 𝑁

𝑁∗ =
𝑇

ℎ

√︂
𝑐1
𝑐2
, with 𝑅(𝑁∗) = 𝑐0 +

𝑇

𝐻

(
𝐻

ℎ

√
𝑐1 +

√
𝑐2

)2
. (4)

1 We keep the spatial dimension 𝑑 in the computational costs below, since they are also valid for
higher dimensions; only 𝐾 , the number of iterations required for convergence, behaves differently
when 𝑑 > 1.

6 Laurence Halpern and Felix Kwok

𝑁 Block size 𝑃 Time (s) Speedup

800 2 1 0.2269 1.372 0.1660

400 4 1 0.1996 1.472 0.1357

200 8 1 0.1862 1.532 0.1214

160 10 1 0.1804 1.502 0.1204

100 16 1 0.1763 1.472 0.1200

50 32 1 0.1704 1.302 0.1309

25 64 1 0.1683 1.042 0.1617
0 200 400 600 800

No. of time blocks

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

R
un

ni
ng

 ti
m

e

Data
Model

Fig. 3 Left: running time of the adaptive pipeline as a function of the number of time blocks. Right:
the regression curve for the model in Equation (3) using data for 𝑃 = 2 processors.

Observe that 𝑇/𝑁∗ =
√︁
𝑐2/𝑐1ℎ =

√︁
𝑐2/𝑐1Δ𝑡, meaning that the optimal time block

size is a constant number of time steps, irrespective of the total time horizon 𝑇 .
Specifically, the optimal number of time steps per block is

√︁
𝑐2/𝑐1, i.e., the square

root of the ratio between the constant costs (latency and task management) and the
cost per degree of freedom arising from time integration.
We implemented the adaptive pipeline using the spmd construct in the Matlab

Parallel Computing Toolbox (version 2024a) and tested it on a 1D problem with
𝑇 = 8 and the spatial subdomainΩ = (0, 2) subdivided into 5 equal non-overlapping
subdomains, and Δ𝑡 = ℎ = 0.005. No spatial parallelism is implemented, i.e., the
subdomain problems within each time block are solved sequentially by a single
processor, while different time blocks are handled by different processors in parallel.
We run the algorithm on an Intel Core i9-14900K machine with 128Gb of RAM and
24 cores running at 2.4 GHz. For the 1D test, we only use 𝑃 = 1 or 2 processors
per time block, since no reduction in the number of iterations will result from using
more processors. The table on the left of Figure 3 shows the running time, averaged
over 10 runs, as a function of the number of time blocks or, equivalently, the size of
each time block as a multiple of Δ𝑡. Using linear regression on the data for 𝑃 = 2
(see the right panel of Figure 3), we find that 𝑐0 = 0.017 s, 𝑐2 = 0.085ms, and
𝑐1 = 0.61 𝜇s/dof. For these values, the optimal number of time blocks predicted by
our model is 𝑁∗ ≈ 135.5; the nearest feasible values are 𝑁 = 100 and 160, i.e., for
block sizes 16 and 10. As predicted, these choices yield the fastest running times.

5 A two-dimensional problem

We now study the performance of WRAP for the 2D wave equation via an spmd
implementation in Matlab. For simplicity, we consider a rectangular domain Ω with

Waveform Relaxation with Adaptive Pipelining on the Wave Equation 7

Dirichlet boundary conditions.We subdivideΩ into overlapping strips and discretize
using the second order leap-frog scheme.We then apply the orthogonal variant of the
absorbing transmission conditions in [1] between subdomains, since they are easy
to implement and effective in reducing errors carried by propagating waves. By [1,
Theorem 5.5], the interface error 𝑒𝑛

Γ
after 𝑛 iterations of SWR behaves as follows:

• If 𝑇 ≤ 𝑛𝛿, then 𝑒𝑛
Γ
= 0.

• If 𝑇 > 𝑛𝛿, then ∥𝑒𝑛
Γ
∥ ≤

(
1−𝑛𝛿/𝑇
1+𝑛𝛿/𝑇

)𝑛
∥𝑒0

Γ
∥.

We thus have a combination of the nilpotent behaviour in 1D and the geometric
convergence described in [4] for parabolic problems. We therefore expect 𝑃, the
number of processors per subdomain, to play a bigger role on convergence than in the
1D case. To illustrate this, we runWRAP on the wave equation onΩ = (0, 2) × (0, 1)
for 0 ≤ 𝑡 ≤ 𝑇 = 2. The problem is discretized on a mesh with (Δ𝑥,Δ𝑦,Δ𝑡) =

(1/384, 1/192, 1/440), so that the CFL number Δ𝑡
√︁
Δ𝑥−2 + Δ𝑦−2 ≈ 0.9757 is close

to 1. The domain is subdivided in the 𝑥 direction into 8 subdomains of width
1
4 + 𝛿, where 𝛿 = 2Δ𝑥 is the overlap (except for the first and last subdomains). The
initial conditions are 𝑢(𝑥, 𝑦, 0) = 2𝑒−100((𝑥−1/2)2+(𝑦−1/2)2) +2𝑒−100((𝑥−3/4)2+(𝑦−1/2)2) ,
𝑢𝑡 (𝑥, 𝑦, 0) = 0. Table 1 shows the convergence behaviour for different numbers of
processors and time block sizes; we also report the median running times over 5
runs for a Matlab spmd implementation. Since we are now varying the number of
processors 𝑃, we must modify our model (2) to include a dependence on 𝑃. Indeed,
note that the head node needs to figure out which of the 𝑃 tasks should be assigned to
which of the 𝑃 processors, and then communicate this assignment to each processor.
Thus, the setup and tasks management costs are proportional to 𝑃, leading to the
revised model

𝑅 = 𝑐0𝑃 + (𝑁 + 𝐾)
(
𝑐1

Δ𝑇

Δ𝑡
· 𝐻

𝑑

ℎ𝑑
+ 𝑐2𝑃

)
. (5)

We use the running times from Table 1 to get a least-squares fit for 𝑐0, 𝑐1 and
𝑐2 and use them to compute a predicted running time, which we show in Table 2
together with the error relative to the actual running times. We see that the model
errors are mostly within 10%, and never over 20%. Note that in this example, the
communication overhead dominates the running times. Since we cannot control the
communication time in Matlab, we simulate a machine with lower communication
cost by changing the cost ratios: we modify our program to repeat 10 times each
line that contains actual computation of the solution, without modifying any lines
involving communication or task management. This corresponds to multiplying the
constant 𝑐1 by 10 in themodel (5) without changing the other parameters. The results,
shown in Table 3, now show that 𝑃 = 4 is the fastest. Thus, when computation costs
dominate over communication and management costs, pipelining has the potential
to reduce running times, assuming extra processors are available.
Finally, we appliedWRAP to the solution of optimal control problems, where each

step of the conjugate gradient method requires solving the wave equation forward
and backward in time. Our results in terms of convergence and running times led to
conclusions similar to those for the initial value problems above.

8 Laurence Halpern and Felix Kwok

Table 1 Number of iterations (𝑁 + 𝐾) and running times (in seconds) for WRAP applied to the
2D problem.

𝑃 = 1 𝑃 = 2 𝑃 = 3 𝑃 = 4 𝑃 = 6
𝑁 Block size Iters Runtime Iters Runtime Iters Runtime Iters Runtime Iters Runtime
440 2 880 2.0636 771 2.8561 688 2.9775 637 3.1309 575 3.7323
220 4 660 3.0533 498 3.3148 424 3.2049 385 3.2229 331 3.6483
110 8 550 4.9897 340 4.2345 279 3.8238 241 3.5016 202 3.5515
80 11 559 6.8725 296 4.8384 228 4.1579 195 3.8121 162 3.7557
55 16 440 7.9011 242 5.7644 184 4.6866 155 4.2169 129 4.0928
40 22 399 9.6606 203 6.3614 149 5.0406 126 4.6063 108 4.4163

Table 2 Running times (in seconds) predicted by the model (5) and the model error relative to the
true running times for the 2D problem.

𝑃 = 1 𝑃 = 2 𝑃 = 3 𝑃 = 4 𝑃 = 6
𝑁 Block size Model Error Model Error Model Error Model Error Model Error
440 2 2.4347 +18% 2.6350 -7.7% 2.8670 -3.7% 3.1629 +1.0% 3.8311 +2.6%
220 4 3.3696 +10% 3.0324 -8.5% 3.0744 -4.1% 3.2702 +1.5% 3.7514 +2.8%
110 8 5.3010 +6.2% 3.7809 -10% 3.5878 -6.2% 3.5932 +2.6% 3.9311 +11%
80 11 7.2424 +5.4% 4.3590 -9.9% 3.8654 -7.0% 3.7996 -0.3% 4.0705 +8.4%
55 16 8.2084 +3.9% 5.0220 -13% 4.3244 -7.7% 4.1413 -1.8% 4.3464 +6.2%
40 22 10.1283 +4.8% 5.6663 -11% 4.6753 -7.3% 4.4436 -3.5% 4.6689 +5.7%

Table 3 Running times (in seconds) of a modified algorithm where computation is 10 times more
expensive than in Table 1.

𝑁 Block size 𝑃 = 1 𝑃 = 2 𝑃 = 3 𝑃 = 4 𝑃 = 6
440 2 12.2321 12.4663 11.9998 11.3855 11.5271
220 4 18.3951 15.5541 13.9407 12.9941 12.1711
110 8 30.1283 20.6137 17.9036 15.4724 14.1197
80 11 42.1241 24.4329 19.9733 17.1410 15.2318
55 16 48.7582 28.9775 23.2071 19.6326 17.4053
40 22 60.5008 33.2461 25.8180 21.9029 19.7840

Acknowledgements F. Kwok acknowledges support from the National Science and Engineering
Research Council of Canada (RGPIN- 2021-02595). The work described in this paper is partially
supported by a grant from the ANR/RGC joint research scheme sponsored by the Research Grants
Council of the Hong Kong Special Administrative Region, China (Project No. A-CityU203/19) and
the French National Research Agency (Project ALLOWAPP, grant ANR-19-CE46-0013-01).

References

1. Gander, M.J., Halpern, L.: Absorbing boundary conditions for the wave equation and parallel
computing. Math. Comp. 74(249), 153–176 (2005)

2. Gander, M.J., Halpern, L., Nataf, F.: Optimal Schwarz waveform relaxation for the one dimen-
sional wave equation. SIAM J. Numer. Anal. 41(5), 1643–1681 (2003)

3. Gopalakrishnan, J., Schöberl, J., Wintersteiger, C.: Mapped tent pitching schemes for hyperbolic
systems. SIAM J. Sci. Comput. 39(6), B1043–B1063 (2017)

4. Kwok, F., Ong, B.W.: Schwarz waveform relaxation with adaptive pipelining. SIAM J. Sci.
Comput. 41(1), A339–A364 (2019)

5. Lions, J.L., Maday, Y., Turinici, G.: Résolution d’EDP par un schéma en temps «pararéel».
C. R. Acad. Sci., Ser. I: Math. 332(7), 661–668 (2001)

