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Discretization of NSE 

with boundary conditions

 is the rate of strain tensor.

Navier Stokes Equations

such that
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Discretization of NSE 

   We use the backward second-order accurate implicit scheme :              

Thus, at each time step, we obtain the non-linear equation:

where the right hand side depends only on           and  

Time Discretization
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Discretization of NSE

At time step,     

This non-linearity can be treated by several approach :

- Linearized method                                    ( for instance:                                     )

- Fixed point method (Picard method): 

• Given a solution at iteration j, 

• Obtain a solution of

Treatment of the non-linear term
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- Newton method:
at “Newton” iteration j,  the approximation of the convection term:

where

Discretization of NSE

Treatment of the non-linear term
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Discretization of NSE

Then, the velocity and pressure can be decomposed as follows:

The discrete subspaces      and        are chosen as follows:

Furthermore, the hierarchical basis allows the follows decompozition

(

Where: 
is the subspace of continuous  piecewise linear polynomials, and 

is the complementary subspace of continuous  piecewise quadratic  

Space Discretization

)
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Discretization of NSE

Finally, the discrete formulation  can be rewritten as:  

Where  such that

- Mass matrix

- Diffusion  matrix

- Convection   matrix

- Divergence matrix From Newton Method

Algebraic System
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Resolution Method

To solve the system: 

we can use the direct method 

- The matrix is singular, then we introduce a penalization term 

- But, .....

Direct Method
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Resolution Method

- Solve simultaneously the velocity and the pressure

-  GCR or GMRES (Kryolv method)

- Preconditioner:

This factorization cannot be used as preconditioner because 
F is large-scale matrix and S is dense matrix.

where stands for the Schur complement

Our approach consists:

Iterative Method
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Iterative Method

-   Then, we introduce an approximation:

-   And, we choose the follow preconditioner:

-   The action of this preconditioner on a residual vector can be rewritten as:

We have to solve 2 systems

Iterative Method

and 
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Iterative Method

⇔
We use the hierarchical basis for the quadratic FE discretization

Then, we can decompose the velocity into the linear part and a quadratic correction:

Consequently, the matrix F can be rewritten as:

Finally, we use the following Algorithm proposed by El Maliki and Fortin 

Preconditioning the matrix F
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Iterative Method

• Stokes Case: 

Thanks to the discrete inf-sup condition proved by Brezzi-Fortin:

we can remark that the matrix                 is spectrally equivalent to the mass matrix 

We can choose this approximation

• Navier Stokes Case: Turek  proposes the additive preconditioner: 

Schur complement approximation
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Numerical Simulations
with MEF++ Code

• Configuration and boundary conditions for flow around cylinder

The inflow condition is: 

Fluid flow around rigid objects
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• Comparison with Turek, Schafer,...

Our Results Turek Teams Results

0.1694 0.1693

6.1430 6.0928

Fluid flow around rigid objects

Numerical Simulations
with MEF++ Code
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• Geometry

Fluid flow in a sudden axisymmetric 
constriction

Numerical Simulations
with MEF++ Code

D    D/2

4D 2D 80D

• Physical experience • Stability Method

- J. Vetel and A. Garon

at Reynolds Number = 255.

Symmetry breaking

- S. J. Sherwin et al

Symmetry breaking

at Reynolds Number = 721.
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Numerical Simulations
with MEF++ Code

Fluid flow in a sudden axisymmetric 
constriction

• Our Strategy! ( Reynolds number =300)

- We consider a symmetric Mesh

1. By a Reynolds Continuation Procedure, we obtain a symetric solution 

2. Build a non-symmetric solution by imposing some boundary conditions

3. Redo  the simulation by setting this non-symmetric as initial data  
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Fluid flow in a sudden axisymmetric 
constriction

1. Symmetric Solution at Reynolds=300

Numerical Simulations
with MEF++ Code
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Fluid flow in sudden axisymmetric 
constriction

2. Perturbation of the Initial Condition  

Numerical Simulations
with MEF++ Code

- Boundary condition:
    z>0 , y>0:    u(x,y,z) = (0,0, free) and   
if  z<= 0 or y<= 0:  u(x,y,z) =(0,0,0).
     

Z>0

recirculation zone
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Fluid flow in sudden axisymmetric 
constriction

3. Existence of the asymmetric solution at Reynolds =300

Numerical Simulations
with MEF++ Code

recirculation zone
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High Performance Computing
MEF++ //

colosse.clumeq.ca:  7900 Cores
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High Performance Computing
MEF++ //

colosse.clumeq.ca:  7900 Cores
• 4.5M DOF

For 3 time steps, 10 Iterations of Newton

DOF Nb_proc Time(s)

1 403 216 2 2002

2 790 733 4 2394

4 929 523 8 2682

10 281 710 14 3539

47 083 332 64 5939
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3. We can simulate big problems   
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1. Verify experimental results of  Vetel and Garon (and Sherwin )

2. Improvement (optimization) of the solver 

3. Fluid-Structure Interaction 
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 Conclusion and Ongoing Works

1.  Robust Solver  for Navier Stokes Equations

2.  MEF++ Code is Parallel

3. We can simulate big problems   

• Conclusion

• Ongoing Works

1. Verify experimental results of  Vetel and Garon (and Sherwin )

2. Improvement (optimization) of the solver 

3. Fluid-Structure Interaction 

Thank you!
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