A fictitious domain-like spectral method for complex geometries

Stéphane Del Pino¹ Driss Yakoubi²

¹Département des Sciences de la Simulation et de l'Information CEA DAM/DIF

> ²Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie Paris VI

CEMRACS'08

S. Del Pino and D. Yakoubi (CEA and UPMC) A fictitious domain-like spectral method ...

CEMRACS'08 1 / 35

Motivations

- Fictitious Domain-like methods allow to avoid the complex task of generating meshes.
- Fictitious Domain-like methods have the reputation to be low order of accuracy (see V. Girault-R. Glowinski for instance).
- We had an experience of Fictitious Domain-like method coded in FreeFEM3D using FEM.

Question

• What about high-order and Fictitious Domain-like methods? Can accuracy be kept?

Outline

Description of the method

- Spectral methods in tensorial domains
- A fictitious domain-like method in complex geometries
- A priori estimates

Numerical simulations

- Implementation in FreeFEM3D
- Tensorial domains
- Non-tensorial domains
- Improving the method efficiency?
- Conclusions and perspectives

Outline

Description of the method

Spectral methods in tensorial domains

- A fictitious domain-like method in complex geometries
- A priori estimates

Numerical simulations

- Implementation in FreeFEM3D
- Tensorial domains
- Non-tensorial domains
- Improving the method efficiency?
- Conclusions and perspectives

Spectral Methods

- Introduced by Gottlieb-Orszag in the seventies
- The solution is approximated by high-order polynomials
- Approximation space is span by a tensorial basis of orthogonal polynomials (Legendre polynomials are L²(] – 1, 1[)-orthogonal)
- We focus on the Galerkin spectral method with numerical quadrature (integration points being Gauss-Lobatto's). *i.e.*: Find u^N ∈ P^N, s.t. ∀v ∈ P^N, a(u^N, v) = ℓ(v), Nx,Ny,Nz

where $\mathbb{P}^{\mathbf{N}} = \mathbb{P}_{N_x} \otimes \mathbb{P}_{N_y} \otimes \mathbb{P}_{N_z}$, so $u^{\mathbf{N}} = \sum_{i,j,k=0}^{j} u_{ijk} L_i(x) L_j(y) L_k(z)$.

For the sake of simplicity in the following, we will take

 $N_x = N_y = N_z = N$, so **N** = (N, N, N).

• Comments on the arising linear system:

- Obtained matrices are not sparse.
- Assembling the matrix costs $O(N^{3d})$ operations! It is prohibitive.
- However, the tensorial structure of the discretization allows to compute efficiently the matrix-vector product (⇒ use of iterative methods)

Legendre Polynomials

Definition (the Legendre Family $(L_n)_{n\geq 0}$)

 $(L_n)_{n\geq 0}$ on]-1,1[is the set of polynomials, two by two orthogonal in $L^2(]-1,1[)$, s.t. $\forall n \in \mathbb{N}$, the polynomial L_n is of degree n and satisfies $L_n(1) = 1$.

Theorem (Polynomial approximation errors)

 $\forall m \in \mathbb{N}^*, \exists c(m, D) \in \mathbb{R}^* \text{ s.t., } \forall \varphi \in H^m(D),$

$$\begin{split} ||\varphi - \Pi^{D}_{\mathbf{N}}\varphi||_{L^{2}(D)} &\leq cN^{-m}||\varphi||_{H^{m}(D)}, \\ ||\varphi - \Pi^{1,D}_{\mathbf{N}}\varphi||_{L^{2}(D)} &\leq cN^{-m}||\varphi||_{H^{m}(D)}, \end{split}$$

and

$$|\varphi - \Pi^{1,D}_{\mathbf{N}} \varphi|_{H^1(D)} \leq c N^{1-m} ||\varphi||_{H^m(D)},$$

where $\Pi_{\mathbf{N}}^{D}$ is the L^{2} -orthogonal-projection operator on $\mathbb{P}^{\mathbf{N}}$: $\forall \varphi \in L^{2}(D), \Pi_{\mathbf{N}}^{D} \varphi$ is

$$\forall \psi \in \mathbb{P}^{\mathsf{N}}, \quad \int_{D} \Pi^{D}_{\mathsf{N}} \varphi \, \psi = \int_{D} \varphi \, \psi$$

and $\Pi_{\mathbf{N}}^{1,D}$ is the H^1 -orthogonal-projection operator on $\mathbb{P}^{\mathbf{N}}$: $\forall \varphi \in H^1(D), \Pi_{\mathbf{N}}^{1,D}\varphi$ is

$$\forall \psi \in \mathbb{P}^{\mathbf{N}}, \quad \int_{D} \Pi_{\mathbf{N}}^{1,D} \varphi \, \psi + \int_{D} \nabla \Pi_{\mathbf{N}}^{1,D} \varphi \cdot \nabla \psi = \int_{D} \varphi \, \psi + \int_{D} \nabla \varphi \cdot \nabla \psi.$$

Natural boundary conditions

Let *D* be a rectangular domain of \mathbb{R}^d .

Let $a(\cdot, \cdot)$ and $I(\cdot)$ be two forms respectively bilinear and linear over $H^1(D)$, a being moreover coercive. Find u in $H^1(D)$ s.t.

 $\forall v \in H^1(D), \quad a(u, v) = l(v).$

Let u^{N} be the solution of the approximate problem: Find u^{N} in \mathbb{P}^{N} s.t.

 $\forall v \in \mathbb{P}^{\mathsf{N}}, \qquad a(u^{\mathsf{N}}, v) = l(v).$

Assuming that $u \in H^m(D)$, there exists a constant *c* that only depends on *D* and *m* such that

•
$$\|u - u^{\mathsf{N}}\|_{1,D} \le cN^{m-1} \|u\|_{m,D}$$

•
$$||u - u^{\mathsf{N}}||_{0,D} \leq c N^m ||u||_{m,D}.$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A priori Estimates 3/3

Dirichlet problem

W

Let *D* be a rectangular domain of \mathbb{R}^d .

Let $a(\cdot, \cdot)$ and $I(\cdot)$ be two forms respectively bilinear and linear over $H_0^1(D)$, *a* being moreover coercive. Find *u* in $H_0^1(D)$ s.t.

$$\forall v \in H_0^1(D), \qquad a(u,v) = l(v).$$

Let u^{N} be the solution of the approximate problem: Find u^{N} in \mathbb{P}^{N} s.t.

$$\forall \mathbf{v} \in \mathbb{P}^{\mathsf{N}}, \qquad a(u^{\mathsf{N}}, \mathbf{v}) = l(\mathbf{v}).$$

Assuming that $u \in H^m(D)$, there exists a constant *c* that only depends on *D* and *m* such that

$$\begin{aligned} \bullet & \|u - u^{\mathsf{N}}\|_{1,D} \leq c N^{m-1} \|f\|_{m-2,D}, \\ \bullet & \|u - u^{\mathsf{N}}\|_{0,D} \leq c N^{m} \|f\|_{m-2,D}, \\ \text{where } \forall v \in H^{1}_{0}(D), \quad I(v) = < f, v >_{H^{-1}(D), H^{1}_{0}(D)}. \end{aligned}$$

Outline

Few examples of spectral methods for complex geometries

- Using domain decomposition: Spectral elements (BERNARDI-MADAY,...).
- Using iso-parametric elements:
 - GORDON-HALL transformations,
 - spectral method applications: MADAY-RØNQUIST,
- These techniques can be mixed (see the book from CANUTO-HUSSAINI-QUARTERONI-ZANG).

A fictitious domain-like spectral method

Discrete Space

 $\mathbb{P}^{N} = \mathbb{P}_{N_{x}} \otimes \mathbb{P}_{N_{y}} \otimes \mathbb{P}_{N_{z}}$: the set of polynomial of degree $\leq N_{x,y,z}$ in each direction. Again, we take $N_{x} = N_{y} = N_{z} = N$

The method relies on to main ideas

- Dirichlet boundary conditions are treated by penalty (**Nitsche**'s method): u = g on $\partial \Omega$ is replaced by $\frac{1}{\varepsilon}u + \frac{\partial u}{\partial n} = \frac{1}{\varepsilon}g$ on $\partial \Omega$.
- Geometry is approximated the following way:
 - $\Omega = \bigcup_{i=0}^{+\infty} D_i$ where D_i are non overlapping rectangular sets.
 - We just use $\Omega_m = \bigcup_{i=0}^m D_i$ build using an octree for instance.

Beware

- cost is related to m.
- loss of orthogonality of the tensorial Legendre basis in Ω_m (condition number is affected **a lot**).

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Ω_m Examples

イロト イヨト イヨト イヨト

S. Del Pino and D. Yakoubi (CEA and UPMC) A fictitious domain-like spectral method ...

CEMRACS'08 13 / 35

æ

Evaluation of integrals

Volume integrals

Example: solving
$$\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} fv$$

 \implies to evaluate $\int_{D_i} \nabla u \cdot \nabla v = \int_{D_i} fv$, $0 \le i \le m$, with the **Gauss-Lobatto-Legendre** formula.

Surface integrals

Method: build a triangular mesh $(T_i)_i$ of $\partial \Omega$ then approximate $\int_T f$

using a Gauss-like quadrature formula.

S. Del Pino and D. Yakoubi (CEA and UPMC) A fictitious domain-like spectral method ...

< 回 ト < 三 ト < 三

Building surface mesh

An "easy" task ...

- Knowing the characteristic function $\mathbf{1}_{\Omega}$ of the set Ω building a triangular mesh of $\partial \Omega$ is not a big task.
- Moreover it is already coded in FreeFEM3D

Technique

- create a tetrahedral structured mesh that contains Ω
- use a slightly improved Marching Tetrahedra algorithm

Summary: an example

Model problem

Find
$$u \in H_0^1(\Omega)$$
, **s.t.** $\forall v \in H_0^1(\Omega)$, $\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} fv$,
where Ω is a bounded and connected open set of \mathbb{R}^3 and $f \in L^2(\Omega)$.

Methodology

- Choose a rectangular domain D ⊃ Ω (to build the Legendre basis).
- Penalty: find $u^{\epsilon} \in H^{1}(\Omega)$, **s.t.** $\forall v \in H^{1}(\Omega)$, $\frac{1}{\epsilon} \int_{\partial \Omega} u^{\epsilon} v + \int_{\Omega} \nabla u^{\epsilon} \cdot \nabla v = \int_{\Omega} fv$.
- Choose N_x , N_y , and $N_z \in \mathbb{N}$ in order to define $\mathbb{P}^{\mathsf{N}} = \mathbb{P}_x^{N_x} \otimes \mathbb{P}_y^{N_y} \otimes \mathbb{P}_z^{N_z}$.
- Build $\Omega_m \approx \Omega$ (e.g. using Octree) and $\Gamma_h \approx \partial \Omega$ (e.g. Marching Tetrahedra).

• Solve
$$u^{\mathbf{N}} \in \mathbb{P}^{\mathbf{N}}$$
, s.t. $\forall v \in \mathbb{P}^{\mathbf{N}}$, $\frac{1}{\epsilon} \int_{\Gamma_h} u^{\mathbf{N}} v + \int_{\Omega_m} \nabla u^{\mathbf{N}} \cdot \nabla v = \int_{\Omega_m} fv$

Outline

Description of the method

- Spectral methods in tensorial domains
- A fictitious domain-like method in complex geometries
- A priori estimates

Numerical simulations

- Implementation in FreeFEM3D
- Tensorial domains
- Non-tensorial domains
- Improving the method efficiency?
- Conclusions and perspectives

Theorem (Linear extension)

Let $m \in \mathbb{N}^*$. Let Ω be a bounded and connected open set of \mathbb{R}^d with a smooth boundary $\partial \Omega$ of $C^{m-1,1}$ regularity. We fix an open set D such that $D \supset \overline{\Omega}$. There exists a continuous linear extension operator E from $H^m(\Omega)$ to $H_0^m(D)$ such that

$$egin{array}{ll} Em{v}|_{\Omega} =m{v}, \; m{and} \ \|Em{v}\|_{H^m(D)} \leq m{c}\|m{v}\|_{H^m(\Omega)}, & orall m{v} \in H^1(\Omega). \end{array}$$

where c only depends on the domains Ω , D and on m.

This theorem can be found in Guilbarg-Trudinger.

Theorem (Projection)

Let Ω bounded and connected open set of \mathbb{R}^d , s.t. $\partial \Omega$ is of class $C^{m-1,1}$, and let $u \in H^m(\Omega)$, then there exists a constant $c(\Omega, m) > 0$, s.t.

$$u - \Pi^{\Omega}_{\mathbf{N}} u||_{L^{2}(\Omega)} \leq c N^{-m} ||u||_{H^{m}(\Omega)}, \quad and \tag{1}$$

$$||u - \Pi_{\mathbf{N}}^{1,\Omega}u||_{H^{1}(\Omega)} \le c N^{1-m} ||u||_{H^{m}(\Omega)}.$$
(2)

The proof is based on

- the linear extension theorem, Guilbarg-Trudinger,
- the estimates of polynomial approximation in a tensorial domain, Bernardi-Maday

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Natural boundary conditions

Consider the following variational problem: $\forall v \in H^1(\Omega)$,

$$\begin{split} a(u,v) &= \int_{\Omega} a_0 \, uv + \sum_{i,j=1}^d \int_{\Omega} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_i} + \int_{\partial \Omega} b_0 \, uv, \\ \ell(v) &= \int_{\Omega} fv + \int_{\partial \Omega} gv. \end{split}$$

Let the approximate problem: find $u^{N} \in \mathbb{P}^{N}$ s.t. $\forall v \in \mathbb{P}^{N}$, $a(u^{N}, v) = \ell(v)$.

Theorem

Le Ω be a bounded and connected open set of \mathbb{R}^d , such that $\partial\Omega$ is of regularity $C^{m-1,1}$. If $u \in H^m(\Omega)$, there exists a constant $c(\Omega, m, a) \in \mathbb{R}^{+*}$, such that

$$||u - u^{\mathsf{N}}||_{H^{1}(\Omega)} \leq c N^{1-m} ||u||_{H^{m}(\Omega)}.$$

 $||u - u^{\mathsf{N}}||_{L^{2}(\Omega)} \leq c N^{-m} ||u||_{H^{m}(\Omega)}.$

The proof is based on

- le projection theorem (non tensorial case),
- Céa's Lemma
- Aubin-Nitsche's duality argument (for the L² error).

Theorem (convergence)

Let H be an Hilbert space endowed with the scalar product (\cdot, \cdot) and $\|\cdot\|$ the associated norm. Let a and b two bilinear, continuous and positive forms such that:

- ker a is a finite dimension space,
- $\exists c > 0$ such that $a(v, v) > c ||v||^2, \forall v \in (\ker a)^{\perp}$, and
- ker $a \cap$ ker $b = \{0\}$.

Let $\varepsilon > 0$, and let us define the bilinear form $a_{\varepsilon} = a + \frac{1}{\varepsilon}b$.

Let now $f \in H'$ and let $H_0 = \ker b$. We define the following problems

find
$$u \in H_0$$
 s.t. $\forall v \in H_0$, $a(u, v) = \langle f, v \rangle_{H',H}$, (3)

find
$$u_{\varepsilon} \in H$$
 s.t. $\forall v \in H$, $a(u_{\varepsilon}, v) + \frac{1}{\varepsilon}b(u_{\varepsilon}, v) = \langle f, v \rangle_{H',H}$. (4)

Then the two problems are well posed and the sequence $(u_{\varepsilon})_{\varepsilon}$ converges strongly to u in H when ε goes to 0.

Many proves can be found see for instance Aubin, Lions, Maury, etc...

Consider the following problems find $u \in H_0^1(\Omega)$ s.t. $\forall v \in H_0^1(\Omega)$, $a(u, v) = \ell(v)$, and find $u_{\varepsilon} \in H^1(\Omega)$ such that $\forall v \in H^1(\Omega)$, $a(u_{\varepsilon}, v) + \frac{1}{\varepsilon} \int_{\partial \Omega} u_{\varepsilon} v = \ell(v)$.

Theorem (Nitsche, Babuška)

One has the following estimates

$$\begin{aligned} ||u_{\varepsilon} - u||_{H^{1}(\Omega)} &\leq c\sqrt{\varepsilon} \left| \left| \frac{\partial u}{\partial n} \right| \right|_{L^{2}(\partial\Omega)}, \quad ||u_{\varepsilon} - u||_{L^{2}(\partial\Omega)} \leq \varepsilon \left| \left| \frac{\partial u}{\partial n} \right| \right|_{L^{2}(\partial\Omega)}, \end{aligned}$$

et
$$||u_{\varepsilon} - u||_{L^{2}(\Omega)} \leq c\varepsilon \left| \left| \frac{\partial u}{\partial n} \right| \right|_{L^{2}(\partial\Omega)}. \end{aligned}$$

The proof relies on the

- $u_{\varepsilon} \longrightarrow u$, in $H^{1}(\Omega)$ strong (Aubin, Lions, Maury, etc...),
- computing $\int_{\Omega} \nabla (u u_{\varepsilon}) \cdot \nabla v + \frac{1}{\varepsilon} \int_{\partial \Omega} (u u_{\varepsilon}) v = \int_{\Omega} fv + \int_{\partial \Omega} \frac{\partial u}{\partial n} v$,
- Aubin-Nitsche's duality argument, for the L^2_{\Box} -error.

A priori error estimate

Let us define the following problems:

Find
$$u \in H_0^1$$
, s.t. $\forall v \in H_0^1(\Omega), a(u, v) = I(v),$ (5)

Find
$$u_{\varepsilon}^{\mathbf{N}} \in \mathbb{P}^{\mathbf{N}}$$
, s.t. $\forall v \in \mathbb{P}^{\mathbf{N}}, a(u_{\varepsilon}^{\mathbf{N}}, v) + \frac{1}{\varepsilon} \int_{\partial \Omega} u_{\varepsilon}^{\mathbf{N}} v = l(v).$ (6)

Theorem

Let Ω be a bounded connected open set of \mathbb{R}^d , whose boundary $\partial \Omega$ has $C^{m-1,1}$ regularity. If $u \in H^m(\Omega)$, there exists $c(\Omega, m) > 0$, such that

$$|u - u_{\varepsilon}^{\mathsf{N}}||_{H^{1}(\Omega)} \leq c \left(N^{1-m} ||f||_{H^{m-2}(\Omega)} + \sqrt{\varepsilon} \left\| \left| \frac{\partial u}{\partial n} \right| \right|_{L^{2}(\partial \Omega)} \right)$$

$$||u - u_{\varepsilon}^{\mathbf{N}}||_{0} \leq c \left(N^{-m} ||f||_{H^{m-2}(\Omega)} + \varepsilon \left\| \left| \frac{\partial u}{\partial n} \right| \right|_{L^{2}(\partial \Omega)} \right)$$

where $\forall v \in H_0^1(D)$, $l(v) = \langle f, v \rangle_{H^{-1}(D), H_0^1(D)}$.

• $||u - u_{\varepsilon}^{\mathbf{N}}||_{H^{1},L^{2}} \leq ||u_{\varepsilon}^{\mathbf{N}} - u_{\varepsilon}||_{H^{1},L^{2}} + ||u_{\varepsilon} - u||_{H^{1},L^{2}},$ • $u \in H^{m} \implies u_{\varepsilon} \in H^{m}, \text{ and } ||u_{\varepsilon}^{\mathbf{N}} - u_{\varepsilon}||_{H^{1},L^{2}} \leq CN^{\sigma-m}||u_{\varepsilon}||_{H^{m}}, \quad \sigma \in \{0,1\},$ • $||u_{\varepsilon} - u||_{H^{1},L^{2}} \leq c_{1}\varepsilon^{1-\gamma}||u_{\varepsilon}||_{H^{m}}, \quad \gamma = 0, \frac{1}{2}.$ • S. Del Pino and D. Yakoubi (CEA and UPMC). A fictitious domain-like spectral method ... • CEMBACS'08 23/35

Outline

Description of the method

- Spectral methods in tensorial domains
- A fictitious domain-like method in complex geometries
- A priori estimates

Numerical simulations

- Implementation in FreeFEM3D
- Tensorial domains
- Non-tensorial domains
- Improving the method efficiency?
- Conclusions and perspectives

Implementation

FreeFEM3D

- C++ code of freefem's family
 - 3D Finite element solver (scalar and vectorial problems)
 - driven by a user-friendly language close to the mathematics
 - write weak or strong formulation of the PDE problem
- Geometry
 - unstructured: mesh is provided by the user
 - fictitious domain approach (penalty for Dirichlet): use of CSG for description

Objectives

- Integrate spectral method to FreeFEM3D:
 - passing from **FEM** to **Spectrale** transparent for the user
 - allow mixing of FEM and Spectral for a given computation
- Solving in tensorial and non-tensorial domains

• $\mathbb{P}_n - \mathbb{P}_k$

Outline

Description of the method

- Spectral methods in tensorial domains
- A fictitious domain-like method in complex geometries
- A priori estimates

Numerical simulations

- Implementation in FreeFEM3D
- Tensorial domains
- Non-tensorial domains
- Improving the method efficiency?
 - Conclusions and perspectives

Poisson's problem

Solve $-\Delta u = 1$ with u = 0 on the boundary. Boundary condition is approached by: $\frac{1}{\epsilon}u + \nabla u \cdot \mathbf{n} = 0$.

Spectral Method

```
vector a=(0,0,0); vector b=(1,1,1);
vector n=(10,10,10);
mesh m=spectral(n,a,b);
```

save(vtk, "u", u, m);

S. Del Pino and D. Yakoubi (CEA and UPMC) A fictitious domain-like spectral method ...

3

< 日 > < 同 > < 回 > < 回 > < □ > <

< (17) × <

28/35

Convergence

L²-error

CEMRACS'08

29/35

Convergence to the analytical solution of a vectorial problem of the form:

 $\begin{aligned} -\Delta \textbf{u} &= \textbf{f}, \text{ dans } \Omega \\ \textbf{u} &= \textbf{g} \text{ sur } \partial \Omega. \end{aligned}$

Linear elasticity

Solve the displacement

$$\int_{\Omega} \mu \sum_{ij} \partial_{x_i} \mathbf{u}_j \partial_{x_i} \mathbf{v}_j + \int_{\Omega} \mu \sum_{ij} \partial_{x_i} \mathbf{u}_j \partial_{x_j} \mathbf{v}_i + \int_{\Omega} \lambda \sum_{ij} \partial_{x_i} \mathbf{u}_i \partial_{x_j} \mathbf{v}_j = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_j$$

$$\Omega =]0, \mathbf{5}[\times] - \frac{1}{2}, \frac{1}{2}[\times] - \frac{1}{2}, \frac{1}{2}[, \mu = 500, \lambda = 1000 \text{ and } \mathbf{f} = (0, 0, -1)$$

Stokes

$$-\Delta \mathbf{u} + \operatorname{grad} p = \mathbf{0}, \quad \text{in } \Omega$$
$$\nabla \cdot \mathbf{u} = \mathbf{0} \quad \text{in } \Omega,$$

Discretization and penalty parameters: N = 15, $\varepsilon = 10^{-5}$.

Outline

Description of the method

- Spectral methods in tensorial domains
- A fictitious domain-like method in complex geometries
- A priori estimates

Numerical simulations

- Implementation in FreeFEM3D
- Tensorial domains
- Non-tensorial domains
- Improving the method efficiency?

Conclusions and perspectives

Poisson problem

We consider

$$\begin{split} -\Delta u &= 3\pi^2 \sin(\pi(x+y+z)) \quad \text{in} \quad \Omega = \Omega_1 \cup \Omega_2 \cup \Omega_3 \quad \text{and} \\ u &= \sin(\pi(x+y+z)) \quad \text{on} \quad \partial \Omega, \\ \Omega_1 &=]-1, 0[\times]-1, 1[\times]-1, 1[, \ \Omega_2 =]0, 1[\times]-1, 0[\times]-1, 1[, \\ \text{and} \ \Omega_3 =]0, 1[\times]0, 1[\times]-1, 0[. \end{split}$$

S. Del Pino and D. Yakoubi (CEA and UPMC) A fictitious domain-like spectral method ...

CEMRACS'08 33 / 35

- We tried **lots** of strategies to improve the condition number.
- Up to now all failed for various reasons.
- Since the matrix has a **really very bad** condition number a strategy is to change the matrix !
- For instance, use the following iterative procedure:

 $a_D(u^{n+1},v)=l(v)+a_{D\setminus\Omega}(u^n,v).$

If it converges, it will converge to the solution of the proposed method. And it converges! See **Bui-Frey-Maury**.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We tried **lots** of strategies to improve the condition number.
- Up to now all failed for various reasons.
- Since the matrix has a really very bad condition number a strategy is to change the matrix !
- For instance, use the following iterative procedure:

 $a_D(u^{n+1},v)=l(v)+a_{D\setminus\Omega}(u^n,v).$

If it converges, it will converge to the solution of the proposed method. And it converges! See **Bui-Frey-Maury**.

Conclusions and perspective

Conclusions

- 3D-Code tensorial/ non-tensorial (Legendre) integrated to FreeFEM3D
- Implementation goals achieved:
 - Scalar or vectorial problems, $\mathbb{P}_n \mathbb{P}_k$, elliptic
 - Easy to use, coupling with FEM possible,...
- New spectral method in non-tensorial domains
 - Numerical analysis of the method
 - cost and convergence problem
 - Decomposition of $\Omega \implies cost$
 - loss of orthogonality \implies very bad condition number

Perspectives

- Numerical analysis: take into account quadrature error (surface,volume)
- try various techniques to improve convergence (iterative, preconditioning,...)
- reduce cost of the method: aggregation of boxes, reduce the order of the quadrature formulae