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Discretization of NSE

Navier Stokes Equations

ou
p—-—div(2ne(w) +p(u-Vu)+Vp =f
div(u) =0
u(x,0)=ug(x) such that div(ugp)=0

with boundary conditions

c(u)=(Vu+ (Vu)t)/Z is the rate of strain tensor.
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Discretization of NSE

Time Discretization

t, =ty +nAt

We use the backward second-order accurate implicit scheme :

ou S3u” —4u* w2

N\
N\

E 2At

Thus, at each time step, we obtain the non-linear equation:

o —div(2ne(@™)) +p@” -vVu'") +Vp" =f+ou*
div(u”)=0

where the right hand side depends only on u" ! and u’ 2
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Discretization of NSE

Treatment of the non-linear term

At t1 t
1me SLep, Oﬂln —le(2n8(un)) _|_p(un . Vul’l) +Vpn :f‘l_ OCu*

This non-linearity can be treated by several approach :

- Linearized method u” - Vu" ~u,-Vu" ( for instance: U, = 2u" ! —u? )

- Fixed point method (Picard method):

e Given (u , P ]) a solution at iteration j,

e Obtain (uj+1, pj+1) a solution of

o'y | —div(2pe ('}, ) +p(’;- VU )+ Vi, =f4ou”
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Discretization of NSE

Treatment of the non-linear term

- Newton method:

at “Newton” iteration j, the approximation of the convection term:

J+1

where 31_{_1 U'jl- +ou.

» ou’? | — div(2ns(uf,,)) + p(uf - Vou

Vpil, = f+au —p(ul.V)uy

VuJle A ou - Vu’} —|—u’}.V(5u)—|—u’}.Vu’}

ou - Vu})

Monday, June 25, 2012




Discretization of NSE

Space Discretization

The discrete subspaces V; and QO are chosen as follows:

Vi ={vieCOUQ)4, vl € (P YT € T
0n={qreC’( Q). qnlr €(P)) YT € T },}

Then, the velocity and pressure can be decomposed as follows:

n m
u, =) u;¢p; and Ph=zpj¢j
j=1

=1

Furthermore, the hierarchical basis allows the follows decompozition

Where: ¢

\

Vh:‘/l@vq (u=u1—|—uq>

V| is the subspace of continuous piecewise linear polynomials, and

Vq is the complementary subspace of continuous piecewise quadratic
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Discretization of NSE

Finally, the discrete formulation can be rewritten as:

Algebraic System

o/

Where F=oM +nD+ p(C+ N)

- Mass matrix

U F BY
p _B O_

Mij:/g‘bi'(l)jdx

u

P

- Diffusion matrix Dij:/Qe((l)i):e(d)J-)dx

f
0

- Convection matrix  Cjj= / (W'V(I)i)’d)j dx
Q

- Divergence matrix B = — / Y idiv(d;)dx
Q

such that

Ni= [ (V) d

\—_/
From Newton Method
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Resolution Method

Direct Method

" F B'|[u f
B O |[p 0

To solve the system:

we can use the direct method

- The matrix 1s singular, then we introduce a penalization term

"F B'||u f

B ™M || p 0
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Resolution Method

Iterative Method

Our approach consists:

- Solve simultaneously the velocity and the pressure

-  GCR or GMRES (Kryolv method)

- Preconditioner:
F Bl [ I O|[F o7[1 F'BY
B 0| |[BF' 1||0 —S|lo 1

where S= B F~1 B! stands for the Schur complement

This factorization cannot be used as preconditioner because
F 1s large-scale matrix and S 1s dense matrix.
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[terative Method

Iterative Method

- Then, we introduce an approximation: ¥ and §

- And, we choose the follow preconditioner:

F B
0 —S

- The action of this preconditioner on a residual vector can be rewritten as:

PR =

' o—1
op=-8"r,

< ~/

ou=F~! (r, — B'op)

\

We have to solve 2 systems
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[terative Method

Preconditioning the matrix I

ou=F lr,—BYp) & Fou=r,
We use the hierarchical basis for the quadratic FE discretization

Then, we can decompose the velocity into the linear part and a quadratic correction:

U=U]TUq

Fi Fq
Fqi qu_

Consequently, the matrix F can be rewritten as: ' —

Finally, we use the following Algorithm proposed by El Maliki and Fortin

1. Solve by few iterations of SOR: Fo=r where 0=(J},0q)" and r=(r1,rq)".
2. Compute the residual: dy=r1— Fjj01 — Fiq0q.

3. Solve by a direct or few iterations of an iterative method: Flléi" =dj.

4. Update the correction: 0= (314 0;, d¢)".
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[terative Method

Schur complement approximation

Thanks to the discrete inf-sup condition proved by Brezzi-Fortin:

we can remark that the matrix BD~! B! is spectrally equivalent to the mass matrix M p

o Stokes Case. We can choose this approximation
~ 1 I
S~8= -M, = —diag(M,)
n n

e Navier Stokes Case: Turek proposes the additive preconditioner:

—1 ~ as—1 —1
S M, (eM,+nD,+pCp)D,
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Numerical Simulations
with MEF++ Code

Fluid flow around rigid objects

e Configuration and boundary conditions for flow around cylinder

The inﬂOW Condition iS: / Outflow plane
a-n=(00
72
’LL(O, X9, 333) = —4$2333(H — ZCQ)(H — 333), O, 0
H u = (0,0,0)
T, = (4.5,2.0,2.05)
Re = 20 ;

z. = (5.5,2.0,2.05)

Inflow plane
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Numerical Simulations
with MEF++ Code

Fluid flow around rigid objects

e Comparison with Turek, Schafer,...

Our Results Turek Teams Results
Ap 0.1694 0.1693
Cp 6.1430 6.0928
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Numerical Simulations
with MEF++ Code

Fluid flow in a sudden axisymmetric
Constriction

e Geometry

4D 2D 80D
e Physical experience o Stability Method
- J. Vetel and A. Garon = S. J. Sherwin et al
Symmetry breaking Symmetry breaking

at Reynolds Number = 255. at Reynolds Number = 721.
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Numerical Simulations
with MEF++ Code

Fluid flow in a sudden axisymmetric
Constriction

o Qur Strategy! ( Reynolds number =300)

- We consider a symmetric Mesh

1. By a Reynolds Continuation Procedure, we obtain a symetric solution
2. Build a non-symmetric solution by imposing some boundary conditions

3. Redo the simulation by setting this non-symmetric as initial data U
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Numerical Simulations
with MEF++ Code

Fluid flow in a sudden axisymmetric
Constriction

1. Symmetric Solution at Reynolds=300

¥y

T T |
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Numerical Simulations
with MEF++ Code

Fluid flow in sudden axisymmetric
Constriction

2. Perturbation of the Initial Condition

- Boundary condition:
z>0, y>0: ux,yz) = (0,0, free) and
if z<=0ory<=20: uxyz) =(0,0,0).

recirculation zone >
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Numerical Simulations
with MEF++ Code

Fluid flow in sudden axisymmetric
Constriction

3. Existence of the asymmetric solution at Reynolds =300

YU

‘ﬁ— S

| E—

A"

recirculation zone
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High Performance Computing
MEF++//

colosse.clumeg.ca: 7900 Cores
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High Performance Computing
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e Conclusion

1. Robust Solver for Navier Stokes Equations
2. MEF++ Code 1s Parallel

3. We can simulate big problems

e Ongoing Works

1. Verify experimental results of Vetel and Garon (and Sherwin )
2. Improvement (optimization) of the solver

3. Fluid-Structure Interaction

Thank you!
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